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Why are certain people good at chess, or at poker? Have you ever wondered what enables a per-

p
son to win so often at word games such as scrabble? How does a mathematician or a logician find a
roof? (When I was a student in the Mathematics Department at the University of Chicago, I asked

h
Paul Halmos questions intended to learn his secrets for proof finding; I did not succeed; I believe now
e could not answer such questions for they are in the most obvious sense unanswerable.) And, most

t
t
relevant to this essay, which approaches taken by an automated reasoning program are most effective a
raversing the potentially huge space of deducible conclusions in search of a first proof or a better and

more elegant prof than currently in hand?

This last question is the one I plan to shed some light on and, indirectly, begin the journey that
t

c
may culminate in a far fuller understanding of the nature of proof and of the space of conclusions tha
an be explored. In this essay and (if all goes as planned) succeeding essays, I shall tell a story that

a
details various experiments that led to new results, some of which concern unexpected relationships
mong axioms and some of which concern proofs more elegant than previously known. Of the various

s
e
ways a proof can be more elegant, or better, perhaps the most obvious concerns proof length. Thi
ssay will feature means for refining proofs, mainly, but not exclusively, in the context of proof length.

m
But, how hard is it to take a proof and find a shorter one? Of course, seeking shorter proofs implicitly

eans that a given axiom set is in focus; for example, with a richer axiom set, in general, a person or a
e

a
program should be able to find shorter proofs than with a less rich set. And can the process b
utomated? finally, of what use is proof shortening, other than aesthetic? I’ll take these questions in

r
t
reverse order and, while doing so, offer topics for research, for a doctoral thesis, or for a possible pape
o publish—or topics whose pursuit may simply be enjoyable.

t
o

Imagine that you have a set of methodologies that very often, or quite often, take a proof or se
f proofs as input and returns a set of proofs of the same theorems, but proofs each of which is shorter,

p
perhaps much shorter. With these methodologies, you could take a standard text, say in logic, and
erhaps markedly trim its size, producing a book on the same topic that offers the same theorems but

n
with economy. For example, the original treatment may include lemmas (with their proofs) that are
eeded, lemmas present mainly on only because they are used to prove interesting theorems. Your suc-

t
cess with proof shortening would, in many cases, obviate the need for these lemmas. If you succeed in
he cited endeavor, then a shorter, more compact, and easier-to-read book might result—what an

�

achievement!
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As for automation, I first note that no algorithm (from what I know) exists for finding shorter
-

t
proofs or, for that matter, for finding the shortest proof for a given theorem. (I’ll return to this observa
ion in more detail later.) Nevertheless, I am quite certain that a skilled programmer could study what

p
follows and produce a program that automates what is offered in this (and succeeding) essays. Such a
rogram would take as input a theorem with a given proof and, if successful, return a proof of strictly

,
m
smaller length. Most likely, iteration would be at the heart of the program. (As McCune observes

ore important than any specific success—even if the result is deep—is the approach taken, the details

p
of how the success was obtained, which explains in part why this report is being written.) Indeed, one
roof after another would be found and, among them, in each run, if all goes well, one could extract a

b
sequence of proofs of descending lengths. The program would with almost certainty be required to
ranch over and over, sometimes even backtracking. In addition to its use in the preceding endeavor

(about book reduction), it might be valuable for finding better circuits or better computer code.

If you wonder about how hard it is to shorten a given proof, the following might prove instructive

a
and challenging. The area is equivalential calculus, but you need know nothing about the field to
ccept the challenge. I shall give you an input file that proves the theorem in focus; you are asked to

f
t
take the proof that results from its use, which I shall also include here, and find a much shorter proo
han that which I include and which is the one obtained from the use of the input file. You will see

l
that the inference rule in use is hyperresolution which, together with the first clause found in
ist(usable), has the program apply condensed detachment. A bit of background is in order, although

-
v
you can skip the next few sentences and simply take the input file and run it with W. McCune’s mar
elous automated reasoning program OTTER. For a third alternative, other than reading the next few

-
c
sentences and running OTTER or just running OTTER with no prior reading, you can attempt to dupli
ate what I am about to tell you without looking at the input file.

e
a

For seven decades, researchers did not know whether the following formula, XCB, was a singl
xiom for equivalential calculus.

B

O

P(e(x,e(e(e(x,y),e(z,y)),z))). % XC

ne way to show that it is in fact a single axiom is to apply condensed detachment (see the input file,
first clause in the usable list) enough times to deduce some other axiom system.

-P(e(x,y))
�
-P(x)
�
P(y). % condensed detachment

f
r
You will find in list(passive) the negations of various single axioms as well as the negations o
eflexivity, symmetry, and transitivity. (Although not obvious, reflexivity is dependent on the 2-basis

,
s
consisting of symmetry and transitivity. In the context of short proofs, the presence of added axioms
uch as dependent ones, quite likely will enable a person or program to find shorter proofs rather than

w
longer; see Section 5.) Because you may wish to seek your own proof that XCB is a single axiom

ithout being influenced by the approach that succeeded, here are some known single axioms, in
negated form.

-P(e(e(a,b),e(e(c,b),e(a,c))))
�
$ANSWER(P1�YQL).

-
-P(e(e(a,b),e(e(a,c),e(c,b))))

�
$ANSWER(P2�YQF).

P(e(e(a,b),e(e(c,a),e(b,c))))
�
$ANSWER(P3�YQJ).

-
-P(e(e(e(a,b),c),e(b,e(c,a))))

�
$ANSWER(P4�UM).

P(e(a,e(e(b,e(a,c)),e(c,b))))
�
$ANSWER(P5�XGF).

-
-P(e(e(a,e(b,c)),e(c,e(a,b))))

�
$ANSWER(P7�WN).

P(e(e(a,b),e(c,e(e(b,c),a))))
�
$ANSWER(P8�YRM).

-
-P(e(e(a,b),e(c,e(e(c,b),a))))

�
$ANSWER(P9�YRO).

P(e(e(e(a,e(b,c)),c),e(b,a)))
�
$ANSWER(PYO).

.
-
-P(e(e(e(a,e(b,c)),b),e(c,a)))

�
$ANSWER(PYM)

P(e(a,e(e(b,e(c,a)),e(c,b))))
�
$ANSWER(XGK).

.
-
-P(e(a,e(e(b,c),e(e(a,c),b))))

�
$ANSWER(XHK)

P(e(a,e(e(b,c),e(e(c,a),b))))
�
$ANSWER(XHN).

As suggested—and be warned that this challenge is gigantic—you could try to start with XCB and
e

d
seek a proof that completes with the deduction of another known single axiom or completes with th
eduction of both symmetry and transitivity, both of which are given in positive form almost
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mmediately. Not surprising, such a deduction is possible or, very likely, I would not be telling this
t

d
story. After applying various methodologies, yes, OTTER completed an appropriate proof, one tha
educes both symmetry and transitivity.

P
P(e(x,x)). % reflexivity

(e(e(x,y),e(y,x))). % symmetry
y

(

P(e(e(x,y),e(e(y,z),e(x,z)))). % transitivit

intuitively, you might guess that an axiom system for equivalential calculus, because of its name, con-

c
sists of the just-given three formulas. It does, but, as it turns out—and you might enjoy trying for the
orresponding proof—reflexivity can be deduced from the other two members of th threesome by using

d
e
condensed detachment.) The answer, in the affirmative, to that long-standing open question produce
xcitement for me and for my colleagues: The first proof showing XCB to in fact be a single axiom

e
i
completed with the deduction of first symmetry, then transitivity. Iteration was the key, finding on
mportant subproof after another.

Here is the promised input file, followed by the proof of concern.

a
set(hyper�res).

Input File for the XCB Challenge

ssign(max�mem,480000).

a
% set(sos�queue).
ssign(max�weight,64).

a
assign(max�proofs,-1).
ssign(pick�given�ratio,2).

s
assign(bsub�hint�wt,1).
et(keep�hint�subsumers).

c
set(order�history).
lear(print�kept).

.
w
weight�list(pick�and�purge)

eight(P(e(e(x,y),e(e(y,z),e(x,z)))),6).

l

end�of�list.

ist(usable).
-P(e(x,y))
�
-P(x)
�
P(y).

-P(e(e(a,b),e(b,a)))
�
-P(e(e(a,b),e(e(b,c),e(a,c))))

�
$ANSWER(all�s�t�indep).

.
e
-P(e(a,a))
�
-P(e(e(a,b),e(b,a)))
�
-P(e(e(a,b),e(e(b,c),e(a,c))))

�
$ANSWER(all�r�s�t)

nd�of�list.

P
list(sos).

(e(x,e(e(e(x,y),e(z,y)),z))). % XCB

%

end�of�list.

list(demodulators).
.

%
% (e(e(x,x),y) = junk)

(e(y,e(x,x)) = junk).

%
% (e(x,junk) = junk).

(e(junk,x) = junk).

%
% (P(junk) = $T).

end�of�list.

%
list(passive).

Following are negations of the 15 length 7 theorems.

-
-P(e(e(e(a,b),a),b))
�
$ANS(f7a).

P(e(e(a,e(b,a)),b))
�
$ANS(f7b).

-P(e(e(a,b),e(a,b)))
�
$ANS(f7c).
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-
-P(e(a,e(e(b,a),b))) � $ANS(f7d).
P(e(a,e(b,e(a,b)))) � $ANS(f7e).

-
-P(e(e(e(a,b),b),a)) � $ANS(f7f).
P(e(e(a,e(b,b)),a)) � $ANS(f7g).

.
-
-P(e(e(a,b),e(b,a))) � $ANS(f7h)
P(e(a,e(e(b,b),a))) � $ANS(f7i).

.
-
-P(e(a,e(b,e(b,a)))) � $ANS(f7j)
P(e(e(e(a,a),b),b)) � $ANS(f7k).

-
-P(e(e(a,e(a,b)),b)) � $ANS(f7l).
P(e(e(a,a),e(b,b))) � $ANS(f7m).

-
-P(e(a,e(e(a,b),b))) � $ANS(f7n).
P(e(a,e(a,e(b,b)))) � $ANS(f7o).

.
%
% Following are axioms for EC and other targets

negations of known theorems and axioms
.

-
-P(e(e(a,b),e(e(c,b),e(a,c)))) � $ANSWER(P1�YQL)
P(e(e(a,b),e(e(a,c),e(c,b)))) � $ANSWER(P2�YQF).

-
-P(e(e(a,b),e(e(c,a),e(b,c)))) � $ANSWER(P3�YQJ).
P(e(e(e(a,b),c),e(b,e(c,a)))) � $ANSWER(P4�UM).

.
-
-P(e(a,e(e(b,e(a,c)),e(c,b)))) � $ANSWER(P5�XGF)
P(e(e(a,e(b,c)),e(c,e(a,b)))) � $ANSWER(P7�WN).

.
-
-P(e(e(a,b),e(c,e(e(b,c),a)))) � $ANSWER(P8�YRM)
P(e(e(a,b),e(c,e(e(c,b),a)))) � $ANSWER(P9�YRO).

-
-P(e(e(e(a,e(b,c)),c),e(b,a))) � $ANSWER(PYO).
P(e(e(e(a,e(b,c)),b),e(c,a))) � $ANSWER(PYM).

.
-
-P(e(a,e(e(b,e(c,a)),e(c,b)))) � $ANSWER(XGK)
P(e(a,e(e(b,c),e(e(a,c),b)))) � $ANSWER(XHK).

.
-
-P(e(a,e(e(b,c),e(e(c,a),b)))) � $ANSWER(XHN)
P(e(a,a)) � $ANSWER(reflex).

.
-
-P(e(e(a,b),e(b,a))) � $ANSWER(symm)
P(e(e(a,b),e(e(b,c),e(a,c)))) � $ANSWER(trans).

.
-
-P(e(e(e(c1,c2),c3),e(c1,e(c2,c3)))) � $ANSWER(Wajsberg�1)
P(e(e(c1,e(c2,c3)),e(c3,e(c2,c1)))) � $ANSWER(Wajsberg�3).

.
-
-P(e(e(e(c1,e(c2,c3)),e(e(c3,c4),c4)),e(c1,c2))) � $ANSWER(Wajsberg�4�sing)
P(e(e(e(e(c1,c2),c3),c4),e(c4,e(c1,e(c2,c3))))) � $ANSWER(Wajsberg�5�sing).

-
-P(e(e(c1,e(c2,c3)),e(e(c2,e(c4,c3)),e(c4,c1)))) � $ANSWER(Bryman�sing).
P(e(e(c1,e(c2,c3)),e(e(c2,e(c3,c4)),e(c4,c1)))) � $ANSWER(Luka�1�sing).

.
-
-P(e(e(c4,e(c1,e(c2,c3))),e(e(c1,c2),e(c3,c4)))) � $ANSWER(Luka�2�sing)
P(e(e(c1,e(c2,c3)),e(e(c1,e(c3,c4)),e(c4,c2)))) � $ANSWER(Sobo�1�sing).

.
e
-P(e(e(c1,e(c2,c3)),e(e(c1,e(c4,c3)),e(c4,c2)))) � $ANSWER(Sobo�2�sing)
nd�of�list.

%
list(hints).

Following Proof of Reflexivity from XCB
.

P
P(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),e(v,u)),v))

(e(e(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),e(v,u)),v),w),e(v6,w)),v6)).

P
P(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),v),e(u,v))).

(e(e(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),e(v,u)),v),w),v6),e(w,v6))).

P
P(e(e(x,e(e(e(e(y,e(e(e(y,z),e(u,z)),u)),v),e(w,v)),w)),x)).

(e(x,e(e(e(e(e(y,e(e(e(y,z),e(u,z)),u)),x),v),e(w,v)),w))).
P(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),e(e(e(e(e(e(e(u,e(e(e(u,v),e(w,v)),w)),v6),e(v7,v6)),v7),v8),v9),e(v8,v9))),v10),e(v11,v10)),v11)).

P
P(e(e(x,e(e(e(e(e(e(y,e(e(e(y,z),e(u,z)),u)),v),e(w,v)),w),e(e(e(v6,e(e(e(v6,v7),e(v8,v7)),v8)),v9),e(v10,v9))),v10)),x)).

(e(e(e(x,e(e(e(x,y),e(z,y)),z)),e(e(e(u,e(e(e(u,v),e(w,v)),w)),v6),e(v7,v6))),v7)).

P
P(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),u)).

(e(x,x)).
% Following 13 prove a generalization of a Wajsberg, from temp.xcb.exp2.out1
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.
P
P(e(e(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),v),e(u,v)),w),e(v6,w)),v6))

(e(e(e(e(e(x,e(e(e(e(y,e(e(e(y,z),e(u,z)),u)),v),e(w,v)),w)),x),v6),e(v7,v6)),v7)).

P
P(e(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),u),v),e(w,v)),w)).

(e(x,e(e(y,e(e(e(y,z),e(u,z)),u)),x))).
.

P
P(e(e(e(e(x,e(e(y,e(e(e(y,z),e(u,z)),u)),x)),v),e(w,v)),w))

(e(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),u),v),w),e(v,w))).
.

P
P(e(e(e(e(x,e(e(y,e(e(e(y,z),e(u,z)),u)),x)),v),w),e(v,w)))

(e(x,e(e(y,e(e(z,e(e(e(z,u),e(v,u)),v)),y)),x))).
.

P
P(e(e(x,e(e(y,e(e(e(y,z),e(u,z)),u)),x)),e(v,e(e(e(v,w),e(v6,w)),v6))))

(e(e(x,e(y,e(e(e(y,z),e(u,z)),u))),x)).
.

P
P(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),e(e(e(u,v),e(w,v)),w)))

(e(e(e(e(e(x,e(e(y,e(e(e(y,z),e(u,z)),u)),x)),e(v,e(e(e(v,w),e(v6,w)),v6))),v7),e(v8,v7)),v8)).

%
P(e(e(e(x,y),x),y)).

Following 71 shorted prove f7b and f7e, queue, from temp.xcb.exp1.out1.
.

P
P(e(e(e(e(e(e(e(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),u),v),e(w,v)),w),v6),e(v7,v6)),v7),v8),e(v9,v8)),v9))

(e(e(e(e(e(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),e(v,u)),v),w),v6),e(w,v6)),v7),e(v8,v7)),v8)).

P
P(e(e(e(e(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),u),v),e(w,v)),w),v6),e(v7,v6)),v7)).

(e(e(e(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),e(u,e(e(e(u,v),e(w,v)),w))),v6),e(v7,v6)),v7),v8),e(v9,v8)),v9)).

P
P(e(e(e(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),e(v,u)),v),w),e(v6,w)),v6),e(e(e(e(v7,e(e(e(v7,v8),e(v9,v8)),v9)),v10),v11),e(v10,v11))))

(e(e(e(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),e(v,u)),v),w),v6),e(w,v6)),e(e(e(e(v7,e(e(e(v7,v8),e(v9,v8)),v9)),v10),v11),e(v10,v11)))).

P
P(e(e(e(e(e(e(e(e(x,e(y,e(e(e(y,z),e(u,z)),u))),x),v),e(w,v)),w),v6),e(v7,v6)),v7)).

(e(e(e(e(e(e(e(x,e(e(e(e(e(e(e(e(y,e(e(e(y,z),e(u,z)),u)),v),e(w,v)),w),x),v6),e(v7,v6)),v7)),v8),v9),e(v8,v9)),v10),e(v11,v10)),v11)).

P
P(e(e(e(e(e(e(e(x,e(e(e(e(e(e(e(e(y,e(e(e(y,z),e(u,z)),u)),v),e(w,v)),w),x),v6),e(v7,v6)),v7)),v8),v9),e(v8,v9)),v10),v11),e(v10,v11)))

(e(e(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),e(v,u)),v),e(e(e(e(w,v6),w),v6),v7)),v8),e(v7,v8))).
.

P
P(e(e(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),u),e(v,e(e(e(v,w),e(v6,w)),v6))),v7),e(v8,v7)),v8))

(e(e(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),u),v),w),e(v,w)),e(e(e(e(v6,e(e(e(v6,v7),e(v8,v7)),v8)),v9),v10),e(v9,v10)))).

P
P(e(e(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),v),e(u,v)),w),e(v6,w)),v6)).

(e(e(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),v),e(u,v)),w),v6),e(w,v6))).

P
P(e(e(e(e(e(e(e(x,e(y,e(e(e(y,z),e(u,z)),u))),x),v),e(w,v)),w),e(e(e(e(e(v6,e(e(e(v6,v7),e(v8,v7)),v8)),v9),v9),v10),v11)),e(v10,v11)))

(e(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),e(v,u)),v),e(e(e(w,e(e(e(w,v6),e(v7,v6)),v7)),v8),v9)),e(v8,v9))).

P
P(e(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),e(v,u)),v),w),e(e(e(w,v6),e(v7,v6)),v7))).

(e(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),u),e(v,e(e(e(v,w),e(v6,w)),v6))),v7),e(e(e(v7,v8),e(v9,v8)),v9))).

P
P(e(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),u),v),e(w,v)),w)).

(e(e(e(e(e(e(x,e(e(y,e(e(e(y,z),e(u,z)),u)),x)),e(v,e(e(e(v,w),e(v6,w)),v6))),v7),v8),e(v7,v8)),e(v9,e(e(e(v9,v10),e(v11,v10)),v11)))).

P
P(e(e(e(e(e(e(x,y),x),y),z),e(u,z)),u)).

(e(e(e(e(e(x,e(e(e(e(y,e(e(e(y,z),e(u,z)),u)),v),e(w,v)),w)),x),v6),e(v7,v6)),v7)).
.

P
P(e(e(e(e(e(x,e(e(e(e(y,e(e(e(y,z),e(u,z)),u)),v),w),e(v,w))),x),v6),e(v7,v6)),v7))

(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),e(e(e(e(e(e(u,e(e(e(u,v),e(w,v)),w)),v6),v6),v7),e(v8,v7)),v8)),v9),e(v10,v9)),v10)).

P
P(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),e(e(e(u,e(e(e(u,v),e(w,v)),w)),v6),v6)),v7),e(v8,v7)),v8)).

(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),e(e(e(u,e(e(e(u,v),e(w,v)),w)),v6),v6)),v7),v8),e(v7,v8))).

P
P(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),e(u,e(e(e(u,v),e(w,v)),w))),v6),e(v7,v6)),v7)).

(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),e(v,u)),v),e(e(e(e(e(e(e(w,e(e(e(w,v6),e(v7,v6)),v7)),v8),e(v9,v8)),v9),v10),v11),e(v10,v11)))).

P
P(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),e(v,u)),v),e(e(e(e(w,e(e(e(w,v6),e(v7,v6)),v7)),v8),v9),e(v8,v9)))).

(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),u),v),e(e(e(v,w),e(v6,w)),v6))).
.

P
P(e(e(e(e(e(x,e(e(e(y,e(e(e(y,z),e(u,z)),u)),v),v)),x),w),e(v6,w)),v6))

(e(e(e(e(e(x,e(e(y,e(e(e(y,z),e(u,z)),u)),e(e(v,e(e(e(w,e(e(e(w,v6),e(v7,v6)),v7)),v8),v8)),v))),x),v9),e(v10,v9)),v10)).

P
P(e(e(e(e(e(x,e(e(y,e(e(e(y,z),e(u,z)),u)),x)),v),w),e(v,w)),e(v6,e(e(e(v6,v7),e(v8,v7)),v8)))).

(e(e(e(e(e(x,e(y,e(e(e(e(e(z,e(e(e(z,u),e(v,u)),v)),e(e(w,e(e(e(w,v6),e(v7,v6)),v7)),y)),v8),e(v9,v8)),v9))),x),v10),e(v11,v10)),v11)).

P
P(e(e(e(e(e(x,e(y,e(e(e(y,z),e(u,z)),u))),x),v),e(w,v)),w)).

(e(e(e(e(x,e(e(e(e(e(e(e(e(y,e(e(e(y,z),e(u,z)),u)),v),e(w,v)),w),x),v6),e(v7,v6)),v7)),v8),e(v9,v8)),v9)).

P
P(e(e(e(e(x,e(e(e(e(e(y,e(e(e(y,z),e(u,z)),u)),x),v),e(w,v)),w)),e(e(e(e(v6,e(e(e(v6,v7),e(v8,v7)),v8)),v9),v9),v10)),v11),e(v10,v11)))

(e(e(e(e(x,e(e(e(e(e(y,e(e(e(y,z),e(u,z)),u)),x),v),e(w,v)),w)),v6),e(v7,v6)),v7)).
.

