Argonne National Laboratory

Machine Learning

Machine learning enables systems to learn automatically, based on patterns in data, and make better searches, decisions, or predictions. Machine learning has become increasingly important to scientific discovery. Indeed, the U.S. Department of Energy has stated that “machine learning has the potential to transform Office of Science research best practices in an age where extreme complexity and data overwhelm human cognitive and perception ability by enabling system autonomy to self-manage, heal and find patterns and provide tools for the discovery of new scientific insights.”

What have we been doing?

In the Mathematics and Computer Science Division at Argonne, we are exploring various projects involving machine learning, ranging from algorithm and software development to applications in science and the environment. The following are some examples:

  • Predictive modeling of wide area data transfer
  • Study of aquifer systems
  • Creation of a lightweight thermal prediction system for runtime management
  • Parallel I/O optimization for scalable machine learning
  • Detection of silent data corruption
  • Prediction models of system performance and power
  • Load balancing of climate models
  • Novel algorithms for Bayesian and blackbox optimization
  • Scalable frameworks for neural network hyperparameter optimization and tuning

Stefan Wild is chairing a session at SC17 on Machine Learning and Quantum Computing.

Where have we been publishing?

Here are some recent papers we have published in peer-reviewed journals or presented at conferences.

Outreach

We've also been involved in several outreach activities.

  • 2017 Summer Student Symposium - This past summer several several students pursued projects in machine learning, including study of a smart pipeline for urban data science and use of deep neural networks for wind speed forecasting.
  • Machine Learning Workshop for students and postdocs - at Argonne in July 2017.
  • Machine Learning Workshop at Argonne in March 2017 - MCS Division researchers gave presentations on topics including application performance prediction on HPC systems
  • NAISE internship program - Hosted undergraduate students from Northwestern University working on machine learning applications

Interested in Joining Us?

We are seeking a well-prepared postdoctoral appointee to perform machine learning research and development for scientific discovery on some of the world’s fastest supercomputers. For information, see the website.

·