Argonne National Laboratory

Origins and Optimization of Entanglement in Plasmonically Coupled Quantum Dots

TitleOrigins and Optimization of Entanglement in Plasmonically Coupled Quantum Dots
Publication TypeJournal Article
Year of Publication2016
AuthorsOtten, M, Larson, J, Min, M, Wild, SM, Pelton, M, Gray, SK
JournalPhysical Review A
Other NumbersANL/MCS-P5567-0416
AbstractA system of two or more quantum dots interacting with a dissipative plasmonic nanostructure is investigated in detail by using a cavity quantum electrodynamics approach with a model Hamiltonian. We focus on determining and understanding system configurations that generate multiple bipartite quantum entanglements between the occupation states of the quantum dots. These configurations include allowing for the quantum dots to be asymmetrically coupled to the plasmonic system. Analytical solution of a simplified limit for an arbitrary number of quantum dots and numerical simulations and optimization for the two-and three-dot cases are used to develop guidelines for maximizing the bipartite entanglements. For any number of quantum dots, we show that through simple starting states and parameter guidelines, one quantum dot can be made to share a strong amount of bipartite entanglement with all other quantum dots in the system, while entangling all other pairs to a lesser degree.