P
P(e(e(e(e(x,e(e(e(e(e(y,e(e(e(y,z),e(u,z)),u)),x),v),e(w,v)),w)),v6),v7),e(v6,v7)))

(e(e(e(e(x,e(e(e(e(y,e(e(e(y,z),e(u,z)),u)),v),w),e(v,w))),x),e(e(e(e(e(v6,e(e(e(v6,v7),e(v8,v7)),v8)),v9),v9),v10),e(v11,v10))),v11)).
P(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),e(e(u,e(e(e(u,v),e(w,v)),w)),e(e(v6,e(e(e(v6,v7),e(v8,v7)),v8)),v9))),v10),e(v9,v10))).
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P(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),e(e(u,e(e(e(u,v),e(w,v)),w)),e(e(v6,e(e(v7,e(e(e(v7,v8),e(v9,v8)),v9)),v6)),v10))),v11),e(v10,v11))).

P
P(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),u),e(e(e(e(e(e(v,e(e(e(v,w),e(v6,w)),v6)),v7),v7),v8),v9),e(v8,v9)))).

(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),u),e(e(e(e(e(v,e(e(e(e(w,e(e(e(w,v6),e(v7,v6)),v7)),v8),v9),e(v8,v9))),v),v10),v11),e(v10,v11)))).

P
P(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),u),e(v,e(e(e(v,w),e(v6,w)),v6)))).

(e(e(e(e(x,e(e(y,e(e(e(y,z),e(u,z)),u)),e(e(v,e(e(e(w,e(e(e(w,v6),e(v7,v6)),v7)),v8),v8)),v))),x),e(e(e(v9,v10),e(v11,v10)),v11)),v9)).

P
P(e(e(e(e(x,e(e(y,e(e(e(y,z),e(u,z)),u)),e(e(v,e(e(w,e(e(e(w,v6),e(v7,v6)),v7)),v)),x))),v8),e(v9,v8)),v9)).

(e(e(e(e(x,e(e(y,e(e(e(y,z),e(u,z)),u)),x)),v),e(w,v)),w)).
.

P
P(e(e(e(e(x,e(e(y,e(e(e(y,z),e(u,z)),u)),x)),v),w),e(v,w)))

(e(e(e(e(x,y),e(z,y)),z),x)).
P(e(e(e(x,e(e(e(e(e(e(e(e(y,e(e(e(y,z),e(u,z)),u)),v),e(w,v)),w),x),v6),e(v7,v6)),v7)),v8),v8)).

.
P
P(e(e(e(x,e(e(e(x,y),e(z,y)),z)),e(e(e(e(e(u,e(e(e(u,v),e(w,v)),w)),v6),v6),v7),e(v8,v7))),v8))

(e(e(e(x,e(e(e(x,y),e(z,y)),z)),e(u,e(e(e(e(e(e(v,e(e(e(v,w),e(v6,w)),v6)),v7),v7),v8),v9),e(v8,v9)))),u)).

P
P(e(e(e(x,e(e(e(x,y),e(z,y)),z)),e(u,e(v,e(e(e(v,w),e(v6,w)),v6)))),u)).

(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),e(e(e(e(e(e(e(v,e(e(e(v,w),e(v6,w)),v6)),v7),v7),v8),e(v9,v8)),v9),u))).

P
P(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),e(e(e(e(v,e(e(e(v,w),e(v6,w)),v6)),v7),v7),u))).

(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),e(e(e(u,v),e(w,v)),w))).

P
P(e(e(e(x,e(y,e(e(e(y,z),e(u,z)),u))),v),e(x,v))).

(e(e(x,e(e(e(e(y,e(e(e(y,z),e(u,z)),u)),v),w),e(v,w))),x)).
.

P
P(e(e(x,e(e(e(x,y),e(z,y)),z)),e(e(e(e(u,e(e(e(u,v),e(w,v)),w)),v6),e(v7,v6)),v7)))

(e(e(x,e(e(e(x,y),e(z,y)),z)),e(e(e(e(u,e(e(e(u,v),e(w,v)),w)),v6),v7),e(v6,v7)))).
.

P
P(e(e(x,e(e(y,e(e(e(y,z),e(u,z)),u)),e(e(v,e(e(e(w,e(e(e(w,v6),e(v7,v6)),v7)),v8),v8)),v))),x))

(e(e(x,e(y,e(e(e(e(e(z,e(e(e(z,u),e(v,u)),v)),e(e(w,e(e(e(w,v6),e(v7,v6)),v7)),y)),v8),e(v9,v8)),v9))),x)).

P
P(e(e(x,e(y,e(e(e(y,z),e(u,z)),u))),x)).

(e(e(x,e(y,x)),y)).
P(e(x,e(e(e(e(e(e(e(e(y,e(e(e(y,z),e(u,z)),u)),v),e(w,v)),w),v6),e(v7,v6)),v7),x))).

.
P
P(e(x,e(e(e(e(e(e(e(e(y,e(e(e(y,z),e(u,z)),u)),v),e(w,v)),w),x),v6),e(v7,v6)),v7)))

(e(x,e(e(e(e(e(y,e(e(e(y,z),e(u,z)),u)),e(e(v,e(e(e(v,w),e(v6,w)),v6)),x)),v7),e(v8,v7)),v8))).

P
P(e(x,e(e(e(e(e(y,e(e(e(y,z),e(u,z)),u)),v),e(w,v)),w),x))).

(e(x,e(e(y,e(e(e(y,z),e(u,z)),u)),x))).

%
P(e(x,e(y,e(x,y)))).

Following 30 shorted from temp.xcb.exp2.out3a purport to prove the remaining of the 15 7-symbol, including symmetry, excluding

P
P(e(e(e(e(e(e(x,y),x),y),z),u),e(z,u))).

(e(e(e(e(e(x,e(y,x)),z),e(u,z)),u),y)).
.

P
P(e(e(e(e(e(x,e(y,y)),x),z),e(u,z)),u))

(e(e(e(e(e(x,e(y,y)),x),z),u),e(z,u))).
.

P
P(e(e(e(e(e(x,x),e(y,y)),z),e(u,z)),u))

(e(e(e(e(e(x,x),e(y,y)),z),u),e(z,u))).
.

P
P(e(e(e(e(x,e(y,e(x,y))),z),e(u,z)),u))

(e(e(e(e(x,e(y,e(x,y))),z),u),e(z,u))).

P
P(e(e(e(e(x,x),y),e(z,y)),z)).

(e(e(e(e(x,y),e(z,y)),z),e(e(u,x),u))).

P
P(e(e(e(e(x,y),x),z),e(y,z))).

(e(e(e(e(x,y),y),z),e(x,z))).
.

P
P(e(e(e(e(x,y),z),e(y,z)),x))

(e(e(e(x,e(y,x)),z),e(y,z))).

P
P(e(e(e(x,x),y),y)).

(e(e(e(x,y),e(e(e(y,z),e(u,z)),u)),x)).

P
P(e(e(e(x,y),x),e(z,e(z,y)))).

(e(e(e(x,y),y),x)).
.

P
P(e(e(x,e(x,y)),y))

(e(e(x,e(y,y)),x)).
.

P
P(e(e(x,x),e(e(e(y,z),y),z)))

(e(e(x,x),e(y,y))).
.

P
P(e(e(x,y),e(e(e(z,x),z),y)))

(e(e(x,y),e(y,x))).
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P
P(e(x,e(e(e(y,z),y),e(x,z)))).

(e(x,e(e(x,y),y))).
.

P
P(e(x,e(e(y,x),y)))

(e(x,e(e(y,y),x))).
.

P
P(e(x,e(x,e(y,y))))

(e(x,e(y,e(y,x)))).
end�of�list.

A 71-Step Proof to Shorten

T
----- Otter 3.3g-work, Jan 2005 -----

he process was started by wos on jaguar.mcs.anl.gov,

T
Sun Jun 5 09:46:05 2005

he command was "otter". The process ID is 19701.

.

L

-----> EMPTY CLAUSE at 468.57 sec ----> 110424 [hyper,2,6385,110057] $ANSWER(all�s�t�indep)

ength of proof is 71. Level of proof is 23.

1

---------------- PROOF ----------------

[] -P(e(x,y))
�
-P(x)
�
P(y).

2 [] -P(e(e(a,b),e(b,a)))
�
-P(e(e(a,b),e(e(b,c),e(a,c))))

�
$ANSWER(all�s�t�indep).

1
4 [] P(e(x,e(e(e(x,y),e(z,y)),z))).
70 [hyper,1,4,4] P(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),e(v,u)),v)).

.
1
171 [hyper,1,4,170] P(e(e(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),e(v,u)),v),w),e(v6,w)),v6))
72 [hyper,1,170,4] P(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),v),e(u,v))).

.
1
174 [hyper,1,171,4] P(e(e(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),e(v,u)),v),w),v6),e(w,v6)))
75 [hyper,1,172,172] P(e(x,e(e(e(e(e(y,e(e(e(y,z),e(u,z)),u)),v),e(w,v)),w),x))).

.
1
176 [hyper,1,4,172] P(e(e(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),v),e(u,v)),w),e(v6,w)),v6))
78 [hyper,1,172,170] P(e(e(x,e(e(e(e(y,e(e(e(y,z),e(u,z)),u)),v),e(w,v)),w)),x)).

1
179 [hyper,1,172,4] P(e(x,e(e(e(e(e(y,e(e(e(y,z),e(u,z)),u)),x),v),e(w,v)),w))).
80 [hyper,1,172,174] P(e(x,e(e(e(e(e(e(e(e(y,e(e(e(y,z),e(u,z)),u)),v),e(w,v)),w),v6),e(v7,v6)),v7),x))).

.
1
181 [hyper,1,4,174] P(e(e(e(e(e(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),e(v,u)),v),w),v6),e(w,v6)),v7),e(v8,v7)),v8))
83 [hyper,1,174,170] P(e(e(x,e(e(e(e(y,e(e(e(y,z),e(u,z)),u)),v),w),e(v,w))),x)).

.
2
193 [hyper,1,175,4] P(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),e(v,u)),v),e(w,e(e(e(w,v6),e(v7,v6)),v7))))
01 [hyper,1,176,4] P(e(e(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),v),e(u,v)),w),v6),e(w,v6))).

.
2
202 [hyper,1,176,178] P(e(e(e(x,e(e(e(x,y),e(z,y)),z)),e(e(e(u,e(e(e(u,v),e(w,v)),w)),v6),e(v7,v6))),v7))
06 [hyper,1,4,178] P(e(e(e(e(e(x,e(e(e(e(y,e(e(e(y,z),e(u,z)),u)),v),e(w,v)),w)),x),v6),e(v7,v6)),v7)).

.
2
226 [hyper,1,172,179] P(e(x,e(e(e(e(e(y,e(e(e(y,z),e(u,z)),u)),e(e(v,e(e(e(v,w),e(v6,w)),v6)),x)),v7),e(v8,v7)),v8)))
29 [hyper,1,4,179] P(e(e(e(e(x,e(e(e(e(e(y,e(e(e(y,z),e(u,z)),u)),x),v),e(w,v)),w)),v6),e(v7,v6)),v7)).

2
234 [hyper,1,179,174] P(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),e(e(e(e(e(e(e(u,e(e(e(u,v),e(w,v)),w)),v6),e(v7,v6)),v7),v8),v9),e(v8,v9))),v10),e(v11,v10)),v11))
39 [hyper,1,179,4] P(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),e(u,e(e(e(u,v),e(w,v)),w))),v6),e(v7,v6)),v7)).

2
253 [hyper,1,180,172] P(e(e(e(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),e(v,u)),v),w),e(v6,w)),v6),e(e(e(e(v7,e(e(e(v7,v8),e(v9,v8)),v9)),v10),v11),e(v10,v11))))
64 [hyper,1,181,183] P(e(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),e(v,u)),v),e(e(e(w,e(e(e(w,v6),e(v7,v6)),v7)),v8),v9)),e(v8,v9))).

4
385 [hyper,1,174,206] P(e(e(x,e(y,e(e(e(y,z),e(u,z)),u))),x)).
06 [hyper,1,170,226] P(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),e(e(u,e(e(e(u,v),e(w,v)),w)),e(e(v6,e(e(e(v6,v7),e(v8,v7)),v8)),v9))),v10),e(v9,v10))).

4
452 [hyper,1,201,229] P(e(e(x,e(y,e(e(e(e(e(z,e(e(e(z,u),e(v,u)),v)),e(e(w,e(e(e(w,v6),e(v7,v6)),v7)),y)),v8),e(v9,v8)),v9))),x)).
74 [hyper,1,174,234] P(e(e(x,e(e(e(e(e(e(y,e(e(e(y,z),e(u,z)),u)),v),e(w,v)),w),e(e(e(v6,e(e(e(v6,v7),e(v8,v7)),v8)),v9),e(v10,v9))),v10)),x)).

5
509 [hyper,1,4,239] P(e(e(e(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),e(u,e(e(e(u,v),e(w,v)),w))),v6),e(v7,v6)),v7),v8),e(v9,v8)),v9)).
17 [hyper,1,172,253] P(e(e(e(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),e(v,u)),v),w),v6),e(w,v6)),e(e(e(e(v7,e(e(e(v7,v8),e(v9,v8)),v9)),v10),v11),e(v10,v11)))).

6
580 [hyper,1,264,385] P(e(x,e(e(y,e(e(e(y,z),e(u,z)),u)),x))).
05 [hyper,1,234,193] P(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),e(e(e(e(v,e(e(e(v,w),e(v6,w)),v6)),v7),v7),u))).

8
711 [hyper,1,4,452] P(e(e(e(e(e(x,e(y,e(e(e(e(e(z,e(e(e(z,u),e(v,u)),v)),e(e(w,e(e(e(w,v6),e(v7,v6)),v7)),y)),v8),e(v9,v8)),v9))),x),v10),e(v11,v10)),v11))
05 [hyper,1,202,474] P(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),u)).

.851 [hyper,1,509,517] P(e(e(e(x,e(e(e(x,y),e(z,y)),z)),e(u,e(v,e(e(e(v,w),e(v6,w)),v6)))),u))
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.
1
934 [hyper,1,4,580] P(e(e(e(e(x,e(e(y,e(e(e(y,z),e(u,z)),u)),x)),v),e(w,v)),w))
108 [hyper,1,605,178] P(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),u),e(v,e(e(e(v,w),e(v6,w)),v6)))).

1
1196 [hyper,1,4,805] P(e(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),u),v),e(w,v)),w)).
242 [hyper,1,406,934] P(e(e(e(e(e(x,e(e(y,e(e(e(y,z),e(u,z)),u)),x)),v),w),e(v,w)),e(v6,e(e(e(v6,v7),e(v8,v7)),v8)))).

1
1264 [hyper,1,934,226] P(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),e(e(u,e(e(e(u,v),e(w,v)),w)),e(e(v6,e(e(v7,e(e(e(v7,v8),e(v9,v8)),v9)),v6)),v10))),v11),e(v10,v11)))
368 [hyper,1,4,1108] P(e(e(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),u),e(v,e(e(e(v,w),e(v6,w)),v6))),v7),e(v8,v7)),v8)).

1
1484 [hyper,1,851,1196] P(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),u),v),e(e(e(v,w),e(v6,w)),v6))).
494 [hyper,1,201,1196] P(e(e(x,e(y,y)),x)).

1601 [hyper,1,406,1242] P(e(e(e(e(e(e(x,e(e(y,e(e(e(y,z),e(u,z)),u)),x)),e(v,e(e(e(v,w),e(v6,w)),v6))),v7),v8),e(v7,v8)),e(v9,e(e(e(v9,v10),e(v11,v10)),v11)))).

1
1667 [hyper,1,851,1368] P(e(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),u),u),e(v,e(e(e(v,w),e(v6,w)),v6))),v7),e(e(e(v7,v8),e(v9,v8)),v9))).
810 [hyper,1,1484,1264] P(e(e(e(e(x,e(e(y,e(e(e(y,z),e(u,z)),u)),e(e(v,e(e(w,e(e(e(w,v6),e(v7,v6)),v7)),v)),x))),v8),e(v9,v8)),v9)).

2
1902 [hyper,1,1494,1494] P(e(e(x,x),e(y,y))).
288 [hyper,1,711,1601] P(e(e(e(x,e(y,e(e(e(y,z),e(u,z)),u))),v),e(x,v))).

2
2447 [hyper,1,1667,1810] P(e(e(e(e(e(e(x,y),x),y),z),e(u,z)),u)).
637 [hyper,1,4,1902] P(e(e(e(e(e(x,x),e(y,y)),z),e(u,z)),u)).

3
2977 [hyper,1,264,2288] P(e(e(e(e(x,y),e(z,y)),z),x)).
256 [hyper,1,805,2447] P(e(e(e(e(e(e(x,y),x),y),z),u),e(z,u))).

.
3
3352 [hyper,1,805,2637] P(e(e(e(e(e(x,x),e(y,y)),z),u),e(z,u)))
639 [hyper,1,172,2977] P(e(e(e(e(x,y),z),e(y,z)),x)).

4
3982 [hyper,1,3256,2977] P(e(x,e(y,e(x,y)))).
358 [hyper,1,2288,3639] P(e(e(e(x,y),e(e(e(y,z),e(u,z)),u)),x)).

4
4456 [hyper,1,4,3982] P(e(e(e(e(x,e(y,e(x,y))),z),e(u,z)),u)).
613 [hyper,1,3256,4358] P(e(e(e(e(x,y),e(z,y)),z),e(e(u,x),u))).

.
4
4644 [hyper,1,4358,2977] P(e(e(e(e(e(x,y),e(z,y)),z),u),e(x,u)))
667 [hyper,1,805,4456] P(e(e(e(e(x,e(y,e(x,y))),z),u),e(z,u))).

4
4741 [hyper,1,4358,4613] P(e(e(e(e(x,y),y),z),e(x,z))).
745 [hyper,1,3352,4613] P(e(x,e(e(y,x),y))).

.
4
4853 [hyper,1,4667,4358] P(e(e(e(e(e(x,e(y,x)),z),e(u,z)),u),y))
979 [hyper,1,1494,4741] P(e(e(e(x,y),y),x)).

.
5
5410 [hyper,1,4979,4853] P(e(e(e(x,e(y,x)),z),e(y,z)))
411 [hyper,1,4979,4613] P(e(e(x,y),e(e(e(z,x),z),y))).

.
6
5529 [hyper,1,5410,5411] P(e(x,e(e(e(y,z),y),e(x,z))))
015 [hyper,1,385,5529] P(e(e(e(e(x,y),x),z),e(y,z))).

6
6385 [hyper,1,4741,6015] P(e(e(x,y),e(y,x))).
547 [hyper,1,4745,6385] P(e(e(x,e(e(y,z),e(z,y))),x)).

.
1
107512 [hyper,1,4741,4644] P(e(e(e(x,y),e(z,y)),e(x,z)))
08720 [hyper,1,6547,107512] P(e(e(e(x,y),z),e(e(y,x),z))).

.
1
108731 [hyper,1,6385,107512] P(e(e(x,y),e(e(x,z),e(y,z))))
10057 [hyper,1,108720,108731] P(e(e(x,y),e(e(y,z),e(x,z)))).

110424 [hyper,2,6385,110057] $ANSWER(all
�

s
�

t
�

indep).

You now have in hand a 71-step proof that deduces, from XCB, a 2-basis for equivalential cal-
r

p
culus (an axiom system consisting of two formulas, symmetry and transitivity). Can you find a shorte
roof? You can use as targets the given 2-basis or one of the known single axioms; see the passive list

i
of the given input file. I have discovered quite recently (04-03-2005) a 22-step proof. Rather than giv-
ng the proof, which might indeed sharply reduce for you the excitement of seeking a shorter proof than

p
p
length 71, I shall give some added background for this essay, in part relevant to finding the 22-ste
roof. You will learn, among other things, why I have chosen here in 2005 to produce this document.

n
t

In the mid-1980s, Woody Bledsoe asked me, in effect, to put this type of material on paper. I
he mid-1990s, Robert Boyer a few years ago echoed this sentiment independently, noting that nobody

-
a
would ever go through my massive files. Ross Overbeek, here in the year 2005, says it should be avail
ble for those in the future. Finally, William McCune is also in favor, noting that I might learn much

.
I
as I attempt to capture on paper what is often hidden from me as I attack theorem after theorem
ndeed, quite often, one does not know explicitly what one knows or what one does to win the game. I

thank each of these four people for their encouragement.
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In a workshop in the summer of 2004, Mark Stickel attended and learned about a book I had
,

R
written with Gail Pieper, Automated Reasoning and the Discovery of Missing and Elegant ProofsFR

inton Press. In chapter 7 of that book, you will find many challenges and open questions. Among
I

h
them is one that asks for a proof of length less than 25 that shows XCB to be a single axiom. Yes,
ad not yet found the cited 22-step proof, and I will shortly get to that. A few months after that

a
workshop, Stickel sent me an answer to the question about the existence of such a proof, an affirmative
nswer. He had found, with one of his programs, a 24-step proof that answered the following specific

O

question.

Q11.EC: With condensed detachment as the only inference rule, and with the only admissible targets

i
for the completion of a proof one of the fourteen shortest single axioms (other than XCB) or the
ndependent 2-basis consisting of symmetry and transitivity, does there exist a proof of length strictly

S

less than 25 that establishes XCB to be a single axiom for EC?

tickel’s result rekindled my interest in short proofs in the given context, which caused me to soon find
d

t
a 23-step proof. Weeks later, I do not know precisely how many, but in early April (as noted) I foun
he cited 22-step proof.

I found that proof with some extensions of methodologies given in the cited book (that with
,

b
Pieper). Because of the new advances in methodology (occurring in the preceding year) in general
ecause I had found with OTTER this charming 22-step proof, and because of the encouragement

,
w
already cited, I decided to write this essay. The additional force, which proved to complete the picture

as my discovery (with the new methodologies) of other shorter proofs, improving on what i had found
about a year ago, proofs that I intend to be the subject of this and later essays.

As noted earlier, I am convinced that the use of the proof-refinement methodologies, especially
e

m
those focusing on finding shorter proofs, that will be presented here and later can be used to replace th

aterial in textbooks by simpler and easier-to-follow material. In particular, certain theorems are
f

t
proved by relying on thought-to-be indispensable lemmas and assumed-to-be necessary inclusion o
ypes of term. With OTTER, I have discovered proofs that avoid the use of such lemmas (in the

o
Lukasiewicz infinite-value logic), and I have found proof after proof that avoids the use of a commonly
ccurring class of term (those of double negation). As well as providing templates for other studies, the

-
m
details will permit one to independently reproduce, and thus verify, what is offered here. The experi

ents I detail may not be precisely those I conducted that terminated in success for such information is
lost to history. However, they will reflect the spirit of what I do and did.

