Using Krylov Subspace and Spectral Methods for Solving Complementarit Problems in Many-Body Contact Dynamics Simulation

TitleUsing Krylov Subspace and Spectral Methods for Solving Complementarit Problems in Many-Body Contact Dynamics Simulation
Publication TypeJournal Article
Year of Publication2012
AuthorsHeyn, T, Anitescu, M, Tasora, A, Negrut, D
JournalInternational Journal for Numerical Methods in Engineering
Date Published06/2012
Other NumbersANL/MCS-P2099-0612
Abstract

Many-body dynamics problems are expected to handle millions of unknowns when, for instance, investigating the three-dimensional flow of granular material. Unfortunately, the size of the problems tractable by existing numerical solution techniques is severely limited on convergence grounds. This is typically the case when the equations of motion embed a differential variational inequality (DVI) problem that captures contact and possibly frictional interactions between rigid and/or flexible bodies. As the size of the physical system increases, the speed and/or the quality of the numerical solution decrease. This paper describes three methods - the gradient projected minimum residual (GPMINRES) method, the preconditioned spectral projected gradient with fallback (P-SPG-FB) method, and the Kucera method - that demonstrate better scalability than the projected Jacobi and Gauss-Seidel methods commonly used to solve contact problems that draw on a DVI-based modeling approach.

DOI10.1002/nme.4513
PDFhttp://www.mcs.anl.gov/papers/P2099-0612.pdf