Argonne National Laboratory

In Situ Magnetic Flux Vortex Visualization in Time-Dependent Ginzburg-Landau Superconductor Simulations

TitleIn Situ Magnetic Flux Vortex Visualization in Time-Dependent Ginzburg-Landau Superconductor Simulations
Publication TypeConference Paper
Year of Publication2017
AuthorsGuo, H, Peterka, T, Glatz, A
Conference NameIEEE PacificVis 2017
Date Published04/2017
PublisherIEEE
Conference LocationSeoul, Korea
AbstractWe present an in situ visualization framework to capture comprehensive details of vortex dynamics in superconductor simulations. Vortices, which determine all electromagnetic properties of type II superconductors, are extracted and tracked at the same time with GPU-based time-dependent Ginzburg-Landau superconductor simulations. The in situ workflow involves three parts: (1) a tightly coupled GPU-accelerated algorithm that detects primitives for ambiguity-free vortex tracking, (2) a loosely coupled taskparallel feature-tracking method, and (3) a web-based remote visualization tool for vortex dynamics analysis. Our design minimizes the data movement and storage, maximizes the resource utilization, and reduces the slowdown of the simulation. Our solution captures all vortex dynamics in the simulation, previously impossible with traditional post hoc methods. We also demonstrate in situ visualization cases that help scientists understand how vortices cut each other and recombine into new vortices, which are directly related to energy dissipation of superconducting materials.  
URLhttp://pacificvis.snu.ac.kr/programs/papers_2470
PDFhttp://www.mcs.anl.gov/papers/P6074-1016.pdf