Only unbelievable optimism would lead one to suggest that an algorithm exists for mining the

o
treasure of mathematics and logic. The treasure in focus in this first of a series of essays takes the form
f better and more elegant proofs, better in one or more measures. Indeed, if all goes as planned, this

-
r
essay will be followed by others, each with its own emphasis. In place of the cited and mythical algo
ithm, methodologies and strategies will be offered whose use often sharply increases the likelihood of

p
success. Sprinkled throughout will be commentary that reflects my excitement and that is intended to
roduce excitement for the reader, ideas whose pursuit by some one could result in a rewarding publica-

t
tion, and detail and data whose analysis may enable the enhancing of automated reasoning programs so
hat they can provide even greater assistance in solving numerous mysteries.

y
s

Yes—as my friend Ross Overbeek suggests that I point out—anyone who reads this essay, or an
ucceeding essay in this series, is more than welcome to take an idea that is offered and extend it,

t
modify it, and in general use it for enjoyment or for research. Challenge problems and even open ques-
ions will be included. Despite the numerous and significant results that have been obtained with an

d
t
automated reasoning program—W. McCune’s OTTER is the program featured—a precise analysis an
horough understanding of how everything works is still lacking. From a different viewpoint, the nature

in all of its complexities of proof and of proof search still resists the efforts of fine minds.

Although the focus in this first essay is on logic and, indirectly, on mathematics, the notions and
e

p
observations must (it seems to me) apply to reasoning whose goal is other than a formal proof of som
urported or actual theorem. I am firmly convinced of the accuracy of this remark despite the

esometimes-uttered objection that real-world problems involve large sets of axioms in contrast to th
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small sets of axioms to be studied here.

This essay offers material for analysis and consideration. Indeed, this essay will reflect its title; it

e
is but a prelude. The commentary offered here together with much data is gleaned from numerous
xperiments, some of which will be described in the finest detail. An informal style pervades this docu-

t
m
ment, and it (as is already suggested) will be written in the first person. That choice is in par

otivated by the fact that the experiments are mine, the opinions are mine, and I make conjectures that

b
may in fact not hold. I shall include ideas for future or, even better, present research. As noted, any-
ody who wishes is more than welcome, in fact, encouraged, to pursue any idea contained here.

e
c

One of the delightful aspects of automated reasoning, at least, when OTTER is in use, is that on
an obtain charming proofs that others will find more than interesting. Further—and this point might

.
N
well be taken precisely as it is written—one need not be even close to an expert to reap such rewards

ot in modesty, I note that this study, for example, illustrates well this observation: I knew essentially
d

t
nothing about the area that will be in focus, and still know almost nothing regarding its nature an
heory. Nevertheless, with indispensable aid from McCune’s program, new and beautiful proofs were

found.

With the preceding as stage setting and with this small glimpse of my intentions, I now turn to
s

i
the study of concern and to experiments in copious detail. I must again note that the commentary i
ntended to provide one or more clues about how things work, how the goals are reached, which actions

o
are more likely to lead to success, and, eventually, to a fuller understanding of the nature of proof and
f proof search. the key word is ‘‘intended’’; indeed, at this time, I cannot be certain that my com-

,
l
ments are accurate and not in any way misleading. However, a reading of what follows will, for some
ead to intrigue and excitement and, certainly important, an ability to discover proofs of interest to the

e
a
worlds of mathematics and logic. I shall include input files to enable one to verify the claims I mak
nd to begin an independent study of some type. I am fairly certain that the experiments I present at

w
least resemble the original ones that led to most satisfying discoveries. They do capture the spirit of

hat I do, but, lost to history, in many cases, they are not identical.

2. The Field in focus and Some Background

This story begins in the middle of a longer story, one that commenced with a request by Matthew
f

v
Spinks to find ‘‘short’’ proofs. At that point (in the longer story), indispensable was the presence o
arious proofs supplied to me by Bob Veroff, many or all obtained by him using his powerful sketches

O
technique. For this essay, this shorter story picks up the narrative at the point at which I had with

TTER discovered three dependencies among nine axioms.

-
c

The area of interest is known as the BCSK logic, an extension of which is rather related to classi
al propositional calculus. Were it not for Bob Veroff, I doubt if I would have made any progress. To

n
u
glean insight and useful knowledge from the experiments I detail does in no way, I believe, require a
nderstanding of this BCSK logic.

The following nine axioms (in clause notation) were in use in the beginning (when I entered the

d
picture), where the functions i and j respectively denote strong and weak implication. Condensed
etachment is the rule of inference in use; therefore, because of the presence of two types of implica-

tion, two 3-literal clauses (the following) are present, as well as the use of hyperresolution.

-P(i(x,y))
�
-P(x)

�
P(y).

.

P

-P(j(x,y))
�
-P(x)

�
P(y)

(i(x,i(y,x))). % (A1)

%
P(i(i(x,i(y,z)),i(i(x,y),i(x,z)))). % (A2)

P(i(i(i(x,y),x),x)). % (A3)

P
P(i(x,j(y,x))). % (A4)

(i(j(x,j(y,z)),j(j(x,y),j(x,z)))). % (A5)
)

%
% P(i(j(x,j(y,z)),j(y,j(x,z)))). % (A6

P(i(j(j(x,y),x),x)). % (A7)

P
P(i(j(i(x,y),y),j(i(y,x),x))). % (A8)

(j(i(x,y),j(x,y))). % (A9)
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As those familiar with OTTER know, three of the axioms are ‘‘commented out’’, A3, A6, and A7, that
t

p
is, are prevented from participation in the study that is central to this essay. However, in studies tha
receded the experiments to be discussed, all nine axioms were allowed to participate; they were placed

in list(s).

As I sought short proofs for two targets, I found, to my surprise and that of colleagues, that two
s

I
axioms were dependent on the remaining seven and, regarding A7, that it was not needed for the proof

sought. After that find, all experiments were conducted with axioms 1, 2, 4, 5, 8, and 9. The proof

f
that OTTER completed for the dependence of axiom A3 has length 14 and level 10. That proof, the
ollowing where ‘‘-’’ denotes logical lnot and ‘‘ � ’’ logical or, provided the impetus for what is

f
reported here. (The length of proofs included here does not distinguish between the two so-to-speak
orms of condensed detachment, one for the function i and one for j, and it measures just the number of

deduced steps.)

A 14-Step Proof

T
----- Otter 3.3d, April 2004 -----

he process was started by wos on jaguar.mcs.anl.gov,

T
Thu May 27 10:43:03 2004

he command was "otter". The process ID is 31886.
.

L

----> UNIT CONFLICT at 0.02 sec ----> 150 [binary,149.1,17.1] $ANS(a3)

ength of proof is 14. Level of proof is 10.

6

---------------- PROOF ----------------

[] -P(i(x,y)) � -P(x) � P(y).
.

9
7 [] -P(j(x,y)) � -P(x) � P(y)

[] P(i(x,i(y,x))).
10 [] P(i(i(x,i(y,z)),i(i(x,y),i(x,z)))).

1
11 [] P(i(x,j(y,x))).
2 [] P(i(j(x,j(y,z)),j(j(x,y),j(x,z)))).

1
13 [] P(i(j(i(x,y),y),j(i(y,x),x))).
4 [] P(j(i(x,y),j(x,y))).

.
2
17 [] -P(i(i(i(a1,a2),a1),a1)) � $ANS(a3)

4 [hyper,6,9,9] P(i(x,i(y,i(z,y)))).
.

4
38 [hyper,6,10,10] P(i(i(i(x,i(y,z)),i(x,y)),i(i(x,i(y,z)),i(x,z))))
0 [hyper,6,10,24] P(i(i(x,y),i(x,i(z,y)))).

4
41 [hyper,6,10,9] P(i(i(x,y),i(x,x))).
6 [hyper,7,14,40] P(j(i(x,y),i(x,i(z,y)))).

.
9
58 [hyper,6,38,41] P(i(i(x,i(x,y)),i(x,y)))
7 [hyper,7,14,58] P(j(i(x,i(x,y)),i(x,y))).

1
115 [hyper,6,13,97] P(j(i(i(x,y),x),x)).
20 [hyper,6,11,115] P(j(x,j(i(i(y,z),y),y))).

.
1
124 [hyper,6,12,120] P(j(j(x,i(i(y,z),y)),j(x,y)))
29 [hyper,7,124,46] P(j(i(i(i(x,y),z),y),i(x,y))).

.
1
138 [hyper,7,124,129] P(j(i(i(i(i(x,y),x),z),x),x))
44 [hyper,6,13,138] P(j(i(x,i(i(i(x,y),x),z)),i(i(i(x,y),x),z))).

3

149 [hyper,7,144,9] P(i(i(i(x,y),x),x)).

. The First Experiment

At this point, the main narrative commences. Because of my interest (as well as that of Spinks)
-

i
in short proofs, I decided to see whether a proof of length strictly less than 14 could be found establish
ng A3 to be dependent on axioms 1, 2, 4, 5, 8, and 9. This decision was made almost one year after

-
d
OTTER returned the given 14-step proof. That year had witnessed some refinements of various metho
ologies offered in the book Automated Reasoning and the Discovery of MIssing and Elegant Proofs.
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uite likely because I had found an approach that culminated in the cited discovery of a 22-step proof

(
showing XCB to be a single axiom—a proof three steps shorter than that featured in the open question
cited in Section 1), which was indeed shocking and satisfying—why not use the approach to seek a

shorter proof establishing A3 to be dependent?

The following input file, which relies (to be clarified) on the given 14-step proof, captures the
e

d
approach (or captures one that is very similar) taken in the first experiment. Each of its aspects will b
iscussed in some detail, with far less detail given for later experiments. Since the command

f
s
set(sos
�

queue) was used, instructing OTTER to employ a breadth-first search, and since that type o
earch is so often impractical, a rather lengthy discourse is in order. (The inclusion throughout of

e
appropriate input files provides a means to independently check the results that are given and also
nables one to more easily attack problems of some other type.)

a
set(hyper
�

res).

First Input file

ssign(max
�

weight,23).
.

a
assign(change
�

limit
�

after,400)
ssign(new
�

max
�

weight,16).

%
clear(print
�

kept).
clear(for
�

sub).
.

s
set(ancestor
�

subsume)
et(back
�

sub).
.

a
% clear(set
�

sub)
ssign(max
�

mem,600000).
.

%
% assign(max
�

seconds,7)
set(control
�

memory).

%
% assign(report,900).

assign(pick
�

given
�

ratio,4).

%
assign(max
�

proofs,-1).
set(order
�

history).

s
%set(input
�

s
�

first).
et(s
�

queue).
.

s
%set(print
�

level)
et(order
�

history).
.

a
assign(max
�

distinct
�

vars,4)
ssign(heat,0).

weight
�

list(pick
�

and
�

purge).
% Following 14 from temp.spinks1.depax37.out1e prove A3 dependent on 1 2 4 5 8 9.

w
weight(P(i(x,i(y,i(z,y)))),1).

eight(P(i(i(i(x,i(y,z)),i(x,y)),i(i(x,i(y,z)),i(x,z)))),1).

w
weight(P(i(i(x,y),i(x,i(z,y)))),1).

eight(P(i(i(x,y),i(x,x))),1).
.

w
weight(P(j(i(x,y),i(x,i(z,y)))),1)

eight(P(i(i(x,i(x,y)),i(x,y))),1).
.

w
weight(P(j(i(x,i(x,y)),i(x,y))),1)

eight(P(j(i(i(x,y),x),x)),1).
.

w
weight(P(j(x,j(i(i(y,z),y),y))),1)

eight(P(j(j(x,i(i(y,z),y)),j(x,y))),1).
.

w
weight(P(j(i(i(i(x,y),z),y),i(x,y))),1)

eight(P(j(i(i(i(i(x,y),x),z),x),x)),1).
.

w
weight(P(j(i(x,i(i(i(x,y),x),z)),i(i(i(x,y),x),z))),1)

eight(P(i(i(i(x,y),x),x)),1).

l

end
�

of
�

list.

ist(usable).
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-
-P(i(x,y))
�
-P(x)
�
P(y).

P(j(x,y))
�
-P(x)
�
P(y). �

-
% -P(i(i(A,B),j(A,B)))
P(j(i(A,B),i(j(B,C),j(A,C))))

�
-P(j(i(B,C),i(j(A,B),j(A,C))))

�
$ANS(THESIS�23). % Lemmas

l

end�of�list.

ist(sos).
s

P
% Axiom

(i(x,i(y,x))). % (A1)

%
P(i(i(x,i(y,z)),i(i(x,y),i(x,z)))). % (A2)

P(i(i(i(x,y),x),x)). % (A3)

P
P(i(x,j(y,x))). % (A4)

(i(j(x,j(y,z)),j(j(x,y),j(x,z)))). % (A5)
)

%
% P(i(j(x,j(y,z)),j(y,j(x,z)))). % (A6

P(i(j(j(x,y),x),x)). % (A7)

P
P(i(j(i(x,y),y),j(i(y,x),x))). % (A8)

(j(i(x,y),j(x,y))). % (A9)

l

end�of�list.

ist(passive).
-P(i(j(a1,j(a2,a3)),j(a2,j(a1,a3))))

�
$ANS(A6).

-
-P(i(j(j(a1,a2),a1),a1))
�
$ANS(a7).

P(i(i(i(a1,a2),a1),a1))
�
$ANS(a3).

-
-P(i(a1,j(a2,a1)))
�
$ANS(a4).

P(i(i(A,B),j(A,B)))
�
$ANS(THESIS�1). % Lemma

-
-P(j(i(A,B),i(j(B,C),j(A,C))))

�
$ANS(THESIS�2). % Lemma

P(j(i(B,C),i(j(A,B),j(A,C))))
�
$ANS(THESIS�3). % Lemma

l

end�of�list.

ist(demodulators).
% (P(i(i(i(x,y),x),x)) = junk). % A3

6
(
(P(i(j(x,j(y,z)),j(y,j(x,z)))) = junk). % A
P(i(j(j(x,y),x),x)) = junk). % A7

(
(i(x,junk) = junk).
i(junk,x) = junk).

.
(
(j(x,junk) = junk)
j(junk,x) = junk).

e
(P(junk) = $T).
nd�of�list.

-
list(hot).
P(i(x,y))
�
-P(x)
�
P(y). % Modus

e
P(i(i(x,y),j(x,y))).
nd�of�list.

I recommend a glass of wine and some patience for the following promised discourse, accom-
f

d
panied by commentary, but, at least, for some, its reading will prove interesting in part because o
ispelling an understandable myth. A glance at the input file reveals OTTER’s wealth of choices, some

s
o
regarding options, some regarding parameter values, and some regarding lists. How in the world doe
ne make wise choices in the context of the three facets? Before you conjecture that an algorithm

s
c
exists for making good choices, I note that I know of none such and, further, believe that none exist
urrently. However, no doubt because of the many thousands of experiments with this excellent pro-

p
gram, I often do make effective initial choices and effective changes as a series of experiments
roceeds. With the essays I plan to write, my goal is to provide commentary and examples of input

s
files that will both enable future researchers to benefit from my years with automated reasoning and
harply reduce the time to learn, perhaps by osmosis, how to attack a question or problem profitably.
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o begin to understand in the vaguest way how to proceed, two conflicting forces merit focus.

m
To illustrate this conflict, one might consider, for example, the value that can be assigned to

ax
�

distinct
�

vars. When the value k is assigned, OTTER will discard any deduced conclusion whose
s

d
number of distinct variables strictly exceeds k. If the value is, say, 3, and an equation or formula i

educed that relies on x, y, z, and u, and possibly additional variables, that item will be discarded. One
,

t
force suggests that generosity is the choice: give the program much room in which to operate and
herefore, assign a high value to max

�

distinct
�

vas. Because of the hugeness of the typical space of

p
conclusions that can be drawn, the second force suggests that a small value be assigned to prevent the
rogram from drowning. Indeed, too small a value can prevent OTTER from finding any proof because

f
b
no proof exists within the constraint in use; too large a value can prevent it from completing a proo
ecause of getting lost in the vast number of conclusions to be considered.

,
r

Three experiments nicely show what can happen when the value assigned to max
�

distinct
�

vars is
espectively, 3, 4, and 5, and when the search is based on breadth first or level saturation, and when all

,
l
other options and parameters are otherwise alike in the three experiments. (For clarity, by definition
evel 0 clauses are those that are input, level 1 are those that are deduced from applying the inference

e
p
rules to level-0 clauses, and level-k clauses are those that are deduced with the property that one of th

arents has level k-1.) The theorem to prove is that which establishes A3 to be dependent on 1, 2, 4, 5,

o
8, and 9. The respective input files include that previously given. For levels 1 through 7, the number
f the last clause retained when 3 is assigned to max

�

distinct
�

vars is, respectively, 41, 79, 174, 424,

4
1150, 2289, and 3824. When 4 is the assigned value, they are 45, 114, 364, 1526, 5007, 14384, and
2279. When 5 is the assigned value, they are 45, 122, 488, 3069, 9838, 31886, and 84361. A glance

r
a
at the three sets of numbers shows what the trend is and correctly indicates what would occur at highe
nd still higher levels for the respective three assignments to max

�

distinct
�

vars.

s
t

Now you can contemplate the awesome set of numbers when the value assigned is 26, which wa
he number of distinct variables present in Steve Winker’s first proof (one of length 159) that the for-

o
mula XHN is a single axiom for equivalential calculus. For one more data item that permits a glimpse
f the horror that awaits an automated reasoning program applying a breadth-first search, I have in hand

h
i
a proof of level 227 for a proof of a theorem in loop theory. Yes, in many cases, a breadth-first searc
s out of the question.

However, occasionally, such a search proves useful, as shown by the fact that the given input file
-

j
produced a result that, although not obvious at the time, proved most useful. One might, therefore, con
ecture that such a search might be a good way for seeking the shortest proof of a given theorem.

a
Although, if the combinatoric explosion does not occur, a level-saturation search is useful when seeking

minimal-level level for a proof of the theorem under study, as the following shows, the conjecture

t
does not hold. Indeed, one can imagine that the theorem to prove admits many proofs. let the theorem
o be proved be denoted by (the clause) C. If a first proof consists of deducing C from applying, say,

,
t
condensed detachment to A and B with the respective subproofs of the two each of length 4 and level 4
hen the length of the this total proof of C is 9, and its level is 5. If a second proof consists of E, f, G,

F
H, J, and C, where E is obtained by applying condensed detachment to two (input) axioms and each of

through C is obtained from its predecessor (in the given list), then this second proof has level 6 and,
,

e
more important, length 6. You can now see, with the given example, that a level-saturation search
ven if a proof is found, may not return a minimal-length proof although it may return a minimal-level

s
proof. Further, if the first proof that can be found has level k equal, say, to 16, and if there exists a
horter proof at level, say, 19, the rapid growth of the size of the levels might well prevent the

discovery of the second proof.

With the treatment of the command set(sos
�

queue), found in the given input file, now in hand,

e
the other items of that file merit examination. I begin with the less interesting, at least for this first
xperiment, items, the ‘‘set’’ commands. In order, set(hyper

�

res) informs the program that hyperresolu-
,

t
tion is the inference rule to be used, chosen because the study concerns condensed detachment. Next
he inclusion of the command set(ancestor

�

subsume) tells the program to seek shorter proofs (preferring
-

m
the strictly shorter derivation when two paths lead to the same conclusion). I always include this com

and when seeking shorter proofs; its inclusion does slow the program rather much, but the command

a
is quite effective in the given context. The inclusion of the command set(back

�

sub) has the program
pply back subsumption, to purge already-retained conclusions if and when a newly deduced conclusion
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s strictly more general. This command is always to be included when ancestor subsumption is in use.

c
Finally, the inclusion of the command set(order

�

history) causes the program to list (by number of the
lause), in order, for each retained conclusion the nucleus of the hyperresolution, the major premiss, and

h
p
the minor premiss. (Yes, I clearly prefer the given spelling despite the now-current alternative; Churc
referred it.) In studies concerned with use of condensed detachment, one occasionally wishes to

.
U
quickly identify which formula is used as the major premiss and which as the minor. Indeed, as D

lrich has shown interest in, perhaps a strategy that has the program limit which formulas are to be
-

s
used as major and which as minor premiss might prove most useful, which (in effect) offers you a pos
ible topic for research.

In contrast to the ‘‘set’’ statements, the justifications for the ‘‘assign’’ statements with their

l
assigned values found in the First Input File are less precise, based more on years of experience. The
ess significant are those concerning memory and heat. The assign(max

�

mem,600000) limits OTTER to
t

l
the use of 600 megabytes of memory, and the assign(heat,0) has the program avoid the use of the ho
ist strategy. A bit more interesting is assign(max

�

proofs,-1), encouraging the program to find as many
f

t
proofs as time and memory permit. Indeed, typically OTTER will find a number of proofs of each o
he targets included in the input; they are not always descending in length, which will be discussed.

,
t
Now assign(max
�

distinct
�

vars) is of interest and proved crucial in the first experiment. In particular
he 14-step proof of the dependency of A3 relies on but three distinct variables. My intention was to

h
s
give the program more latitude in the hope of finding a proof of length strictly less than 14. Althoug
uch did not occur, as you will see, a valuable proof was nevertheless found. Finally, the following

three commands, taken together, merit a bit of comment.

assign(max
�

weight,23).
.

a
assign(change
�

limit
�

after,400)
ssign(new
�

max
�

weight,16).

In symbol count, the longest formula in the 14-step proof has a weight (number of symbols) of 20. In
o

g
part because of that observation and in part because of the assignment of 4 to max

�

distinct
�

vars, t
ive the program some room in which to operate, the value 23 was assigned to max

�

weight. (With the

m
value k assigned to max

�

weight, the program will discard any deduced clause whose weight, usually
easured in symbol count, strictly exceeds k; as you will see, symbol count can be replaced.) In answer

t
to a question that might arise, I guessed that a larger value might prevent the program from completing
he exploration of enough levels; the level of the 14-step proof is 10. A smaller value might block the

e
f
finding of an intersting proof or block all proofs. But, in that OTTER might be forced to explor
urther than level 10, I included the second of the three commands, instructing the program to change,

t
lower, the max
�

weight after 400 clauses were chosen to initiate the use of condensed detachment. The
hird command reduced the max

�

weight to 16, causing the size of levels to grow less rapidly than it
would otherwise, but still giving some room.

Next in order is a discussion of lists as they are used in the First Input File. The first list,

r
pick
�

and
�

purge, is where the 14-step proof comes into play. Each of the 14 formulas is placed as a
esonator in the weight
�

list(pick
�

and
�

purge), a list whose use (in this experiment) is to guide OTTER
,

w
toward a proof of interest. A resonator is a formula or equation whose functional pattern is the key

ith all variables treated as indistinguishable, as simply marking that a variable appears in the
s

i
corresponding spot. Any deduced item that matches a resonator, where all variables are treated a
ndistinguishable, is assigned the value assigned to the matching resonator. The smaller the value, the

e
a
higher the priority for directing a program’s reasoning. In this first experiment, OTTER is told to giv
ny formula that matches one of the fourteen steps of the proof showing A3 to be dependent preference

o
for initiating an application of condensed detachment. I must be totally clear: Not only if and when
ne of the fourteen steps is deduced is it given high priority for driving the reasoning, but any formula

,
t
that has a functional pattern that agrees with one of the fourteen is also given such preference. Indeed
he third step of the 14-step proof is matched at the resonator level, but not identically, by the 88-th

e
t
clause in the output, the 88-th that is used to initiate applications of condensed detachment. Here ar
he two formulas.

