Argonne National Laboratory

Error Analysis in Nuclear Density Functional Theory

TitleError Analysis in Nuclear Density Functional Theory
Publication TypeJournal Article
Year of Publication2015
AuthorsSchunck, N, McDonnell, JD, Sarich, J, Wild, SM, Higdon, D
JournalJournal of Physics G: Nuclear and Particle Physics
Other NumbersANL/MCS-P5145-0514
AbstractNuclear density functional theory (DFT) is the only microscopic, global approach to the structure of atomic nuclei. It is used in numerous applications, from determining the limits of stability to gaining a deep understanding of the formation of elements in the universe or the mechanisms that power stars and reactors. The predictive power of the theory depends on the amount of physics embedded in the energy density functional as well as on efficient ways to determine a small number of free parameters and solve the DFT equations. In this article, we discuss the various sources of uncertainties and errors encountered in DFT and possible methods to quantify these uncertainties in a rigorous manner.