High-Performance Computation of Distributed-Memory Parallel 3D Voronoi and Delaunay Tessellation

TitleHigh-Performance Computation of Distributed-Memory Parallel 3D Voronoi and Delaunay Tessellation
Publication TypeReport
Year of Publication2014
AuthorsPeterka, T, Morozov, D, Phillips, CL
Other NumbersANL/MCS-P5154-0614
Abstract

Computing a Voronoi or Delaunay tessellation from a set of points is a core part of the analysis of many simulated and measured datasets: N-body simulations, molecular dynamics codes, and LIDAR point clouds are just a few examples. Such computational geometry methods are common in data analysis and visualization; but as the scale of simulations and observations surpasses billions of particles, the existing serial and shared-memory algorithms no longer suffice. A distributed-memory scalable parallel algorithm is the only feasible approach. The primary contribution of this paper is a new parallel Delaunay and Voronoi tessellation algorithm that automatically determines which neighbor points need to be exchanged among the subdomains of a spatial decomposition. Other contributions include the addition of periodic and wall boundary conditions, comparison of parallelization based on two popular serial libraries, and application to numerous science datasets.
 

PDFhttp://www.mcs.anl.gov/papers/P5154-0614.pdf