.
P
P(i(i(x,y),i(x,i(z,y))))

(i(i(x,y),i(z,i(x,x)))).
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The second of the two formulas is in fact not a formula in the 14-step proof. But, because of its func-

v
tional shape (with all variables treated as indistinguishable), it is assigned the value 1, which is the
alue assigned to the resonator that corresponds to the first of the two formulas. If a breadth-first

t
t
search had not been in use, and if all of the input clauses (from the set-of-support list) were chosen firs
o initiate inference rule application—such clauses are called given clauses—then the second formula

fi
would have been chosen as the thirteenth given clause even though it was clause (65). If you would

nd it of interest to see precisely what occurs, you simply take the given input file, comment out the
-

m
sos�queue command (by placing % in column 1), and remove the % from the set(input�sos�first) com

and. In other words, a number of already-retained clauses that had not yet been chosen as given
-

m
clauses would have been delayed for consideration because the clause corresponding to the second for

ula had been assigned a weight (value) of 1. Therefore, when that formula was deduced and
-

m
retained—and was clause (125)—it was chosen in order because of the command set(sos�queue). Sum

ing up, were it not for the use of a breadth-first (level-saturation) approach, the given fourteen resona-
tors would have had a big effect.

You might again ask about the choice of sos�queue, at least to be reminded of what the intention
l

s
was. The intention was to find a shorter proof than length 14, if one existed, and sometimes leve
aturation works in that context. One reason is that, with level saturation, clauses are considered even

d
v
though they have high weight, low priority, for driving the reasoning, Indeed, their weight or assigne
alue is ignored with level saturation, in contrast to not using it, which causes the program to prefer

,
m
clauses with small weight. For example, a clause with weight 20, when level saturation is not in use

ight wait a long time—perhaps forever—before being chosen as a given clause. Therefore, if a
s

f
shorter proof existed and required the use of a rather long formula, level saturation might unearth thi
act.

Of course, any long clause that matches a resonator in the input will not be treated as a long
e

u
clause if the assigned value to the resonator is a small number. However, if a long clause could b
sed to complete a shorter proof, and if that clause does not match a resonator, all being equal, its

f
l
weight will be determined solely by symbol count. In the proof that was found (the following), one o
ength 17 and level 7, nine clauses occurred that are not in the 14-step proof, at least one of which

might have never been considered or, perhaps, not for a long time.

A 17-Step Proof

T
----- Otter 3.3g-work, Jan 2005 -----

he process was started by wos on lemma.mcs.anl.gov,

T
Thu May 19 19:22:28 2005

he command was "otter". The process ID is 28933.
.

L

----> UNIT CONFLICT at 204.37 sec ----> 27442 [binary,27441.1,12.1] $ANS(a3)

ength of proof is 17. Level of proof is 7.

1

---------------- PROOF ----------------

[] -P(i(x,y))
�
-P(x)
�
P(y).

.
4
2 [] -P(j(x,y))
�
-P(x)
�
P(y)

[] P(i(x,i(y,x))).
5 [] P(i(i(x,i(y,z)),i(i(x,y),i(x,z)))).

8
6 [] P(i(x,j(y,x))).

[] P(i(j(i(x,y),y),j(i(y,x),x))).

1
9 [] P(j(i(x,y),j(x,y))).
2 [] -P(i(i(i(a1,a2),a1),a1))

�
$ANS(a3).

2
26 [hyper,1,4,4] P(i(x,i(y,i(z,y)))).
7 [hyper,1,5,5] P(i(i(i(x,i(y,z)),i(x,y)),i(i(x,i(y,z)),i(x,z)))).

4
29 [hyper,1,5,4] P(i(i(x,y),i(x,x))).
7 [hyper,1,5,26] P(i(i(x,y),i(x,i(z,y)))).

.52 [hyper,1,27,26] P(i(i(x,i(i(y,x),z)),i(x,z)))
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6
56 [hyper,1,27,29] P(i(i(x,i(x,y)),i(x,y))).
0 [hyper,1,29,6] P(i(x,x)).

.
1
144 [hyper,1,4,52] P(i(x,i(i(y,i(i(z,y),u)),i(y,u))))
63 [hyper,2,9,56] P(j(i(x,i(x,y)),i(x,y))).

.
5
190 [hyper,1,5,60] P(i(i(i(x,y),x),i(i(x,y),y)))
02 [hyper,1,52,144] P(i(i(i(x,y),z),i(y,z))).

7
595 [hyper,1,8,163] P(j(i(i(x,y),x),x)).
23 [hyper,1,4,190] P(i(x,i(i(i(y,z),y),i(i(y,z),z)))).

3
1904 [hyper,1,47,502] P(i(i(i(x,y),z),i(u,i(y,z)))).
317 [hyper,1,5,723] P(i(i(x,i(i(y,z),y)),i(x,i(i(y,z),z)))).

.
2
9553 [hyper,1,3317,1904] P(i(i(i(x,y),z),i(i(i(y,z),u),u)))
7441 [hyper,2,595,9553] P(i(i(i(x,y),x),x)).

If you are curious about how important the inclusion of the fourteen resonators was, you can take the
s

t
First Input file and comment out the entire weight

�

list(pick
�

and
�

purge), which will cause all formula
o be treated based solely on symbol count. You might also independently see if a shorter proof than

t
p
length 14 exists showing A3 is dependent on 1, 2, 4,5, 8, and 9; I suspect no shorter exists, but have no
roved it.

As for the other lists in the First Input file, the usable list contains the 3-literal clauses for the two
e

g
condensed-detachment nuclei, one for the function i and one for j. The list(demodulators) lays th
roundwork for seeking shorter proofs by blocking steps of a proof, usually one at a time. The hot list

w
is not used here because heat is assigned the value 0. The list(sos) is the place you look to to see

hich items in the beginning are used to initiate applications of the inference rules in use, in this case,

o
hyperresolution. I placed all of the axioms to be used—1, 2, 4, 5, 8, and 9—in that list. Ordinarily, as
ne familiar with the set of support strategy knows, list(sos) is where you place the added hypothesis

s
(special hypothesis) of the study and, possibly, the denial of the conclusion. In the case in focus, no
pecial hypothesis exists. For the person who enjoys unexplored areas, you might try proving that A3 is

s
dependent with a variation on the first Input File, namely, move some of the axioms to list(usable) and
ee what occurs. I simply have not tried this. Just possibly, a quite different proof will be found.

l
More generally, for any input file given in this essay or later essays, a different list(sos) might prove at
east amusing.

Finally, list(passive) is used to test for unit conflict, the typical test for assignment completion
-

g
such as the completion of a proof, and for forward subsumption. I also use that list to monitor pro
ress. For example, if I am seeking a proof of a conjunction, I place the negation of the conjunction in

s
o
list(usable), but place each of its negated members in list(passive). I thus obtain, if successful, proof
f the individual members of the conjunction. (Those proofs sometimes are useful in the application of

,
s
the cramming strategy, a topic for later.) I also often place the negations of the proof steps of a proof
ometimes with the intention in the future of keying on the various subproofs, a topic at least for later

essays.

The preceding lengthy material finishes my treatment of the first experiment, that focusing on
t

r
finding a proof of length strictly less than 14 of the dependence of A3. Although that goal was no
eached, as will become clear shortly as the second experiment takes center stage—now—the new

t
o
proof, that of length 17, turned out to be most useful. By the way, did you notice that the assignmen
f 4 to max
�

distinct
�

vars played a key role for the 17-step proof—yes, three of its deduced steps rely
p

p
on four distinct variables. I suspect that no proof exists of level strictly less than 7, that of the 17-ste
roof.

4. The Second Experiment and Related Experiments

At this point, you might at first find somewhat jarring the change of emphasis, of goal. Indeed,

o
as is so typical of my research, I was sufficiently delighted with this 17-step proof (of the dependency
f A3) of substantially lower level, 7 versus 10, that I decided to seek a proof shorter than I had found

that deduced, from 1, 2, 4, 5, 8, and 9, the following.

P(i(i(x,y),j(x,y))).

The deduction of this formula, so I was informed by Spinks, was one of two important results he
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ought. I had in hand proofs of each from Veroff—the second theorem is the following in its negated
,

5
form—and had found, perhaps a year ago, a proof of length 27 of the preceding formula (from 1, 2, 4
, 8, and 9).

-P(j(i(A,B),i(j(B,C),j(A,C))))
�
-P(j(i(B,C),i(j(A,B),j(A,C))))

�
$ANS(THESIS�23).

-
s
(This second theorem will be, if all goes as planned, the central figure in a later essay.) Here is the 27
tep proof for the first target, thesis 1.

A 27-Step Proof

T
----- Otter 3.3d, April 2004 -----

he process was started by wos on lemma.mcs.anl.gov,

T
Thu May 27 10:44:48 2004

he command was "otter". The process ID is 14323.
.

L

----> UNIT CONFLICT at 0.33 sec ----> 1392 [binary,1391.1,19.1] $ANS(THESIS�1)

ength of proof is 27. Level of proof is 13.

6

---------------- PROOF ----------------

[] -P(i(x,y))
�
-P(x)
�
P(y).

.
9
7 [] -P(j(x,y))
�
-P(x)
�
P(y)

[] P(i(x,i(y,x))).
10 [] P(i(i(x,i(y,z)),i(i(x,y),i(x,z)))).

1
11 [] P(i(x,j(y,x))).
2 [] P(i(j(x,j(y,z)),j(j(x,y),j(x,z)))).

1
13 [] P(i(j(i(x,y),y),j(i(y,x),x))).
4 [] P(j(i(x,y),j(x,y))).

19 [] -P(i(i(A,B),j(A,B)))
�
$ANS(THESIS�1).

2
24 [hyper,6,9,9] P(i(x,i(y,i(z,y)))).
7 [hyper,6,9,11] P(i(x,i(y,j(z,y)))).

.
3
35 [hyper,6,10,10] P(i(i(i(x,i(y,z)),i(x,y)),i(i(x,i(y,z)),i(x,z))))
7 [hyper,6,10,27] P(i(i(x,y),i(x,j(z,y)))).

4
39 [hyper,6,10,9] P(i(i(x,y),i(x,x))).
3 [hyper,6,35,24] P(i(i(x,i(i(y,x),z)),i(x,z))).

.
5
46 [hyper,6,10,37] P(i(i(i(x,y),x),i(i(x,y),j(z,y))))
9 [hyper,6,39,11] P(i(x,x)).

.
7
63 [hyper,6,9,43] P(i(x,i(i(y,i(i(z,y),u)),i(y,u))))
2 [hyper,6,9,46] P(i(x,i(i(i(y,z),y),i(i(y,z),j(u,z))))).

8
83 [hyper,6,43,63] P(i(i(i(x,y),z),i(y,z))).
9 [hyper,6,37,13] P(i(j(i(x,y),y),j(z,j(i(y,x),x)))).

1
122 [hyper,6,43,72] P(i(x,i(i(x,y),j(z,y)))).
30 [hyper,7,14,59] P(j(x,x)).

.
1
137 [hyper,7,14,12] P(j(j(x,j(y,z)),j(j(x,y),j(x,z))))
46 [hyper,7,14,83] P(j(i(i(x,y),z),i(y,z))).

2
224 [hyper,6,11,130] P(j(x,j(y,y))).
52 [hyper,7,137,137] P(j(j(j(x,j(y,z)),j(x,y)),j(j(x,j(y,z)),j(x,z)))).

6
478 [hyper,7,252,224] P(j(j(x,j(x,y)),j(x,y))).
25 [hyper,6,11,478] P(j(x,j(j(y,j(y,z)),j(y,z)))).

.
9
745 [hyper,7,137,625] P(j(j(x,j(y,j(y,z))),j(x,j(y,z))))
58 [hyper,7,745,14] P(j(i(x,j(x,y)),j(x,y))).

.
1
1098 [hyper,6,89,958] P(j(x,j(i(j(y,z),y),y)))
166 [hyper,7,137,1098] P(j(j(x,i(j(y,z),y)),j(x,y))).

1
1246 [hyper,7,1166,146] P(j(i(i(x,j(y,z)),y),y)).
328 [hyper,6,13,1246] P(j(i(x,i(y,j(x,z))),i(y,j(x,z)))).

1391 [hyper,7,1328,122] P(i(i(x,y),j(x,y))).
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The target in this second experiment, and possibly others to follow, was a proof of thesis 1 of

e
length strictly less than 27 (applications of condensed detachment). In that I had spent much time and
ffort and relied on a variety of methodologies, many found in the book titled Automated Reasoning

e
s
and the Discovery of Missing and elegant Proofs, my seeking of a shorter proof might on the surfac
eem to be at best rather odd. As a reminder, because of the presence of two types of implication, two

e
i
3-literal clauses are being used. In the following input file, you will see how the first experiment cam
nto play, specifically, its success.

Second Input file

a
set(hyper
�

res).
ssign(max
�

weight,23).
.

%
% assign(change
�

limit
�

after,400)
assign(new
�

max
�

weight,16).

%
clear(print
�

kept).
clear(for
�

sub).
.

s
set(ancestor
�

subsume)
et(back
�

sub).
.

a
% clear(set
�

sub)
ssign(max
�

mem,600000).
.

%
% assign(max
�

seconds,2)
set(control
�

memory).

a
% assign(report,900).
ssign(pick
�

given
�

ratio,4).

%
assign(max
�

proofs,-1).
set(order
�

history).
.

%
%set(input
�

sos
�

first)
set(sos
�

queue).

s
%set(print
�

level).
et(order
�

history).
.

a
assign(max
�

distinct
�

vars,3)
ssign(heat,0).

weight
�

list(pick
�

and
�

purge).
.

%
% weight(i(i(i(i($(1),$(1)),$(1)),$(1)),$(1)),100)

weight(j(j(j(j($(1),$(1)),$(1)),$(1)),$(1)),100).
% Following 17 prove A3 dependent, smaller basis, temp.spinks2.a3.out1d1, 6 in the 14 not in this 17.

w
weight(P(i(x,i(y,i(z,y)))),0).

eight(P(i(i(i(x,i(y,z)),i(x,y)),i(i(x,i(y,z)),i(x,z)))),0).

w
weight(P(i(i(x,y),i(x,x))),0).

eight(P(i(i(x,y),i(x,i(z,y)))),0).
.

w
weight(P(i(i(x,i(i(y,x),z)),i(x,z))),0)

eight(P(i(i(x,i(x,y)),i(x,y))),0).

w
weight(P(i(x,x)),0).

eight(P(i(x,i(i(y,i(i(z,y),u)),i(y,u)))),0).

w
weight(P(j(i(x,i(x,y)),i(x,y))),0).

eight(P(i(i(i(x,y),x),i(i(x,y),y))),0).

w
weight(P(i(i(i(x,y),z),i(y,z))),0).

eight(P(j(i(i(x,y),x),x)),0).
.

w
weight(P(i(x,i(i(i(y,z),y),i(i(y,z),z)))),0)

eight(P(i(i(i(x,y),z),i(u,i(y,z)))),0).
.

w
weight(P(i(i(x,i(i(y,z),y)),i(x,i(i(y,z),z)))),0)

eight(P(i(i(i(x,y),z),i(i(i(y,z),u),u))),0).

e
weight(P(i(i(i(x,y),x),x)),0).
nd
�

of
�

list.
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-
list(usable).
P(i(x,y))
�
-P(x)
�
P(y). % Modus

s
%
-P(j(x,y))
�
-P(x)
�
P(y). % Modu

-P(i(i(A,B),j(A,B)))
�

-P(j(i(A,B),i(j(B,C),j(A,C))))
�
-P(j(i(B,C),i(j(A,B),j(A,C))))

�
$ANS(THESIS�23). % Lemmas

l

end�of�list.

ist(sos).
s

P
% Axiom

(i(x,i(y,x))). % (A1)

%
P(i(i(x,i(y,z)),i(i(x,y),i(x,z)))). % (A2)

P(i(i(i(x,y),x),x)). % (A3)

P
P(i(x,j(y,x))). % (A4)

(i(j(x,j(y,z)),j(j(x,y),j(x,z)))). % (A5)
)

%
% P(i(j(x,j(y,z)),j(y,j(x,z)))). % (A6

P(i(j(j(x,y),x),x)). % (A7)

P
P(i(j(i(x,y),y),j(i(y,x),x))). % (A8)

(j(i(x,y),j(x,y))). % (A9)

l

end�of�list.

ist(passive).
-P(i(j(a1,j(a2,a3)),j(a2,j(a1,a3))))

�
$ANS(A6).

-
-P(i(j(j(a1,a2),a1),a1))
�
$ANS(a7).

P(i(i(i(a1,a2),a1),a1))
�
$ANS(a3).

-
-P(i(a1,j(a2,a1)))
�
$ANS(a4).

P(i(i(A,B),j(A,B)))
�
$ANS(THESIS�1). % Lemma

-
-P(j(i(A,B),i(j(B,C),j(A,C))))

�
$ANS(THESIS�2). % Lemma

P(j(i(B,C),i(j(A,B),j(A,C))))
�
$ANS(THESIS�3). % Lemma

l

end�of�list.

ist(demodulators).
% (P(i(i(i(x,y),x),x)) = junk). % A3

6
(
(P(i(j(x,j(y,z)),j(y,j(x,z)))) = junk). % A
P(i(j(j(x,y),x),x)) = junk). % A7

(
(i(x,junk) = junk).
i(junk,x) = junk).

.
(
(j(x,junk) = junk)
j(junk,x) = junk).

e
(P(junk) = $T).
nd�of�list.

-
list(hot).
P(i(x,y))
�
-P(x)
�
P(y). % Modus

e
P(i(i(x,y),j(x,y))).
nd�of�list.

A quick glance at this Second Input File reveals how the results of the first experiment influenced
-

n
this one. Specifically, in the weight�list(pick�and�purge), you find 17 weight templates, each as a reso

ator corresponding to one of the 17 steps of the proof obtained in the first experiment. Before those
e

e
17 templates, you find two templates that are commented out; they are used eventually to increase th
ffectiveness of OTTER by enabling the program to discard four immediately nested occurrences of i

p
and four immediately nested occurrences of j. I included those resonators because they correspond to a
roof quite different from the 14-step proof I had found months and months ago, which led me to con-

f
c
jecture that their presence might lead to a proof quite unlike the 27-step proof just given. Yes, o
ourse, the two targets apparently have little or nothing to do with each other, in the first experiment,

A3, and in the second thesis 1. You are justified, therefore, in skepticism, if such is the case, about
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using these resonators. But, that is how I do my research, often using resonators from a proof of one
type to influence the seeking of a proof of quite another.

To push the program further in the direction of finding a proof somewhat, or very, different from
e

y
the 27-step proof, you will see that I assigned the value 3 to max

�

distinct
�

vars. In part to encourag
ou to participate in the intrigue of this type of problem, do you see why this assignment of 3 might

s
indeed force OTTER, if successful, to find a different proof? As a clue, what is it about the given 27-
tep proof that you can use to force OTTER to find a different proof, perhaps sharply different?

-
i
Finally, in addition to its length, is there an obvious property of the proof? Obviously, I am encourag
ng you to look at the proof, not in depth, but at its attributes. Such examinations might, perhaps not

s
too long from now, lead to a fuller understanding of proof and of the space of conclusions to be
earched.

Well, one of its aspects, as well as that of any proof, is its variable richness. Where the complex-
-

n
ity of a proof is defined as the longest formula or equation among its deduced steps, the variable rich

ess is defined as the maximum number of distinct variables present in any of its deduced steps. Rather
r

m
than the boring and sometimes consuming task of computing the complexity of a proof, you can fa

ore easily determine its variable richness. For the 27-step proof, its variable richness is 4; three of its
f

r
steps rely on four distinct variables. Therefore—and you are now beginning to get a taste o
esearch—an assignment of a value strictly less than 4 to max

�

distinct
�

vars will force OTTER to
2

b
attempt to complete a different proof. And you see why I chose the value 3; I did not try the value
ecause my experience says, in cases of the type under discussion, 2 never works.

r
p

Before detailing what occurred in the second experiment, that with the goal of finding a shorte
roof than length 27 for thesis 1, you might wonder about the item assign(pick

�

given
�

ratio,4). Ordi-

w
narily, for initiating inference-rule application, OTTER chooses from the available items that based on

eight. As noted, the weight of a formula or equation is its symbol count unless otherwise specified.

e
The ‘‘otherwise’’ occurs when some weight template dictates a weight for the item. You can, for
xample, have the program give a weight of 1 to a formula whose symbol count is, say, 23. To do this,

.
I
you merely take the item and place it, with an assigned value of 1, in, sa, weight

�

list(pick
�

and
�

purge)
n contrast to choosing given clauses (those that initiate a path of reasoning) based on complexity, as

t
discussed, the program can be instructed to conduct a level-saturation approach. The value assigned to
he pick
�

given
�

ratio blends the two; if the value is 4, then four clauses are chosen by complexity
s

a
(weight), 1 by first come first serve, then 4, and 1, and so on. Now for the results, with some analysi
nd commentary, of what occurred in the second experiment.

l
(

The first two proofs (of seven) OTTER completed each showed A3 to be dependent on the usua
1, 2, 4, 5, 8, and 9), of respective lengths 17 and 14. (Now you have in hand the use and value of

c
assigning -1 to max
�

proofs; that assignment has OTTER seek as many proofs as possible within the
onstraints of time and memory.) The first of these two proofs is not the same as the 17-step proof

w
given earlier. It cannot be the same. Do you see why—more tasting of research? Clue: What action

as taken regarding max
�

distinct
�

vars, and what relation did it have to the richness of the given 17-
step proof?

The answer rests with the Second Input file and, of course, a glance at the cited proof or a review
t

F
of commentary. The cited proof has variable richness 4, and the assigned value in the Second Inpu

ile is 3. Therefore, OTTER is prevented from reproducing the cited 17-step proof—quite nice, yes?
r

1
Instead, the new 17-step proof has richness 3, and nine of its steps are not among those of the earlie
7-step proof; also of some interest the new proof has level 9, whereas the earlier has level 7. (This

i
last bit of data, regarding level, I think is the type of data that will, in the long run, provide some clue
n the context of the general problem focusing on the nature of proof and of proof search.) Immediately,

s
you might wonder, or ask about, the relation of the second proof, of length 14, to the earlier-given 14-
tep proof. They are identical; even the order of the deduced steps is preserved.

d
2

As for the deduction of thesis 1, five proofs were found, of respective lengths 35, 33, 32, 30, an
8. (If you wish to study in depth the seven proofs, you simply rely on the Second Input file.) The 28-

step proof, the following, merits close scrutiny.

