Title  Temporal Decomposition for Improved Unit Commitment in Power System Production Cost Modeling 
Publication Type  Report 
Year of Publication  2017 
Authors  Kim, K, Botterud, A, Qiu, F 
Report Number  ANL/MCSP70730717 
Abstract  Longterm planning in electric power systems requires simulations of unit commitment (UC) and economic dispatch (ED) for long time periods up to 20 years. Such simulations are conducted with production cost models (PCMs),
which involve solving largescale mixedinteger programming (MIP) problems with a high number of variables and constraints, because of the long planning horizon. We have developed new optimization modeling and solution techniques based on a decomposition scheme to reduce the solution time and improve the accuracy in PCMs. We propose a temporal decomposition method that solves the UC problem by systematically decoupling the longhorizon MIP problem into several subhorizon models. The decomposition is obtained by the Lagrangian relaxation of the timecoupling UC constraints such as ramping constraints and minimum uptime/downtime constraints. The key challenge with this decomposition approach is to solve several subMIP problems while effectively searching for dual variables in order to accelerate the convergence of the algorithm. We implement the temporal decomposition in the parallel decomposition framework DSP, which can solve the multiple subproblems in parallel on highperformance computing clusters. We also implement the branchandbound method on top of the decomposition in order to recover primal feasible solutions and find a primal optimal solution. Numerical results of the decomposition method are reported for the IEEE 118bus system with up to an 168hour time horizon.

PDF  http://www.mcs.anl.gov/papers/P70730717.pdf 