A 28-Step Proof
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he process was started by wos on lemma.mcs.anl.gov,

-
Thu May 19 18:16:40 2005
---> UNIT CONFLICT at 1589.48 sec ----> 140249 [binary,140248.1,14.1] $ANS(THESIS�1).

-

Length of proof is 28. Level of proof is 13.

--------------- PROOF ----------------

2
1 [] -P(i(x,y))
�
-P(x)
�
P(y).

[] -P(j(x,y))
�
-P(x)
�
P(y).

5
4 [] P(i(x,i(y,x))).

[] P(i(i(x,i(y,z)),i(i(x,y),i(x,z)))).

7
6 [] P(i(x,j(y,x))).

[] P(i(j(x,j(y,z)),j(j(x,y),j(x,z)))).

9
8 [] P(i(j(i(x,y),y),j(i(y,x),x))).

[] P(j(i(x,y),j(x,y))).
14 [] -P(i(i(A,B),j(A,B)))

�
$ANS(THESIS�1).

2
28 [hyper,1,4,6] P(i(x,i(y,j(z,y)))).
9 [hyper,1,6,4] P(j(x,i(y,i(z,y)))).

.
3
32 [hyper,1,6,9] P(j(x,j(i(y,z),j(y,z))))
9 [hyper,1,5,4] P(i(i(x,y),i(x,x))).

5
54 [hyper,1,39,6] P(i(x,x)).
7 [hyper,2,9,7] P(j(j(x,j(y,z)),j(j(x,y),j(x,z)))).

7
72 [hyper,2,9,54] P(j(x,x)).
8 [hyper,2,9,8] P(j(j(i(x,y),y),j(i(y,x),x))).

1
123 [hyper,1,5,28] P(i(i(x,y),i(x,j(z,y)))).
44 [hyper,1,6,72] P(j(x,j(y,y))).

.
2
166 [hyper,1,7,32] P(j(j(x,i(y,z)),j(x,j(y,z))))
87 [hyper,2,57,57] P(j(j(j(x,j(y,z)),j(x,y)),j(j(x,j(y,z)),j(x,z)))).

9
380 [hyper,1,7,78] P(j(j(j(i(x,y),y),i(y,x)),j(j(i(x,y),y),x))).
45 [hyper,2,287,144] P(j(j(x,j(x,y)),j(x,y))).

.
9
950 [hyper,2,287,32] P(j(j(i(x,y),j(j(x,y),z)),j(i(x,y),z)))
62 [hyper,1,6,945] P(j(x,j(j(y,j(y,z)),j(y,z)))).

.
1
1126 [hyper,2,57,962] P(j(j(x,j(y,j(y,z))),j(x,j(y,z))))
853 [hyper,2,380,29] P(j(j(i(i(x,y),y),y),i(x,y))).

.
1
1878 [hyper,2,166,1853] P(j(j(i(i(x,y),y),y),j(x,y)))
887 [hyper,1,6,1853] P(j(x,j(j(i(i(y,z),z),z),i(y,z)))).

.
4
2933 [hyper,2,1126,1878] P(j(j(i(i(x,j(x,y)),j(x,y)),j(x,y)),j(x,y)))
011 [hyper,1,7,1887] P(j(j(x,j(i(i(y,z),z),z)),j(x,i(y,z)))).

.
2
15207 [hyper,1,6,2933] P(j(x,j(j(i(i(y,j(y,z)),j(y,z)),j(y,z)),j(y,z))))
1356 [hyper,2,4011,950] P(j(j(i(i(x,y),y),j(j(i(x,y),y),y)),i(x,y))).

1
139999 [hyper,2,21356,15207] P(i(i(x,j(x,y)),j(x,y))).
40018 [hyper,1,4,139999] P(i(x,i(i(y,j(y,z)),j(y,z)))).

.
1
140061 [hyper,1,5,140018] P(i(i(x,i(y,j(y,z))),i(x,j(y,z))))
40248 [hyper,1,140061,123] P(i(i(x,y),j(x,y))).

First, fifteen steps of the 27-step proof are not among the 28. Second, the 27-step proof has vari-

l
able richness 4 (two of its steps show this), whereas the 28-step proof has richness 3. Both proofs have
evel 13. The size of the 27-step proof—total symbol count of the deduced steps, ignoring commas and

e
c
parentheses—is 782, whereas that of the 28-step proof is 878. Is the difference in size caused by th
onstraint of assigning 3 (for the 28-step proof) rather than 4 to max�distinct vars? After all, in gen-

t
eral, you might naturally expect that nothing comes free, that such constraints, even though appealing in
he context of richness, will result in some price. Finally, regarding the goal of a proof of length less

than 27, on the surface, ground is being lost.
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Next in order, third, what about the role of the 17 resonators found in the Second Input File?
-

i
Two of the seventeen formulas that were used as resonators are present in the 28-step proof, the follow
ng.

P(i(i(x,y),i(x,x))).

P

P(i(x,x)).

erhaps the two shared formulas are not that crucial. Well, they are the fourth and fifth steps of the
28-step proof.

More generally, what role as resonators, rather than as specific formulas, did the seventeen play?
-

s
As it turns out, which somewhat surprised me, only the cited two are found (as resonators) in the 28
tep proof. the way to determine this is to take the seventeen in one window and the twenty-eight in

e
h
another window and change all variables to the variable x and do a set-theoretic subtraction. (McCun
as provided me with a program that does the subtraction—how convenient!) So, was headway being

made? What could one do with the 28-step proof?

The answer rests at least in part with the following input file, that used for the third experiment.

a
set(hyper�res).

Third Input file

ssign(max�weight,23).
.

%
% assign(change�limit�after,400)

assign(new�max�weight,16).

%
clear(print�kept).

clear(for�sub).
.

s
set(ancestor�subsume)
et(back�sub).

.
a
% clear(set�sub)
ssign(max�mem,600000).

.
%
% assign(max�seconds,2)

set(control�memory).

a
% assign(report,900).
ssign(pick�given�ratio,4).

%
assign(max�proofs,-1).

set(order�history).
.

%
%set(input�sos�first)

set(sos�queue).

s
%set(print�level).
et(order�history).

.
a
assign(max�distinct�vars,3)
ssign(heat,0).

.
s
assign(bsub�hint�wt,2)
et(keep�hint�subsumers).

.
w
weight�list(pick�and�purge)

eight(i(i(i(i($(1),$(1)),$(1)),$(1)),$(1)),100).
.

e
weight(j(j(j(j($(1),$(1)),$(1)),$(1)),$(1)),100)
nd�of�list.

-
list(usable).
P(i(x,y))
�
-P(x)
�
P(y). % Modus

s
%
-P(j(x,y))
�
-P(x)
�
P(y). % Modu

-P(i(i(A,B),j(A,B)))
�

-P(j(i(A,B),i(j(B,C),j(A,C))))
�
-P(j(i(B,C),i(j(A,B),j(A,C))))

�
$ANS(THESIS�23). % Lemmas

l

end�of�list.

ist(sos).
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P
% Axioms

(i(x,i(y,x))). % (A1)

%
P(i(i(x,i(y,z)),i(i(x,y),i(x,z)))). % (A2)

P(i(i(i(x,y),x),x)). % (A3)

P
P(i(x,j(y,x))). % (A4)

(i(j(x,j(y,z)),j(j(x,y),j(x,z)))). % (A5)
)

%
% P(i(j(x,j(y,z)),j(y,j(x,z)))). % (A6

P(i(j(j(x,y),x),x)). % (A7)

P
P(i(j(i(x,y),y),j(i(y,x),x))). % (A8)

(j(i(x,y),j(x,y))). % (A9)

l

end�of�list.

ist(passive).
-P(i(j(a1,j(a2,a3)),j(a2,j(a1,a3))))

�
$ANS(A6).

-
-P(i(j(j(a1,a2),a1),a1))
�
$ANS(a7).

P(i(i(i(a1,a2),a1),a1))
�
$ANS(a3).

-
-P(i(a1,j(a2,a1)))
�
$ANS(a4).

P(i(i(A,B),j(A,B)))
�
$ANS(THESIS�1). % Lemma

-
-P(j(i(A,B),i(j(B,C),j(A,C))))

�
$ANS(THESIS�2). % Lemma

P(j(i(B,C),i(j(A,B),j(A,C))))
�
$ANS(THESIS�3). % Lemma

l

end�of�list.

ist(demodulators).
3

(
(P(i(i(i(x,y),x),x)) = junk). % A
P(i(j(x,j(y,z)),j(y,j(x,z)))) = junk). % A6

(
(P(i(j(j(x,y),x),x)) = junk). % A7
i(x,junk) = junk).

.
(
(i(junk,x) = junk)
j(x,junk) = junk).

.
(
(j(junk,x) = junk)
P(junk) = $T).

l

end�of�list.

ist(hints).
% Following 14 from temp.spinks1.depax37.out1e prove A3 dependent on 1 2 4 5 8 9.

P
P(i(x,i(y,i(z,y)))).

(i(i(i(x,i(y,z)),i(x,y)),i(i(x,i(y,z)),i(x,z)))).

P
P(i(i(x,y),i(x,i(z,y)))).

(i(i(x,y),i(x,x))).
.

P
P(j(i(x,y),i(x,i(z,y))))

(i(i(x,i(x,y)),i(x,y))).
.

P
P(j(i(x,i(x,y)),i(x,y)))

(j(i(i(x,y),x),x)).
.

P
P(j(x,j(i(i(y,z),y),y)))

(j(j(x,i(i(y,z),y)),j(x,y))).
.

P
P(j(i(i(i(x,y),z),y),i(x,y)))

(j(i(i(i(i(x,y),x),z),x),x)).
.

P
P(j(i(x,i(i(i(x,y),x),z)),i(i(i(x,y),x),z)))

(i(i(i(x,y),x),x)).
% Following 28 are a proof of thesis1, with smaller basis, vars=3, quite different from earlier 27, and from the 19 that relied upon

P
P(i(x,i(y,j(z,y)))).

(j(x,i(y,i(z,y)))).
.

P
P(j(x,j(i(y,z),j(y,z))))

(i(i(x,y),i(x,x))).
P(i(x,x)).
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P
P(j(j(x,j(y,z)),j(j(x,y),j(x,z)))).

(j(x,x)).
P(j(j(i(x,y),y),j(i(y,x),x))).

P
P(i(i(x,y),i(x,j(z,y)))).

(j(x,j(y,y))).
P(j(j(x,i(y,z)),j(x,j(y,z)))).

.
P
P(j(j(j(x,j(y,z)),j(x,y)),j(j(x,j(y,z)),j(x,z))))

(j(j(j(i(x,y),y),i(y,x)),j(j(i(x,y),y),x))).

P
P(j(j(x,j(x,y)),j(x,y))).

(j(j(i(x,y),j(j(x,y),z)),j(i(x,y),z))).

P
P(j(x,j(j(y,j(y,z)),j(y,z)))).

(j(j(x,j(y,j(y,z))),j(x,j(y,z)))).

P
P(j(j(i(i(x,y),y),y),i(x,y))).

(j(j(i(i(x,y),y),y),j(x,y))).
.

P
P(j(x,j(j(i(i(y,z),z),z),i(y,z))))

(j(j(i(i(x,j(x,y)),j(x,y)),j(x,y)),j(x,y))).

P
P(j(j(x,j(i(i(y,z),z),z)),j(x,i(y,z)))).

(j(x,j(j(i(i(y,j(y,z)),j(y,z)),j(y,z)),j(y,z)))).

P
P(j(j(i(i(x,y),y),j(j(i(x,y),y),y)),i(x,y))).

(i(i(x,j(x,y)),j(x,y))).
.

P
P(i(x,i(i(y,j(y,z)),j(y,z))))

(i(i(x,i(y,j(y,z))),i(x,j(y,z)))).

e
P(i(i(x,y),j(x,y))).
nd�of�list.

-
list(hot).
P(i(x,y))
�
-P(x)
�
P(y). % Modus

e
P(i(i(x,y),j(x,y))).
nd�of�list.

Before discussing the role of the 28-step proof, you might briefly read through the options and
s

t
parameters that precede the lists. Such a reading encounters two new items (the following) and reveal
he use of a strategy, Robert Veroff’s powerful hints strategy, to replace the use of the resonance stra-

tegy.

assign(bsub�hint�wt,2).
.

R

set(keep�hint�subsumers)

ather than an in-depth discussion, the following sentence taken from Chapter 3 of the book titled
.

I
Automated Reasoning and the discovery of Missing and elegant Proofs provides what is needed here
n contrast to a resonator that treats all variables as indistinguishable and, therefore, focuses on

s
o
equivalence classes of formulas or equations, a hint treats the variables precisely as written and focuse
n items that are identical to the hint (which, of course, includes alphabetic variants), subsume the hint,

a
or are subsumed by the hint, depending on the included options. The first of the two cited items
ssigns a small value, 2, to any newly deduced item that is related to a hint as given in the preceding

e
h
sentence. The second item has the program retain any deduced conclusion that subsumes a hint, wher
ints are placed in list(hints). I chose to switch from resonators to hints in part because OTTER runs

d
much faster with the latter than with the former. The rest of the explanation for switching can best be
escribed as whim, influenced by the results of experiments in various areas of logic.

s
h

As for the use of the key result of the second experiment, its 28 deduced steps were placed a
ints in list(hints). I also placed in that list as hints correspondents of the 14 deduced steps of the proof

p
that showed A3 dependent. I believe the reason I chose the 14 steps over the steps of either 17-step
roof rests with the not-fully-recognized view that the first 17-step proof had served its purpose.

i
Perhaps also relevant—and I am simply trying to guess at unconscious or semiconscious thought
nfluenced by years and years of experimentation—the 14-step proof was the shortest path from the

-
m
hypotheses to conclusion in the object of the first experiment. Temporary failure: This third experi

ent merely reproduced the 28-step proof.
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Therefore, in the fourth experiment, I turned to the use of a methodology I developed some years

u
ago for seeking shorter proofs. The means is a nonstandard use of demodulation, a procedure typically
sed for simplification and canonicalization. (Weighting can be used also.) The steps of a given proof

r
e
are blocked, typically, but not always, one at a time by demodulating the corresponding formula o
quation to junk; see the list(demodulators) in, for example, the Third Input File. (I chose not to dis-

I
u
cuss that list earlier to avoid having too many balls in the air at once. You find in that list the means
sed to block the use of three of the original axioms so that they will not participate even at the

f
i
deduced level.) the idea is to force the program to avoid completing the proof in hand; after all, one o
ts steps has been outlawed. If all goes well, at least one of the n runs will indicate that a shorter proof

r
a
exists, where n is the length of the proof in focus. If a shorter proof is found, the methodology calls fo
dding the corresponding demodulator to list(demodulators), and beginning anew; in other words, itera-

tion is the name of the game.

The iterative approach worked, yielding the following 26-step proof.

T
----- Otter 3.3g-work, Jan 2005 -----

A 26-Step Proof

he process was started by wos on lemma.mcs.anl.gov,

T
Thu May 19 19:09:43 2005

he command was "otter". The process ID is 28822.
.

L

----> UNIT CONFLICT at 1.02 sec ----> 1379 [binary,1378.1,14.1] $ANS(THESIS�1)

ength of proof is 26. Level of proof is 12.

1

---------------- PROOF ----------------

[] -P(i(x,y))
�
-P(x)
�
P(y).

.
4
2 [] -P(j(x,y))
�
-P(x)
�
P(y)

[] P(i(x,i(y,x))).
5 [] P(i(i(x,i(y,z)),i(i(x,y),i(x,z)))).

7
6 [] P(i(x,j(y,x))).

[] P(i(j(x,j(y,z)),j(j(x,y),j(x,z)))).

9
8 [] P(i(j(i(x,y),y),j(i(y,x),x))).

[] P(j(i(x,y),j(x,y))).
14 [] -P(i(i(A,B),j(A,B)))

�
$ANS(THESIS�1).

9
94 [hyper,1,4,6] P(i(x,i(y,j(z,y)))).
5 [hyper,1,6,4] P(j(x,i(y,i(z,y)))).

.
9
97 [hyper,1,5,94] P(i(i(x,y),i(x,j(z,y))))
8 [hyper,1,5,4] P(i(i(x,y),i(x,x))).

1
109 [hyper,1,98,6] P(i(x,x)).
28 [hyper,2,9,109] P(j(x,x)).

.
1
133 [hyper,2,9,8] P(j(j(i(x,y),y),j(i(y,x),x)))
34 [hyper,2,9,7] P(j(j(x,j(y,z)),j(j(x,y),j(x,z)))).

1
139 [hyper,1,6,9] P(j(x,j(i(y,z),j(y,z)))).
42 [hyper,1,6,128] P(j(x,j(y,y))).

.
1
147 [hyper,1,7,133] P(j(j(j(i(x,y),y),i(y,x)),j(j(i(x,y),y),x)))
52 [hyper,2,134,134] P(j(j(j(x,j(y,z)),j(x,y)),j(j(x,j(y,z)),j(x,z)))).

1
156 [hyper,1,7,139] P(j(j(x,i(y,z)),j(x,j(y,z)))).
66 [hyper,2,147,95] P(j(j(i(i(x,y),y),y),i(x,y))).

1
170 [hyper,2,152,142] P(j(j(x,j(x,y)),j(x,y))).
85 [hyper,1,6,166] P(j(x,j(j(i(i(y,z),z),z),i(y,z)))).

2
188 [hyper,1,6,170] P(j(x,j(j(y,j(y,z)),j(y,z)))).
03 [hyper,1,7,185] P(j(j(x,j(i(i(y,z),z),z)),j(x,i(y,z)))).

2
206 [hyper,2,134,188] P(j(j(x,j(y,j(y,z))),j(x,j(y,z)))).
15 [hyper,2,203,9] P(j(i(i(i(x,y),y),y),i(x,y))).

.218 [hyper,2,203,206] P(j(j(i(i(x,j(y,z)),j(y,z)),j(y,j(y,z))),i(x,j(y,z))))
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1
774 [hyper,2,156,215] P(j(i(i(i(x,y),y),y),j(x,y))).
343 [hyper,2,218,774] P(i(i(x,j(x,y)),j(x,y))).

.
1
1357 [hyper,1,4,1343] P(i(x,i(i(y,j(y,z)),j(y,z))))
361 [hyper,1,5,1357] P(i(i(x,i(y,j(y,z))),i(x,j(y,z)))).

T

1378 [hyper,1,1361,97] P(i(i(x,y),j(x,y))).

his 26-step proof avoids fourteen steps of the given 27-step proof, and it avoids three steps of the
t

t
given 28-step proof. Rather than giving an entire fourth input file, for the fourth experiment, I note tha
he Fourth Input File is obtained from the third by inserting at the beginning of list(demodulators) the

following demodulator.

(P(i(x,i(y,i(z,y)))) = junk).

The given 26-step proof produced for me great satisfaction for I had, roughly a year ago, worked
e

t
very hard to finally obtain the given 27-step proof. Indeed, none of the techniques I had in hand at th
ime and no amount of computer time enabled me to find a proof of length less than 27. Let me be

s
i
clear, i was very pleased with the 27-step proof, as was Spinks; it was far more interesting to each of u
n part because the original proof, a proof of length 38 found by Spinks in 1999, relied on three addi-

,
I
tional axioms, 3, 6, and 7, and that proof was longer. But now, with OTTER’s indispensable assistance

had a 26-step proof. Further, the 27-step proof has variable richness 4, whereas the 26-step proof has
-

b
richness 3. (Hilbert would have been pleased in view of his twenty-fourth problem, found in his note
ooks by R. Thiele, a problem whose focus is on simpler proofs.) Even the size was a tiny bit better,

781 versus 782.

I did stop, if memory serves, in seeking a further improvement. However, perhaps because of a
r

p
variable richness of 3 and a level of 12, I though that perhaps, just perhaps, I could find an even shorte
roof than length 26. So, a fifth experiment was in order, with the following input file.

a
set(hyper
�

res).

Fifth Input File

ssign(max
�

weight,23).
.

a
assign(change
�

limit
�

after,1100)
ssign(new
�

max
�

weight,15).

%
clear(print
�

kept).
clear(for
�

sub).
.

s
set(ancestor
�

subsume)
et(back
�

sub).
.

a
% clear(set
�

sub)
ssign(max
�

mem,600000).
.

%
% assign(max
�

seconds,2)
set(control
�

memory).

%
% assign(report,900).

assign(pick
�

given
�

ratio,4).

%
assign(max
�

proofs,-1).
set(order
�

history).
.

s
%set(input
�

sos
�

first)
et(sos
�

queue).
.

s
%set(print
�

level)
et(order
�

history).
.

a
assign(max
�

distinct
�

vars,3)
ssign(heat,0).

.
s
assign(bsub
�

hint
�

wt,2)
et(keep
�

hint
�

subsumers).

.
w
weight
�

list(pick
�

and
�

purge)
eight(i(i(i(i($(1),$(1)),$(1)),$(1)),$(1)),100).

.weight(j(j(j(j($(1),$(1)),$(1)),$(1)),$(1)),100)
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l

end�of�list.

ist(usable).
-P(i(x,y))
�
-P(x)
�
P(y). % Modus

s
%
-P(j(x,y))
�
-P(x)
�
P(y). % Modu

-P(i(i(A,B),j(A,B)))
�

-P(j(i(A,B),i(j(B,C),j(A,C))))
�
-P(j(i(B,C),i(j(A,B),j(A,C))))

�
$ANS(THESIS�23). % Lemmas

l

end�of�list.

ist(sos).
s

P
% Axiom

(i(x,i(y,x))). % (A1)

%
P(i(i(x,i(y,z)),i(i(x,y),i(x,z)))). % (A2)

P(i(i(i(x,y),x),x)). % (A3)

P
P(i(x,j(y,x))). % (A4)

(i(j(x,j(y,z)),j(j(x,y),j(x,z)))). % (A5)
)

%
% P(i(j(x,j(y,z)),j(y,j(x,z)))). % (A6

P(i(j(j(x,y),x),x)). % (A7)

P
P(i(j(i(x,y),y),j(i(y,x),x))). % (A8)

(j(i(x,y),j(x,y))). % (A9)

l

end�of�list.

ist(passive).
% Following negs 26/12/3 prove thesis1.

-
-P(i(a1,i(a2,j(a3,a2))))
�
$ANS(inter).

P(j(a1,i(a2,i(a3,a2))))
�
$ANS(inter).

.
-
-P(i(i(a1,a2),i(a1,j(a3,a2))))

�
$ANS(inter)

P(i(i(a1,a2),i(a1,a1)))
�
$ANS(inter).

-
-P(i(a1,a1))
�
$ANS(inter).

P(j(a1,a1))
�
$ANS(inter).

.
-
-P(j(j(i(a1,a2),a2),j(i(a2,a1),a1)))

�
$ANS(inter)

P(j(j(a1,j(a2,a3)),j(j(a1,a2),j(a1,a3))))
�
$ANS(inter).

-
-P(j(a1,j(i(a2,a3),j(a2,a3))))

�
$ANS(inter).

P(j(a1,j(a2,a2)))
�
$ANS(inter).

-P(j(j(j(i(a1,a2),a2),i(a2,a1)),j(j(i(a1,a2),a2),a1)))
�
$ANS(inter).

.
-
-P(j(j(j(a1,j(a2,a3)),j(a1,a2)),j(j(a1,j(a2,a3)),j(a1,a3))))

�
$ANS(inter)

P(j(j(a1,i(a2,a3)),j(a1,j(a2,a3))))
�
$ANS(inter).

.
-
-P(j(j(i(i(a1,a2),a2),a2),i(a1,a2)))

�
$ANS(inter)

P(j(j(a1,j(a1,a2)),j(a1,a2)))
�
$ANS(inter).

.
-
-P(j(a1,j(j(i(i(a2,a3),a3),a3),i(a2,a3))))

�
$ANS(inter)

P(j(a1,j(j(a2,j(a2,a3)),j(a2,a3))))
�
$ANS(inter).

.
-
-P(j(j(a1,j(i(i(a2,a3),a3),a3)),j(a1,i(a2,a3))))

�
$ANS(inter)

P(j(j(a1,j(a2,j(a2,a3))),j(a1,j(a2,a3))))
�
$ANS(inter).

-
-P(j(i(i(i(a1,a2),a2),a2),i(a1,a2)))

�
$ANS(inter).

P(j(j(i(i(a1,j(a2,a3)),j(a2,a3)),j(a2,j(a2,a3))),i(a1,j(a2,a3))))
�
$ANS(inter).

-
-P(j(i(i(i(a1,a2),a2),a2),j(a1,a2)))

�
$ANS(inter).

P(i(i(a1,j(a1,a2)),j(a1,a2)))
�
$ANS(inter).

.
-
-P(i(a1,i(i(a2,j(a2,a3)),j(a2,a3))))

�
$ANS(inter)

P(i(i(a1,i(a2,j(a2,a3))),i(a1,j(a2,a3))))
�
$ANS(inter).

-
-P(i(i(a1,a2),j(a1,a2)))
�
$ANS(inter).

P(i(j(a1,j(a2,a3)),j(a2,j(a1,a3))))
�
$ANS(A6).

-
-P(i(j(j(a1,a2),a1),a1))
�
$ANS(a7).

P(i(i(i(a1,a2),a1),a1))
�
$ANS(a3).

-
-P(i(a1,j(a2,a1)))
�
$ANS(a4).

P(i(i(A,B),j(A,B)))
�
$ANS(THESIS�1). % Lemma
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a
-
-P(j(i(A,B),i(j(B,C),j(A,C)))) � $ANS(THESIS�2). % Lemm
P(j(i(B,C),i(j(A,B),j(A,C)))) � $ANS(THESIS�3). % Lemma

l

end�of�list.

ist(demodulators).
3

(
(P(i(i(i(x,y),x),x)) = junk). % A
P(i(j(x,j(y,z)),j(y,j(x,z)))) = junk). % A6

(
(P(i(j(j(x,y),x),x)) = junk). % A7
i(x,junk) = junk).

.
(
(i(junk,x) = junk)
j(x,junk) = junk).

.
(
(j(junk,x) = junk)
P(junk) = $T).

l

end�of�list.

ist(hints).
% Following 26/12/3 from temp.spinks2.thesis1.out1e3 prove thesis 1.

P
P(i(x,i(y,j(z,y)))).

(j(x,i(y,i(z,y)))).
.

P
P(i(i(x,y),i(x,j(z,y))))

(i(i(x,y),i(x,x))).

P
P(i(x,x)).

(j(x,x)).
P(j(j(i(x,y),y),j(i(y,x),x))).

.
P
P(j(j(x,j(y,z)),j(j(x,y),j(x,z))))

(j(x,j(i(y,z),j(y,z)))).

P
P(j(x,j(y,y))).

(j(j(j(i(x,y),y),i(y,x)),j(j(i(x,y),y),x))).
.

P
P(j(j(j(x,j(y,z)),j(x,y)),j(j(x,j(y,z)),j(x,z))))

(j(j(x,i(y,z)),j(x,j(y,z)))).
.

P
P(j(j(i(i(x,y),y),y),i(x,y)))

(j(j(x,j(x,y)),j(x,y))).
.

P
P(j(x,j(j(i(i(y,z),z),z),i(y,z))))

(j(x,j(j(y,j(y,z)),j(y,z)))).
.

P
P(j(j(x,j(i(i(y,z),z),z)),j(x,i(y,z))))

(j(j(x,j(y,j(y,z))),j(x,j(y,z)))).

P
P(j(i(i(i(x,y),y),y),i(x,y))).

(j(j(i(i(x,j(y,z)),j(y,z)),j(y,j(y,z))),i(x,j(y,z)))).

P
P(j(i(i(i(x,y),y),y),j(x,y))).

(i(i(x,j(x,y)),j(x,y))).
.

P
P(i(x,i(i(y,j(y,z)),j(y,z))))

(i(i(x,i(y,j(y,z))),i(x,j(y,z)))).

e
P(i(i(x,y),j(x,y))).
nd�of�list.

-
list(hot).
P(i(x,y)) � -P(x) � P(y). % Modus

e
P(i(i(x,y),j(x,y))).
nd�of�list.

In view of my earlier commentary, you might wonder about my going against the grain, seeking a

s
proof of length less than 26 when said proof has level 12. After all, I have said that a level-saturation
earch is ordinarily impractical. Well, as I now discuss the last given input file, you will see how I

attempted to circumvent the possible drowning as the levels are examined.
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By assigning the value 3 to max�distinct�vars, my many experiments say that the size of levels

2
will grow less rapidly by quite a bit than were I to assign a greater value. The assignment of the value
3 to max�weight was based on a quick glance at the 26-step proof, noting that, probably, a greater

t
value was not needed. However, with that value, the search through level 12 would almost certainly
ake far, far too long. Therefore, I added in the input the instructions to reduce the max�weight to 15

e
t
after 1100 clauses had been chose to initiate inference-rule application. I guessed that a smaller valu
han 1100 would prevent the program from introducing new formulas into the potentially shorter proof;

t
t
a larger value might drown the program. The new max�weight of 15 was chosen because I though
hat room must be provided, in the context of complexity, for the so-called new formulas. The ‘‘set’’

commands were of the type used earlier, including that relevant to the use of Veroff’s hints strategy.

As for lists, two weight templates, the following, were included to slow the growth as the levels
were examined, by purging certain sequences of nested functions.

weight(i(i(i(i($(1),$(1)),$(1)),$(1)),$(1)),100).
.

I

weight(j(j(j(j($(1),$(1)),$(1)),$(1)),$(1)),100)

n list(passive), I simply retained various targets in part to monitor progress, of course with the intent
t

a
that the negation of thesis 1 was the key. The contents of the demodulator list were present to preven
xioms 3, 6, and 7 from participating, even at the deduced level, for I was intent upon continuing the

e
f
study with the 6-element basis throughout. (In the study reported here, and if all goes well later, th
ocus was on 1, 2, 4, 5, 8, and 9, a weaker logic in that A7 is indeed independent.) Among the lists, for

p
this experiment, the hints list played a key role. By placing the 26 deduced formulas of the 26-step
roof in that list, because of the assignment of 2 to bsub�hint�wt, various deduced formulas would be

e
p
given a weight of 2. The result would be the retention of some formulas that might otherwise b
urged because their weight (complexity, measured in symbol count) was too high.

s
1

This fifth experiment did in fact manage to plow through levels 1-12, completing a proof of thesi
. However, the proof has length 31, which meant that failure was the correct evaluation for the fifth

experiment

Therefore a sixth experiment was conducted, almost identical to the fifth. Perhaps, I conjectured,

s
OTTER had changed the max�weight to 15 before some needed formula was retained, needed if a
horter proof was to be found. In other words, perhaps a key formula of weight strictly greater than 15,

e
if retained, would be used to complete a proof of length less than 26. The only change (in the sixth
xperiment) was that of assigning the value 19 to the new�maw�weight, rather than assigning the value

r
r
15. The conjecture was that more room was needed, in the context of complexity. In all othe
espects, the Fifth Input File is the one to use if you decide to reproduce what I have done or if you

decide to do the experiments discussed here so that a deeper analysis of the outputs can be made.

and the story has a charming ending: OTTER, even with the use of level saturation, won, yield-
ing the following proof.

A 24-Step Proof

T
----- Otter 3.3g-work, Jan 2005 -----

he process was started by wos on jaguar.mcs.anl.gov,

T
Sun May 8 17:07:27 2005

he command was "otter". The process ID is 3642.

-
The following has proofs of lengths 28 27 25 24.
---> UNIT CONFLICT at 951.00 sec ----> 29757 [binary,29756.1,48.1] $ANS(THESIS�1).

-

Length of proof is 24. Level of proof is 11.

--------------- PROOF ----------------

1
9 [] -P(i(x,y))
�

-P(x)
�
P(y).

0 [] -P(j(x,y))
�
-P(x)
�
P(y).

12 [] P(i(x,i(y,x))).
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1
13 [] P(i(i(x,i(y,z)),i(i(x,y),i(x,z)))).
4 [] P(i(x,j(y,x))).

.
1
15 [] P(i(j(x,j(y,z)),j(j(x,y),j(x,z))))
6 [] P(i(j(i(x,y),y),j(i(y,x),x))).

4
17 [] P(j(i(x,y),j(x,y))).
8 [] -P(i(i(A,B),j(A,B))) � $ANS(THESIS�1).

1
103 [hyper,9,12,14] P(i(x,i(y,j(z,y)))).
05 [hyper,9,14,12] P(j(x,i(y,i(z,y)))).

.
1
109 [hyper,10,17,16] P(j(j(i(x,y),y),j(i(y,x),x)))
11 [hyper,10,17,15] P(j(j(x,j(y,z)),j(j(x,y),j(x,z)))).

1
113 [hyper,10,17,14] P(j(x,j(y,x))).
17 [hyper,9,14,17] P(j(x,j(i(y,z),j(y,z)))).

.
1
134 [hyper,9,13,103] P(i(i(x,y),i(x,j(z,y))))
40 [hyper,9,15,109] P(j(j(j(i(x,y),y),i(y,x)),j(j(i(x,y),y),x))).

.
1
144 [hyper,10,111,111] P(j(j(j(x,j(y,z)),j(x,y)),j(j(x,j(y,z)),j(x,z))))
48 [hyper,9,15,113] P(j(j(x,y),j(x,x))).

.
2
163 [hyper,9,15,117] P(j(j(x,i(y,z)),j(x,j(y,z))))
28 [hyper,10,140,105] P(j(j(i(i(x,y),y),y),i(x,y))).

.
2
238 [hyper,10,144,117] P(j(j(i(x,y),j(j(x,y),z)),j(i(x,y),z)))
45 [hyper,10,144,148] P(j(j(x,j(x,y)),j(x,y))).

.
4
420 [hyper,10,163,228] P(j(j(i(i(x,y),y),y),j(x,y)))
79 [hyper,10,113,245] P(j(x,j(j(y,j(y,z)),j(y,z)))).

.
1
976 [hyper,9,14,420] P(j(x,j(j(i(i(y,z),z),z),j(y,z))))
160 [hyper,10,111,479] P(j(j(x,j(y,j(y,z))),j(x,j(y,z)))).

5
2744 [hyper,10,238,976] P(j(i(i(i(x,y),y),y),j(x,y))).
987 [hyper,10,1160,2744] P(j(i(i(i(x,j(x,y)),j(x,y)),j(x,y)),j(x,y))).

1
9328 [hyper,10,228,5987] P(i(i(x,j(x,y)),j(x,y))).
4429 [hyper,9,12,9328] P(i(x,i(i(y,j(y,z)),j(y,z)))).

.
2
21281 [hyper,9,13,14429] P(i(i(x,i(y,j(y,z))),i(x,j(y,z))))
9756 [hyper,9,21281,134] P(i(i(x,y),j(x,y))).

The discovery of that 24-step proof, with variable richness 3, startled me and, when brought to
h

a
the attention of Spinks, elicited the word ‘‘fantastic’’. A bit of analysis is in order concerning the fift
nd sixth experiments. A set-theoretic subtraction of the deduced steps of the 24-step proof from the

r
i
set of given clauses in the fifth experiment showed that exactly one clause, the following, did not occu
n the output from the fifth experiment.

.

I

P(j(i(i(i(x,j(x,y)),j(x,y)),j(x,y)),j(x,y)))

n the output of the sixth experiment, that clause is the 3247th chosen as given clause, with weight 18.

g
That clause is the twentieth deduced step among the twenty-four. Further, the nineteenth is among the
iven clauses in the output of the fifth experiment, the 1347th. It seems most liely that this weight-18

e
fi
clause, clause (4802) in the sixth experiment, was deduced after ma�weight was changed to 15 in th

fth experiment. Its weight, 18, is determined by symbol count in that it does not match any of the
e

r
hints in the input file (for the fifth or sixth experiment). Therefore, the clause was too complex to b
etained, having a weight strictly greater than 15. Yes, good fortune was indeed present, especially so

.
S
in view of the fact that the new�max�weight, in the sixth experiment, was 19—just large enough

ummarizing, an assignment of 15 to new�max�weight occurred before the key clause was deduced,

5

causing OTTER to discard it, whereas it was retained with the assignment of 19.

. Notes

At this point, I touch on various topics, some of which may be presented in a rather sketchy
o

v
fashion. The connections between these topics may be mostly in my mind and, indeed, not clear t
arious readers. Nevertheless, some of these notes may eventually spark ideas for some researcher.

,
m
Some of the following may have been covered in part or in whole earlier in this essay and, therefore

ay serve merely as a review or a highlighting. I commence.
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he experiments i detail here may not be identical to the original; indeed, I often do not keep
accurate records of what I have done. Still, they do capture the spirit of what I did and what I do.

If you would enjoy a comparison of historical significance, here is the first proof, found by Spinks
.

A
in 1999, that deduces thesis 1. As you can see, the hypotheses are not restricted to 1, 2 4, 5, 8, and 9

lso, its variable richness is 4, and its length is 38. Therefore, from the viewpoint of Hilbert’s twenty-
fourth problem, the 24-step proof (found in Section 4) is indeed satisfying.

A 38-Step proof

.

L

----> UNIT CONFLICT at 2360.67 sec ----> 21364 [binary,21363.1,10.1] $F

ength of proof is 38. Level of proof is 15.

1

---------------- PROOF ----------------

[] -P(j(x,y)) � -P(x) � P(y).

3
2 [] P(i(x,i(y,x))).

[] P(i(i(x,i(y,z)),i(i(x,y),i(x,z)))).

6
5 [] P(i(x,j(y,x))).

[] P(i(j(x,j(y,z)),j(j(x,y),j(x,z)))).

8
7 [] P(i(j(x,j(y,z)),j(y,j(x,z)))).

[] P(i(j(j(x,y),x),x)).
.

1
9 [] P(j(i(x,y),j(x,y)))
0 [] -P(i(i(A,B),j(A,B))).

.
1
11 [hyper,9,1,8] P(j(j(j(x,y),x),x))
2 [hyper,9,1,5] P(j(x,j(y,x))).

.
1
14 [hyper,9,1,3] P(j(i(x,i(y,z)),i(i(x,y),i(x,z))))
5 [hyper,9,1,2] P(j(x,i(y,x))).

.
2
24 [hyper,15,1,12] P(j(x,j(y,i(z,y))))
8 [hyper,15,1,5] P(i(x,i(y,j(z,y)))).

.
3
31 [hyper,15,1,2] P(i(x,i(y,i(z,y))))
4 [hyper,6,1,9] P(j(j(x,j(y,z)),j(j(x,y),j(x,z)))).

4
36 [hyper,11,1,12] P(j(x,j(j(j(y,z),y),y))).
1 [hyper,7,1,9] P(j(j(x,j(y,z)),j(y,j(x,z)))).

6
53 [hyper,14,1,2] P(i(i(x,y),i(x,x))).
3 [hyper,28,1,14] P(i(i(x,y),i(x,j(z,y)))).

7
71 [hyper,53,1,9] P(j(i(x,y),i(x,x))).
7 [hyper,71,1,31] P(i(x,x)).

1
81 [hyper,77,1,9] P(j(x,x)).
55 [hyper,34,1,36] P(j(j(x,j(j(y,z),y)),j(x,y))).

1
156 [hyper,34,1,24] P(j(j(x,y),j(x,i(z,y)))).
80 [hyper,63,1,14] P(i(i(i(x,y),x),i(i(x,y),j(z,y)))).

2
191 [hyper,41,1,81] P(j(x,j(j(x,y),y))).
00 [hyper,41,1,9] P(j(x,j(i(x,y),y))).

.
2
204 [hyper,191,1,12] P(j(x,j(y,j(j(y,z),z))))
42 [hyper,191,1,34] P(j(j(j(j(x,j(y,z)),j(j(x,y),j(x,z))),u),u)).

2
261 [hyper,191,1,15] P(j(j(j(x,i(y,x)),z),z)).
64 [hyper,191,1,12] P(j(j(j(x,j(y,x)),z),z)).

.
9
380 [hyper,200,1,191] P(j(j(j(x,j(i(x,y),y)),z),z))
65 [hyper,204,1,34] P(j(j(x,y),j(x,j(j(y,z),z)))).

.
1
5836 [hyper,155,1,156] P(j(j(j(i(x,y),z),y),i(x,y)))
3899 [hyper,965,1,264] P(j(x,j(j(j(y,x),z),z))).

.
1
13901 [hyper,965,1,261] P(j(x,j(j(i(y,x),z),z)))
3983 [hyper,13899,1,41] P(j(j(j(x,y),z),j(y,z))).

.
1
13999 [hyper,13901,1,41] P(j(j(i(x,y),z),j(y,z)))
4010 [hyper,13983,1,242] P(j(j(x,y),j(j(z,x),j(z,y)))).
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.
1
14041 [hyper,13999,1,380] P(j(x,j(i(i(y,x),z),z)))
4247 [hyper,14041,1,41] P(j(i(i(x,y),z),j(y,z))).

.
1
14447 [hyper,14247,1,180] P(j(x,i(i(x,y),j(z,y))))
6121 [hyper,14010,1,41] P(j(j(x,y),j(j(y,z),j(x,z)))).

.
2
17514 [hyper,16121,1,14447] P(j(j(i(i(x,y),j(z,y)),u),j(x,u)))
1363 [hyper,17514,1,5836] P(i(i(x,y),j(x,y))).

Relevant to my experiments spread over time, a comparison of the 24-step proof given in Section
s

a
4 with the 27-step proof (of Section 4) that, roughly a year ago, was found with the methodologie
vailable at the time shows that sixteen of its steps are not among the twenty-seven. That observation

-
c
naturally, at least for me because of some unexpected finds in the past few years, leads to a brief dis
ussion of proper subproofs, in the set-theoretic sense, in other words, where specific parentage is

ignored and just the deduced formulas are considered.

for that discussion, I have in hand three proofs of respective lengths 43, 43, and 44. The first two
y

d
proofs are identical, and each is a proper subproof of the third in the set-theoretic sense. Stated slightl
ifferently, the third proof has one formula, the following, not in the first or (identical) second.

A

67 [hyper,9,12,14] P(i(x,i(y,j(z,y)))).

s for the first two proofs, their deduced steps are in the same order. This cited extra clause is the first

d
deduced clause in the third proof, that of length 44. It is used, with an input clause, to obtain one
educed clause and only one; here are the two clauses, the input clause and the child.

9
13 [] P(i(i(x,i(y,z)),i(i(x,y),i(x,z)))).
2 [hyper,9,13,67] P(i(i(x,y),i(x,j(z,y)))).

A brief review of the last few sentences might lead you to the conjecture that clause (92) is in the
e

(
first two proofs, but, since clause (67) is not (even with a different number), the correspondent to claus
92) in the first two proofs must have different parents. You are indeed correct, and here are the three

clauses of interest.

15 [] P(i(x,j(y,x))).
119 [hyper,10,100,13] P(i(i(x,y),i(i(z,x),i(z,y)))).
139 [hyper,10,119,15] P(i(i(x,y),i(x,j(z,y)))).

Sometimes in the process of refining a proof with respect to length, one encounters a sequence of
-

c
proofs, each one step shorter than its predecessor, and, so piquant, each a proper subproof of its prede
essor in the just-illustrated set-theoretic sense. In such an event, typically, the corresponding sequence

s
o
of input files are almost identical to each other, except that the n-th (with n strictly greater than 1) ha

ne added demodulator when compared with its predecessor. The demodulators correspond to blocking
a step of the proof yielded by the predecessor.

As for the three proofs discussed, of respective lengths 43, 43, and 44, their input files were
e

e
almost alike. In the first, the following demodulator was adjoined, to block the retention of th
nclosed formula.

(P(i(x,i(y,i(z,y)))) = junk).

Weighting could have been used in place of demodulation by including a resonator corresponding to the

t
enclosed formula with an assignment of the value k, where k is strictly greater than the value assigned
o max
�

weight. When weighting was used, to my surprise, OTTER returned the cited 44-step proof,

t
that with clause (67) as its first step. To avoid retention of this formula by means of weighting, rather
han by using demodulation, I had to include a resonator corresponding to clause (67), assigning a value

s
t
strictly greater than that assigned to max

�

weight. If you would like a detailed analysis of why such i
he case, I cannot, at this time, give such. I can only observe that weighting focuses on the functional

d
shape, on elements of the equivalence class (in this case) of the included resonator. In contrast, demo-
ulation focuses on instances of the demodulator. When the program deduces clauses in a different

c
order, which can happen when weighting is used rather than demodulation (for proof shortening), the
onsequences are hard to predict. Yes, the various procedures are indeed interconnected and complex.
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till with proper subproofs as the focus, I found the following two proofs quite intriguing. They
-

t
are intriguing in part because the second is a proper subproof of the first, if the history of each deduc
ion is ignored; indeed, with the focus on deduced steps, all of the formulas of the second proof are

a
c
among those of the first. The two proofs are also intriguing because they illustrate yet again that
hild (deduced formula) can have different sets of parents—quite a contrast to the animal world in

which an offspring has unique parents.

The goal of the study under discussion was to prove A7 dependent in an extension of the BCSK
s

w
logic. Here are the relevant clauses; the negative clause is the one to prove from the positive clause

ith the two forms of condensed detachment featured in this essay.

P
P(i(x,i(y,x))). % (A1)

(i(i(x,i(y,z)),i(i(x,y),i(x,z)))). % (A2)
)

P
P(i(i(i(x,y),x),x)). % (A3

(i(x,j(y,x))). % (A4)

P
P(i(j(x,j(y,z)),j(j(x,y),j(x,z)))). % (A5)

(i(j(x,j(y,z)),j(y,j(x,z)))). % (A6)
)

P
P(i(j(j(x,y),x),x)). % (A7

(i(j(i(x,y),y),j(i(y,x),x))). % (A8)
)

P
%
P(j(i(x,y),j(x,y))). % (A9

(j(x,o(x,y))). % (A11)
)

P
P(i(y,o(x,y))). % (A12

(j(j(x,z),j(j(y,z),j(o(x,y),z)))). % (A13)
)

P
P(i(a(x,y),x)). % (A14

(j(a(x,y),y)). % (A15)

-
P(i(i(x,y),i(i(x,z),i(x,a(y,z))))). % (A16)
P(i(j(j(a1,a2),a1),a1))

�
$ANS(a7).

I have separated the clauses through A9 from the next six to mark the extension of the BCSK logic. As

t
you no doubt have guessed, I, in my study, commented out both A3 and A6, which is consistent with
he material preceding this section. I also commented out A7, which is the target to be proved depen-

,
8
dent, if all went as planned. Just as a reminder, A7 is not dependent on the set consisting of 1, 2, 4, 5
, and 9, and 3 and 6 are.

The discovery of this dependency, regarding A7, was most unexpected both for me and for

l
Spinks.. For one aspect, as noted, A7 is independent among the original nine axioms used to study this
ogic. After many experments, I had found a 35-step proof establishing the dependency, a proof I give

.
V
shortly. That proof relies on 1, 2, 4, 5, 8, and 9 and three axioms in the function o for logical or

ery, very recently, I had a notion concerning finding an even shorter proof. The idea is this: Re-
f

l
introduce the axioms that were being avoided, 3 and 6, and see if OTTER would return a proof o
ength less than 35. More generally, one could adjoin dependent axioms or lemmas to get a shorter

proof, then take that proof and refine it, then remove the adjoined items in search of a breakthrough.

Proof 1 of the Dependence of a7

T
----- Otter 3.3g-work, Jan 2005 -----

he process was started by wos on theorem.mcs.anl.gov,

T
Sun Mar 20 12:31:56 2005

he command was "otter". The process ID is 20352.
.

L

----> UNIT CONFLICT at 0.09 sec ----> 904 [binary,903.1,24.1] $ANS(a7)

ength of proof is 35. Level of proof is 20.

1

---------------- PROOF ----------------

0 [] -P(i(x,y))
�
-P(x)

�
P(y).

.
1
11 [] -P(j(x,y))

�
-P(x)

�
P(y)

2 [] P(i(x,i(y,x))).
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1
13 [] P(i(i(x,i(y,z)),i(i(x,y),i(x,z)))).
4 [] P(i(x,j(y,x))).

.
1
15 [] P(i(j(x,j(y,z)),j(j(x,y),j(x,z))))
6 [] P(i(j(i(x,y),y),j(i(y,x),x))).

1
17 [] P(j(i(x,y),j(x,y))).
8 [] P(j(x,o(x,y))).

.
2
19 [] P(i(y,o(x,y)))
0 [] P(j(j(x,z),j(j(y,z),j(o(x,y),z)))).

.
1
24 [] -P(i(j(j(a1,a2),a1),a1)) � $ANS(a7)

30 [hyper,10,13,13] P(i(i(i(x,i(y,z)),i(x,y)),i(i(x,i(y,z)),i(x,z)))).

1
133 [hyper,10,12,14] P(i(x,i(y,j(z,y)))).
35 [hyper,10,12,15] P(i(x,i(j(y,j(z,u)),j(j(y,z),j(y,u))))).

1
138 [hyper,11,17,16] P(j(j(i(x,y),y),j(i(y,x),x))).
39 [hyper,11,17,15] P(j(j(x,j(y,z)),j(j(x,y),j(x,z)))).

1
140 [hyper,11,17,14] P(j(x,j(y,x))).
42 [hyper,11,17,12] P(j(x,i(y,x))).

.
1
180 [hyper,10,130,133] P(i(i(x,i(j(y,x),z)),i(x,z)))
97 [hyper,11,140,140] P(j(x,j(y,j(z,y)))).

.
2
244 [hyper,10,180,135] P(i(j(x,y),j(j(z,x),j(z,y))))
85 [hyper,11,17,244] P(j(j(x,y),j(j(z,x),j(z,y)))).

2
290 [hyper,10,244,142] P(j(j(x,y),j(x,i(z,y)))).
98 [hyper,10,15,285] P(j(j(j(x,y),j(z,x)),j(j(x,y),j(z,y)))).

3
347 [hyper,11,298,197] P(j(j(j(x,y),z),j(y,z))).
62 [hyper,11,285,347] P(j(j(x,j(j(y,z),u)),j(x,j(z,u)))).

q
qq371 [hyper,11,347,138] P(j(x,j(i(x,y),y))).
q416 [hyper,11,362,139] P(j(j(x,j(y,z)),j(y,j(x,z)))).

4
449 [hyper,11,285,371] P(j(j(x,y),j(x,j(i(y,z),z)))).
88 [hyper,11,416,416] P(j(x,j(j(y,j(x,z)),j(y,z)))).

.
5
qq506 [hyper,11,416,138] P(j(i(x,y),j(j(i(y,x),x),y)))
59 [hyper,11,449,18] P(j(x,j(i(o(x,y),z),z))).

.
6
584 [hyper,11,139,488] P(j(j(x,j(y,j(x,z))),j(x,j(y,z))))
03 [hyper,11,506,19] P(j(j(i(o(x,y),y),y),o(x,y))).

6
604 [hyper,11,506,14] P(j(j(i(j(x,y),y),y),j(x,y))).
57 [hyper,11,584,559] P(j(x,j(i(o(x,y),j(x,z)),z))).

.
6
681 [hyper,11,416,657] P(j(i(o(x,y),j(x,z)),j(x,z)))
98 [hyper,11,603,681] P(o(x,j(x,y))).

.
7
709 [hyper,11,488,698] P(j(j(x,j(o(y,j(y,z)),u)),j(x,u)))
27 [hyper,11,709,140] P(j(x,x)).

.
7
738 [hyper,11,20,727] P(j(j(x,y),j(o(y,x),y)))
67 [hyper,11,709,738] P(j(j(j(x,y),x),x)).

.
8
814 [hyper,11,285,767] P(j(j(x,j(j(y,z),y)),j(x,y)))
45 [hyper,11,814,604] P(j(j(i(j(j(x,y),x),x),x),x)).

9
851 [hyper,11,814,290] P(j(j(j(i(x,y),z),y),i(x,y))).
03 [hyper,11,851,845] P(i(j(j(x,y),x),x)).

The significance of placing ‘‘qq’’ to mark three of the deduced formulas will become clear shortly; they
are significant children, but they have different parents in the second proof.

Proof 2 of the Dependence of A7

T
----- Otter 3.3g-work, Jan 2005 -----

he process was started by wos on lemma.mcs.anl.gov,

T
Sun Jun 19 19:27:20 2005

he command was "otter". The process ID is 21259.
.

L

----> UNIT CONFLICT at 0.08 sec ----> 879 [binary,878.1,25.1] $ANS(a7)

ength of proof is 29. Level of proof is 15.
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1

---------------- PROOF ----------------

0 [] -P(i(x,y)) � -P(x) � P(y).
.

1
11 [] -P(j(x,y)) � -P(x) � P(y)
2 [] P(i(x,i(y,x))).

.
1
13 [] P(i(i(x,i(y,z)),i(i(x,y),i(x,z))))
4 [] P(i(x,j(y,x))).

.
1
15 [] P(i(j(x,j(y,z)),j(j(x,y),j(x,z))))
6 [] P(i(j(x,j(y,z)),j(y,j(x,z)))).

.
1
17 [] P(i(j(i(x,y),y),j(i(y,x),x)))
8 [] P(j(i(x,y),j(x,y))).

2
19 [] P(j(x,o(x,y))).
0 [] P(i(y,o(x,y))).

.
2
21 [] P(j(j(x,z),j(j(y,z),j(o(x,y),z))))
5 [] -P(i(j(j(a1,a2),a1),a1)) � $ANS(a7).

.
1
96 [hyper,10,13,13] P(i(i(i(x,i(y,z)),i(x,y)),i(i(x,i(y,z)),i(x,z))))
00 [hyper,10,12,14] P(i(x,i(y,j(z,y)))).

.
1
104 [hyper,10,12,15] P(i(x,i(j(y,j(z,u)),j(j(y,z),j(y,u)))))
09 [hyper,11,18,17] P(j(j(i(x,y),y),j(i(y,x),x))).

.
1
rr110 [hyper,11,18,16] P(j(j(x,j(y,z)),j(y,j(x,z))))
12 [hyper,11,18,14] P(j(x,j(y,x))).

.
r
114 [hyper,11,18,12] P(j(x,i(y,x)))
r115 [hyper,10,16,18] P(j(x,j(i(x,y),y))).

.
r
189 [hyper,10,96,100] P(i(i(x,i(j(y,x),z)),i(x,z)))
r204 [hyper,10,16,109] P(j(i(x,y),j(j(i(y,x),x),y))).

2
208 [hyper,11,110,110] P(j(x,j(j(y,j(x,z)),j(y,z)))).
90 [hyper,10,189,104] P(i(j(x,y),j(j(z,x),j(z,y)))).

.
3
299 [hyper,11,204,20] P(j(j(i(o(x,y),y),y),o(x,y)))
00 [hyper,11,204,14] P(j(j(i(j(x,y),y),y),j(x,y))).

.
3
337 [hyper,10,15,208] P(j(j(x,j(y,j(x,z))),j(x,j(y,z))))
70 [hyper,10,290,115] P(j(j(x,y),j(x,j(i(y,z),z)))).

4
371 [hyper,10,290,114] P(j(j(x,y),j(x,i(z,y)))).
66 [hyper,11,370,19] P(j(x,j(i(o(x,y),z),z))).

.
6
541 [hyper,11,337,466] P(j(x,j(i(o(x,y),j(x,z)),z)))
25 [hyper,11,110,541] P(j(i(o(x,y),j(x,z)),j(x,z))).

7
692 [hyper,11,299,625] P(o(x,j(x,y))).
09 [hyper,11,208,692] P(j(j(x,j(o(y,j(y,z)),u)),j(x,u))).

7
738 [hyper,11,709,112] P(j(x,x)).
52 [hyper,11,21,738] P(j(j(x,y),j(o(y,x),y))).

8
771 [hyper,11,709,752] P(j(j(j(x,y),x),x)).
22 [hyper,10,290,771] P(j(j(x,j(j(y,z),y)),j(x,y))).

.
8
845 [hyper,11,822,371] P(j(j(j(i(x,y),z),y),i(x,y)))
46 [hyper,11,822,300] P(j(j(i(j(j(x,y),x),x),x),x)).

878 [hyper,11,845,846] P(i(j(j(x,y),x),x)).

A comparison of the two given proofs might produce, as it did for me, food for thought. For
f

t
example, all twenty-nine of the deduced formulas in the second are among the thirty-five deduced o
he first. Next, the three formulas (clauses) marked with qq in the first proof are those three that are

s
marked with rr in the second. Then, a glance at the history of those marked with rr in the second
hows that, for each, one of the parents is A6. The inclusion of A6, though a dependent axiom, in the

e
f
input enabled OTTER to complete a 29-step proof, in contrast to the 35-step proof, and all twenty-nin
ormulas are among the thirty-five. So, in a cursory sense—in this case, set-theoretic—ignoring paren-

f
s
tage, the 29-step proof is a proper subproof of the 35-step proof. (Any discussion of short proofs, or o
hortest proof, or of shorter proof, necessitates identification of the underlying axiom set, as well as the

t
p
inference rule or rules being used; the more axioms present, the greater the likelihood of finding a shor
roof. Indeed, to be absurd, if one includes enough in the input, at the axiomatic level, then one can
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)always find, for a given theorem, a proof of length 1.

The former, Proof 1, is the shortest proof I have found in the given context, which offers a chal-
-

t
lenge if you are interested. Specifically, does there exist a proof of length strictly less than 35 (applica
ions of condensed detachment for the two functions i and j) showing A7 dependent on 1, 2, 4, 5, 8, 9,

n
and the three formulas involving o? The removal of A6 at both the axiomatic and deduced levels does
ot prevent a proof from being completed, that of length 35, for example.

-
i

The observations made in the context of the two proofs might provide yet one more clue concern
ng proof finding, proof shortening, and proof search. You see that new parents were found for each of

,
i
the three children, of A6, in the second proof, new parents used to complete the first proof. Therefore
s there merit in the context of proof shortening for an approach that starts with finding a proof relying

f
fi
on dependent axioms (or lemmas), refining it with respect to length, and then turning to the real goal o

nding a short proof that avoids dependent axioms at the axiomatic and deduced levels?

n
p

At this point, you might indeed have concluded that far too much emphasis is being placed o
roof shortening. After all, for many in logic, and mathematics, any proof suffices and, for some, just

o
the knowledge that the theorem is true is enough. Therefore, just perhaps, the real emphasis should be
n finding a so-called first proof. Well, so it seems to me, what I offer here, as well as what I intend to

t
l
offer in future essays, can be applied to finding a first proof, to proving some purported theorem. A
east minimally, I hope, some reader of one of the planned essays will see how to adapt the approaches

f
to proving theorems when no proof is as yet in hand. In other words, I am implicitly offering a topic
or research at the doctoral level or more. If you are skeptical, which is most understandable, I now

a
briefly tell the story of such an occurrence, of finding a proof with similar methodology for a theorem
nnounced but not proved.

The relevant story concerns a 23-letter single axiom, the following, for classical propositional cal-
culus, an axiom provided by Lukasiewicz.

P(i(i(i(x,y),i(i(i(n(z),n(u)),v),z)),i(w,i(i(z,x),i(u,x))))).

e
a
In his 1930s paper, he offered it, but he did not include a proof that said formula suffices as a complet
xiomatization. I had been studying proof refinment, mostly in the context of proof shortening, for

m
years, unaware for most of that time of Hilbert’s twenty-fourth problem. A spin-off of that study was

y attempt to find the first fully automated proof for a 21-letter single axiom, the following, for that
area of logic, an axiom supplied years after Lukasiewicz by C. a. Meredith.

P(i(i(i(i(i(x,y),i(n(z),n(u))),z),v),i(i(v,x),i(u,x)))).

When I succeeded in fiding that fully automated proof, different (as expected) from Meredith’s, I

p
applied the methodology to the seeking of a proof for the 23-letter axiom. I also succeeded in finding a
roof for the 23-letter formula, or, no doubt, I would not be telling this story; see Automated Reasoning

r
m
and the Discovery of Missing and elegant Proofs for copious detail about the two successes. (If you

ind intersects with mind to a fair extent, which might worry you, you will find two facts interesting.

s
first, my studies eventually led to a 38-step proof showing the Meredith formula sufficient, three steps
horter than his proof, and he was interested in finding short proofs. Second, I found a 50-step proof

a
sowing the Lukasiewicz formula sufficient to serve as a single axiom. OTTER and various strategies
nd methodologies played the key role. Regarding another open question, I know of no shorter proof,

respectively, than the cited 38-step proof and the cited 50-step proof.)

The next topic concerns variance in proof length within in a single run. In Section 3, I cited the
negation of the conjunction of two theses to prove, the following.

-P(j(i(A,B),i(j(B,C),j(A,C)))) � -P(j(i(B,C),i(j(A,B),j(A,C)))) � $ANS(THESIS�23). % Lemmas

e
e
The study focusing on finding a short proof of the join of the two theses produced, among others, a nic
xample of how proofs can vary in length within a single run. In particular, a single run with OTTER,

t
with the goal of deducing the (positive form of) two theses yielded proofs of the following lengths and
imes.

-----> EMPTY CLAUSE at 286.30 sec ----> 152123 [hyper,11,151064,150326] $ANS(THESIS�23).

-
Length of proof is 78. Level of proof is 20.
----> EMPTY CLAUSE at 359.82 sec ----> 191054 [hyper,11,151064,190649] $ANS(THESIS�23).
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Length of proof is 74. Level of proof is 20.
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----> EMPTY CLAUSE at 519.17 sec ----> 242565 [hyper,11,242415,190649] $ANS(THESIS
�

23).

-
Length of proof is 80. Level of proof is 20.
----> EMPTY CLAUSE at 2363.69 sec ----> 482743 [hyper,11,482503,190649] $ANS(THESIS

�

23).

-
Length of proof is 100. Level of proof is 22.
----> EMPTY CLAUSE at 3342.04 sec ----> 576364 [hyper,11,575455,575069] $ANS(THESIS

�

23).

-
Length of proof is 71. Level of proof is 20.
----> EMPTY CLAUSE at 12544.81 sec ----> 1143904 [hyper,11,575455,1143204] $ANS(THESIS

�

23).

-
Length of proof is 70. Level of proof is 20.
----> EMPTY CLAUSE at 35519.17 sec ----> 1906693 [hyper,11,575455,1906651] $ANS(THESIS

�

23).

A

Length of proof is 70. Level of proof is 21.

glance at the results just given could easily lead you to ask what is going on. Is the cause of the

a
up-and-down lengths caused by poorer and poorer results in the context of proofs of each of theses 2
nd 3? Well, here are the results for thesis 2, followed by those for thesis 3.

.
L
----> UNIT CONFLICT at 283.41 sec ----> 149622 [binary,149621.1,19.1] $ANS(THESIS

�

2)
ength of proof is 57. Level of proof is 19.

----> UNIT CONFLICT at 285.21 sec ----> 151065 [binary,151064.1,19.1] $ANS(THESIS
�

2).

-
Length of proof is 54. Level of proof is 20.
---> UNIT CONFLICT at 518.53 sec ----> 242416 [binary,242415.1,19.1] $ANS(THESIS

�

2).

-
Length of proof is 53. Level of proof is 20.
---> UNIT CONFLICT at 2361.90 sec ----> 482504 [binary,482503.1,19.1] $ANS(THESIS

�

2).

-
Length of proof is 50. Level of proof is 22.
---> UNIT CONFLICT at 3335.01 sec ----> 575456 [binary,575455.1,19.1] $ANS(THESIS

�

2).

-

Length of proof is 44. Level of proof is 20.

---> UNIT CONFLICT at 283.94 sec ----> 150327 [binary,150326.1,20.1] $ANS(THESIS
�

3).

-
Length of proof is 75. Level of proof is 20.
---> UNIT CONFLICT at 359.39 sec ----> 190650 [binary,190649.1,20.1] $ANS(THESIS

�

3).

-
Length of proof is 71. Level of proof is 20.
---> UNIT CONFLICT at 3332.11 sec ----> 575070 [binary,575069.1,20.1] $ANS(THESIS

�

3).

-
Length of proof is 67. Level of proof is 20.
---> UNIT CONFLICT at 12535.03 sec ----> 1143205 [binary,1143204.1,20.1] $ANS(THESIS

�

3).

-
Length of proof is 66. Level of proof is 20.
---> UNIT CONFLICT at 35517.97 sec ----> 1906652 [binary,1906651.1,20.1] $ANS(THESIS

�

3).
Length of proof is 65. Level of proof is 21.

although, as you might have predicted, I leave to you a detailed analysis of the time(s) and
d

e
length(s) to determine which proofs occurred in which order, I note that you now have a rather detaile
xample that can be used to dispel a myth. The myth—perhaps hope is a better word—asserts that

p
finding shorter and still shorter proofs of a conjunction is facilitated by finding shorter and still shorter
roofs of the individual members. What goes wrong? What goes wrong is that the appropriate sub-

-
p
proofs, of members of a conjunction, can diverge. For example, in the case under discussion, the out
ut file contains proofs of thesis 3 of length 75 and 71 before returning a proof of length 100 for the

t
conjunction of theses 2 and 3. At the same time, the output file returns a sequence of proofs of thesis 2
hat begin with one of length 57 and end with one of length 50. The 71-step proof and the 50-step

e
1
proof, subproofs to be more accurate in the context of the proof of the conjunction, are used in th
00-step proof. In contrast, the first proof of the conjunction of 2 and 3 has length 78, containing a

-
t
subproof of thesis 2 of length 54 and a subproof of length 75 of thesis 3. By way of further explana
ion, the 75-step proof contains all but three steps of the 54-step proof, hence a proof of length 78 of

e
the conjunction. In contrast, the 71-step proof contains just twenty-one steps of the 50-step proof, in
ffect avoiding twenty-nine steps of that proof; hence, because of containing a 71-step subproof, the

I
g
total proof has length 100. Summarizing, you now have some of the details of a run, whose input file
ive almost immediately, showing that shorter subproofs—although signifying progress for the indivi-

-
t
dual members of a conjunction—do not necessarily signal progress for the proof of the entire conjunc
ion.
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An Input file that Produces a Number of Proofs of Interest

a
set(hyper
�

res).
ssign(max
�

weight,28).

%
clear(print
�

kept).
clear(for
�

sub).
.

s
set(ancestor
�

subsume)
et(back
�

sub).
.

a
% clear(set
�

sub)
ssign(max
�

mem,600000).
.

%
% assign(max
�

seconds,7)
set(control
�

memory).

a
% assign(report,900).
ssign(pick
�

given
�

ratio,4).

%
assign(max
�

proofs,-1).
set(order
�

history).
.

%
%set(input
�

sos
�

first)
set(sos
�

queue).
.

s
%set(print
�

level)
et(order
�

history).
.

a
assign(max
�

distinct
�

vars,4)
ssign(heat,0).

%
%

Modifications to strategy

%
%

%

Clauses

l

%

ist(demodulators).
% (P(i(i(x,j(y,j(z,u))),i(x,j(j(y,z),j(y,u))))) = junk).

(
(P(i(i(i(x,y),x),x)) = junk). % A3
P(i(j(x,j(y,z)),j(y,j(x,z)))) = junk). % A6

(
(P(i(j(j(x,y),x),x)) = junk). % A7
i(x,junk) = junk).

.
(
(i(junk,x) = junk)
j(x,junk) = junk).

.
(
(j(junk,x) = junk)
P(junk) = $T).

w

end
�

of
�

list.

eight
�

list(pick
�

and
�

purge).
% following 26/12/4 prove thesis1, new as of 05-06-05.

w
weight(P(i(x,i(y,j(z,y)))),0).

eight(P(j(x,i(y,i(z,y)))),0).
.

w
weight(P(i(i(x,y),i(x,j(z,y)))),0)

eight(P(i(i(x,y),i(x,x))),0).

w
weight(P(i(x,x)),0).

eight(P(j(x,x)),0).
.

w
weight(P(j(j(i(x,y),y),j(i(y,x),x))),0)

eight(P(j(j(x,j(y,z)),j(j(x,y),j(x,z)))),0).

w
weight(P(j(x,j(i(y,z),j(y,z)))),0).

eight(P(j(x,j(y,y))),0).
weight(P(j(j(j(i(x,y),y),i(y,x)),j(j(i(x,y),y),x))),0).
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.
w
weight(P(j(j(j(x,j(y,z)),j(x,y)),j(j(x,j(y,z)),j(x,z)))),0)

eight(P(j(j(x,i(y,z)),j(x,j(y,z)))),0).
.

w
weight(P(j(j(i(i(x,y),y),y),i(x,y))),0)

eight(P(j(j(x,j(x,y)),j(x,y))),0).
.

w
weight(P(j(x,j(j(i(i(y,z),z),z),i(y,z)))),0)

eight(P(j(x,j(j(y,j(y,z)),j(y,z)))),0).
.

w
weight(P(j(j(x,j(i(i(y,z),z),z)),j(x,i(y,z)))),0)

eight(P(j(j(x,j(y,j(y,z))),j(x,j(y,z)))),0).

w
weight(P(j(i(i(i(x,y),y),y),i(x,y))),0).

eight(P(j(j(i(i(x,j(y,z)),j(y,z)),j(y,j(y,z))),i(x,j(y,z)))),0).

w
weight(P(j(i(i(i(x,y),y),y),j(x,y))),0).

eight(P(i(i(x,j(x,y)),j(x,y))),0).
.

w
weight(P(i(x,i(i(y,j(y,z)),j(y,z)))),0)

eight(P(i(i(x,i(y,j(y,z))),i(x,j(y,z)))),0).

%
weight(P(i(i(x,y),j(x,y))),0).

Following 48/19 prove the theorem, from temp.spinks1.out1w3.

w
weight(P(i(x,i(y,j(z,y)))),2).

eight(P(j(x,i(y,i(z,y)))),2).

w
weight(P(j(x,j(y,x))),2).

eight(P(j(x,i(y,x))),2).
.

w
weight(P(j(i(x,i(y,z)),i(i(x,y),i(x,z)))),2)

eight(P(i(i(i(x,i(y,z)),i(x,y)),i(i(x,i(y,z)),i(x,z)))),2).

w
weight(P(i(x,i(i(y,i(z,u)),i(i(y,z),i(y,u))))),2).

eight(P(i(i(x,y),i(x,j(z,y)))),2).

w
weight(P(i(i(x,y),i(x,x))),2).

eight(P(i(i(x,i(y,i(z,u))),i(x,i(i(y,z),i(y,u))))),2).

w
weight(P(j(i(x,y),i(x,j(z,y)))),2).

eight(P(i(i(x,i(x,y)),i(x,y))),2).
.

w
weight(P(j(j(i(x,y),y),j(i(y,x),x))),2)

eight(P(i(i(x,y),i(i(z,x),i(z,y)))),2).

w
weight(P(j(i(x,i(x,y)),i(x,y))),2).

eight(P(j(j(j(i(x,y),y),i(y,x)),j(j(i(x,y),y),x))),2).

w
weight(P(i(i(i(x,y),i(z,x)),i(i(x,y),i(z,y)))),2).

eight(P(j(i(i(x,y),x),x)),2).
.

w
weight(P(j(j(i(i(x,y),y),y),i(x,y))),2)

eight(P(j(i(i(x,y),i(z,x)),i(i(x,y),i(z,y)))),2).

w
weight(P(i(i(j(x,y),z),i(y,z))),2).

eight(P(i(x,j(i(x,y),y))),2).
.

w
weight(P(i(j(x,y),j(j(z,x),j(z,y)))),2)

eight(P(i(i(x,j(y,z)),i(x,j(j(u,y),j(u,z))))),2).

w
weight(P(j(j(x,j(i(i(y,z),z),z)),j(x,i(y,z)))),2).

eight(P(j(j(x,i(i(y,z),y)),j(x,y))),2).
.

w
weight(P(j(j(x,i(y,i(z,u))),j(x,i(i(y,z),i(y,u))))),2)

eight(P(j(j(x,y),j(x,i(z,y)))),2).
.

w
weight(P(i(x,j(j(y,i(x,z)),j(y,z)))),2)

eight(P(i(j(x,j(y,z)),j(j(u,j(x,y)),j(u,j(x,z))))),2).

w
weight(P(j(i(i(j(x,y),z),y),j(x,y))),2).

eight(P(j(j(x,i(i(y,j(j(z,i(y,u)),j(z,u))),v)),j(x,v))),2).
.

w
weight(P(j(j(x,i(i(j(y,z),j(j(u,y),j(u,z))),v)),j(x,v))),2)

eight(P(j(j(x,j(i(i(j(y,z),u),z),y)),j(x,j(i(i(j(y,z),u),z),z)))),2).

w
weight(P(j(x,j(i(i(j(x,y),z),y),y))),2).

eight(P(j(x,i(j(x,y),y))),2).
.

w
weight(P(j(x,i(y,i(j(x,z),z)))),2)

eight(P(j(x,i(i(y,j(x,z)),i(y,z)))),2).
.weight(P(j(j(x,y),i(j(y,z),j(x,z)))),2)
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w
weight(P(j(j(x,i(y,z)),i(y,j(x,z)))),2).

eight(P(i(j(i(x,i(j(y,z),z)),u),j(y,u))),2).

w
weight(P(i(j(j(x,y),z),j(i(x,y),z))),2).

eight(P(j(j(x,j(y,i(z,u))),j(x,i(z,j(y,u))))),2).

w
weight(P(j(x,i(i(y,z),i(j(x,y),z)))),2).

eight(P(j(i(x,y),i(j(y,z),j(x,z)))),2).
.

w
weight(P(i(i(x,y),j(z,i(j(z,x),y)))),2)

eight(P(j(i(x,y),j(z,i(j(z,x),y)))),2).
.

e
weight(P(j(i(x,y),i(j(z,x),j(z,y)))),2)
nd�of�list.

-
list(usable).
P(i(x,y))
�
-P(x)
�
P(y). % Modus

s
%
-P(j(x,y))
�
-P(x)
�
P(y). % Modu

-P(i(i(A,B),j(A,B)))
�

-P(j(i(A,B),i(j(B,C),j(A,C))))
�
-P(j(i(B,C),i(j(A,B),j(A,C))))

�
$ANS(THESIS�23). % Lemmas

l

end�of�list.

ist(sos).

%
%

Axioms

P
%

(i(x,i(y,x))). % (A1)

%
P(i(i(x,i(y,z)),i(i(x,y),i(x,z)))). % (A2)

P(i(i(i(x,y),x),x)). % (A3)

P
P(i(x,j(y,x))). % (A4)

(i(j(x,j(y,z)),j(j(x,y),j(x,z)))). % (A5)
)

%
% P(i(j(x,j(y,z)),j(y,j(x,z)))). % (A6

P(i(j(j(x,y),x),x)). % (A7)

P
P(i(j(i(x,y),y),j(i(y,x),x))). % (A8)

(j(i(x,y),j(x,y))). % (A9)

l

end�of�list.

ist(passive).
-P(i(i(A,B),j(A,B)))
�
$ANS(THESIS�1). % Lemma

-
-P(j(i(A,B),i(j(B,C),j(A,C))))

�
$ANS(THESIS�2). % Lemma

P(j(i(B,C),i(j(A,B),j(A,C))))
�
$ANS(THESIS�3). % Lemma

l

end�of�list.

ist(hot).
-P(i(x,y))
�
-P(x)
�
P(y). % Modus

e
P(i(i(x,y),j(x,y))).
nd�of�list.

Thus you see why simply finding shorter proofs of members of a disjunction is not a necessarily
e

f
profitable way to finding a shorter proof of the entire conjunction. Similarly, if the target is a singl
ormula or equation, finding shorter profs of intermediate steps is not a guaranteed approach to finding a

a
r
shorter proof of the target. Distantly related to this discussion is the case in which one has found
ather satisfactory short proof but wishes to make more progress, if such is possible, and the study has

s
also led to a different proof of somewhat greater length that appears to merit consideration. to avoid
imply reproducing the short proof in hand, you might simply select a deduced step of the short proof

p
that is not in the longer and add a demodulator that blocks it from being retained. With that move, the
rogram will be unable to complete the same short proof and, just perhaps, may find a different proof

i
of the same length or shorter, which can in turn lead to further progress. As an alternative, or perhaps
n addition, you could select a deduced step in the longer proof and never block it from being used

when iterating with blocking proof steps one at a time.
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Now, on the subject of finding a shorter proof through giving more latitude, the following input

p
file shows what can occur. In that file, I used a 45-step proof of the join of theses 2 and 3 as hints, a
roof that has variable richness equal to 4. However, as you see, I assigned 5, rather than 4, to

f
t
max
�

distinct
�

vars, enabling OTTER to provide what was needed to then complete a 44-step proof o
he join, one of richness 5.

An Input file with More Latitude

a
set(hyper
�

res).
ssign(max
�

weight,23).
.

%
% assign(change
�

limit
�

after,1500)
assign(new
�

max
�

weight,19).

%
clear(print
�

kept).
clear(for
�

sub).
.

s
set(ancestor
�

subsume)
et(back
�

sub).
.

a
% clear(set
�

sub)
ssign(max
�

mem,600000).
.

%
% assign(max
�

seconds,2)
set(control
�

memory).

%
% assign(report,900).

assign(pick
�

given
�

ratio,4).

%
assign(max
�

proofs,-1).
set(order
�

history).
.

s
%set(input
�

sos
�

first)
et(sos
�

queue).
.

s
%set(print
�

level)
et(order
�

history).
.

a
% set(process
�

input)
ssign(max
�

distinct
�

vars,5).

a
assign(heat,0).
ssign(bsub
�

hint
�

wt,2).
.

%
%

%

set(keep
�

hint
�

subsumers)

Clauses

l

%

ist(demodulators).
3

(
(P(i(i(i(x,y),x),x)) = junk). % A
P(i(j(x,j(y,z)),j(y,j(x,z)))) = junk). % A6

(
(P(i(j(j(x,y),x),x)) = junk). % A7
i(x,junk) = junk).

.
(
(i(junk,x) = junk)
j(x,junk) = junk).

.
(
(j(junk,x) = junk)
P(junk) = $T).

w

end
�

of
�

list.

eight
�

list(pick
�

and
�

purge).
.

w
weight(i(i(i(i($(1),$(1)),$(1)),$(1)),$(1)),100)

eight(j(j(j(j($(1),$(1)),$(1)),$(1)),$(1)),100).
end
�

of
�

list.
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-
list(usable).
P(i(x,y))
�
-P(x)
�
P(y). % Modus

s
%
-P(j(x,y))
�
-P(x)
�
P(y). % Modu

-P(i(i(A,B),j(A,B)))
�

-P(j(i(A,B),i(j(B,C),j(A,C))))
�
-P(j(i(B,C),i(j(A,B),j(A,C))))

�
$ANS(THESIS�23). % Lemmas

l

end�of�list.

ist(sos).

%
%

Axioms

P
%

(i(x,i(y,x))). % (A1)

%
P(i(i(x,i(y,z)),i(i(x,y),i(x,z)))). % (A2)

P(i(i(i(x,y),x),x)). % (A3)

P
P(i(x,j(y,x))). % (A4)

(i(j(x,j(y,z)),j(j(x,y),j(x,z)))). % (A5)
)

%
% P(i(j(x,j(y,z)),j(y,j(x,z)))). % (A6

P(i(j(j(x,y),x),x)). % (A7)

P
P(i(j(i(x,y),y),j(i(y,x),x))). % (A8)

(j(i(x,y),j(x,y))). % (A9)
% Following 41 prove thesis3, may be shortest so far, level 18, vars4, temp.spinks2.join23.out1d37g

P
P(i(x,i(y,i(z,y)))).

(j(x,j(y,x))).
P(i(i(i(x,i(y,z)),i(x,y)),i(i(x,i(y,z)),i(x,z)))).

P
P(i(x,i(i(y,i(z,u)),i(i(y,z),i(y,u))))).

(i(i(x,y),i(x,x))).
P(i(i(x,i(y,i(z,u))),i(x,i(i(y,z),i(y,u))))).

P
P(i(i(x,i(x,y)),i(x,y))).

(i(i(x,y),i(i(z,x),i(z,y)))).

P
P(j(i(x,i(x,y)),i(x,y))).

(j(i(x,y),i(i(z,x),i(z,y)))).
.

P
P(i(i(x,j(y,j(z,u))),i(x,j(j(y,z),j(y,u)))))

(i(i(x,y),i(x,j(z,y)))).
.

P
P(j(j(i(x,y),y),j(i(y,x),x)))

(i(i(x,j(i(y,z),z)),i(x,j(i(z,y),y)))).

P
P(j(i(i(x,y),x),x)).

(i(j(x,y),j(j(z,x),j(z,y)))).

P
P(i(i(x,y),i(x,i(z,y)))).

(j(i(x,y),i(x,j(z,y)))).

P
P(i(x,j(i(x,y),y))).

(i(i(x,j(y,z)),i(x,j(j(u,y),j(u,z))))).

P
P(j(j(x,i(i(y,z),y)),j(x,y))).

(j(j(x,j(i(y,z),z)),j(x,j(i(z,y),y)))).
.

P
P(j(j(x,i(y,z)),j(x,i(i(u,y),i(u,z)))))

(j(i(x,y),i(x,i(z,y)))).
.

P
P(i(x,j(j(y,i(x,z)),j(y,z))))

(i(j(x,j(y,z)),j(j(u,j(x,y)),j(u,j(x,z))))).

P
P(j(i(i(j(x,y),z),y),j(x,y))).

(j(j(x,i(i(y,j(j(z,i(y,u)),j(z,u))),v)),j(x,v))).
.

P
P(j(j(x,j(i(i(j(y,z),u),z),y)),j(x,j(i(i(j(y,z),u),z),z))))

(j(x,j(i(i(j(x,y),z),y),y))).
.

P
P(j(x,j(i(y,i(j(x,y),z)),i(j(x,y),z))))

(j(j(x,j(y,i(z,i(j(y,z),u)))),j(x,j(y,i(j(y,z),u))))).

P
P(j(i(x,i(j(y,x),z)),j(y,i(j(y,x),z)))).

(j(x,i(j(x,y),y))).
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P
P(j(j(x,i(y,i(j(z,y),u))),j(x,j(z,i(j(z,y),u))))).

(j(x,i(i(y,j(x,z)),i(y,z)))).
.

P
P(j(j(x,i(y,z)),i(y,j(x,z))))

(j(x,j(j(y,i(z,u)),i(z,j(y,u))))).

P
P(j(i(x,y),j(z,i(j(z,x),y)))).

(j(j(x,j(y,i(z,u))),j(x,i(z,j(y,u))))).

e
P(j(i(x,y),i(j(z,x),j(z,y)))).
nd�of�list.

.
%
list(passive)

Following negs of a 45/18/4 proof of join of 2 3, from newrose.

-
-P(j(a1,i(a2,i(a3,a2))))
�
$ANS(inter).

P(j(a1,j(a2,a1)))
�
$ANS(inter).

-P(i(i(i(a1,i(a2,a3)),i(a1,a2)),i(i(a1,i(a2,a3)),i(a1,a3))))
�
$ANS(inter).

-
-P(i(a1,i(i(a2,i(a3,a4)),i(i(a2,a3),i(a2,a4)))))

�
$ANS(inter).

P(i(i(a1,a2),i(a1,a1)))
�
$ANS(inter).

.
-
-P(i(i(a1,i(a2,i(a3,a4))),i(a1,i(i(a2,a3),i(a2,a4)))))

�
$ANS(inter)

P(i(i(a1,i(a1,a2)),i(a1,a2)))
�
$ANS(inter).

-
-P(i(a1,a1))
�
$ANS(inter).

P(i(i(a1,a2),i(i(a3,a1),i(a3,a2))))
�
$ANS(inter).

-
-P(j(i(a1,i(a1,a2)),i(a1,a2)))

�
$ANS(inter).

P(j(i(a1,a2),i(i(a3,a1),i(a3,a2))))
�
$ANS(inter).

.
-
-P(i(i(a1,j(a2,j(a3,a4))),i(a1,j(j(a2,a3),j(a2,a4)))))

�
$ANS(inter)

P(i(i(a1,a2),i(a1,j(a3,a2))))
�
$ANS(inter).

.
-
-P(j(j(i(a1,a2),a2),j(i(a2,a1),a1)))

�
$ANS(inter)

P(i(i(a1,j(i(a2,a3),a3)),i(a1,j(i(a3,a2),a2))))
�
$ANS(inter).

-
-P(j(i(i(a1,a2),a1),a1))
�
$ANS(inter).

P(i(j(a1,a2),j(j(a3,a1),j(a3,a2))))
�
$ANS(inter).

-
-P(j(i(a1,a2),i(a1,j(a3,a2))))

�
$ANS(inter).

P(i(a1,j(i(a1,a2),a2)))
�
$ANS(inter).

.
-
-P(i(i(a1,j(a2,a3)),i(a1,j(j(a4,a2),j(a4,a3)))))

�
$ANS(inter)

P(j(j(a1,i(i(a2,a3),a2)),j(a1,a2)))
�
$ANS(inter).

.
-
-P(j(j(a1,j(i(a2,a3),a3)),j(a1,j(i(a3,a2),a2))))

�
$ANS(inter)

P(j(j(a1,i(a2,a3)),j(a1,i(i(a4,a2),i(a4,a3)))))
�
$ANS(inter).

-
-P(i(a1,j(j(a2,i(a1,a3)),j(a2,a3))))

�
$ANS(inter).

P(i(j(a1,j(a2,a3)),j(j(a4,j(a1,a2)),j(a4,j(a1,a3)))))
�
$ANS(inter).

-
-P(j(i(i(j(a1,a2),a3),a2),j(a1,a2)))

�
$ANS(inter).

P(j(a1,i(i(a2,a3),i(a2,i(a4,a3)))))
�
$ANS(inter).

.
-
-P(j(a1,j(j(a2,i(a1,a3)),j(a2,a3))))

�
$ANS(inter)

P(j(j(a1,j(i(i(j(a2,a3),a4),a3),a2)),j(a1,j(i(i(j(a2,a3),a4),a3),a3))))
�
$ANS(inter).

-
-P(j(j(a1,j(a2,j(a3,i(a2,a4)))),j(a1,j(a2,j(a3,a4)))))

�
$ANS(inter).

P(j(a1,j(i(i(j(a1,a2),a3),a2),a2)))
�
$ANS(inter).

.
-
-P(j(j(a1,i(a2,a3)),j(a2,j(a1,a3))))

�
$ANS(inter)

P(j(a1,j(i(a2,i(j(a1,a2),a3)),i(j(a1,a2),a3))))
�
$ANS(inter).

-
-P(j(i(a1,a2),j(a3,i(a1,i(a4,a2)))))

�
$ANS(inter).

P(j(j(a1,j(a2,i(a3,i(j(a2,a3),a4)))),j(a1,j(a2,i(j(a2,a3),a4)))))
�
$ANS(inter).

-
-P(j(i(a1,a2),j(a3,i(j(a3,a1),a2))))

�
$ANS(inter).

P(j(a1,i(j(a1,a2),a2)))
�
$ANS(inter).

.
-
-P(j(a1,i(i(a2,j(a1,a3)),i(a2,a3))))

�
$ANS(inter)

P(j(i(a1,j(a2,a3)),j(a2,i(a1,a3))))
�
$ANS(inter).

.
-
-P(j(j(a1,i(a2,a3)),i(a2,j(a1,a3))))

�
$ANS(inter)

P(j(j(a1,a2),i(j(a2,a3),j(a1,a3))))
�
$ANS(inter).

.
-
-P(j(j(a1,j(a2,i(a3,a4))),j(a1,i(a3,j(a2,a4)))))

�
$ANS(inter)

P(j(j(a1,j(a2,a3)),j(a1,i(j(a3,a4),j(a2,a4)))))
�
$ANS(inter).

-P(j(i(a1,a2),i(j(a3,a1),j(a3,a2))))
�
$ANS(inter).



45

-
-P(j(i(a1,a2),i(j(a2,a3),j(a1,a3)))) � $ANS(inter).
P(i(i(A,B),j(A,B))) � $ANS(THESIS�1). % Lemma

-
-P(j(i(A,B),i(j(B,C),j(A,C)))) � $ANS(THESIS�2). % Lemma
P(j(i(B,C),i(j(A,B),j(A,C)))) � $ANS(THESIS�3). % Lemma

l

end�of�list.

ist(hints).
% Following 45/18/4 prove join of 2 3, temp.spinks2.join23.in1d25 would give it, 7 not in the 46, found 05-19-05.

P
P(j(x,i(y,i(z,y)))).

(j(x,j(y,x))).
P(i(i(i(x,i(y,z)),i(x,y)),i(i(x,i(y,z)),i(x,z)))).

P
P(i(x,i(i(y,i(z,u)),i(i(y,z),i(y,u))))).

(i(i(x,y),i(x,x))).
P(i(i(x,i(y,i(z,u))),i(x,i(i(y,z),i(y,u))))).

P
P(i(i(x,i(x,y)),i(x,y))).

(i(x,x)).
P(i(i(x,y),i(i(z,x),i(z,y)))).

P
P(j(i(x,i(x,y)),i(x,y))).

(j(i(x,y),i(i(z,x),i(z,y)))).
.

P
P(i(i(x,j(y,j(z,u))),i(x,j(j(y,z),j(y,u)))))

(i(i(x,y),i(x,j(z,y)))).
.

P
P(j(j(i(x,y),y),j(i(y,x),x)))

(i(i(x,j(i(y,z),z)),i(x,j(i(z,y),y)))).

P
P(j(i(i(x,y),x),x)).

(i(j(x,y),j(j(z,x),j(z,y)))).

P
P(j(i(x,y),i(x,j(z,y)))).

(i(x,j(i(x,y),y))).
P(i(i(x,j(y,z)),i(x,j(j(u,y),j(u,z))))).

P
P(j(j(x,i(i(y,z),y)),j(x,y))).

(j(j(x,j(i(y,z),z)),j(x,j(i(z,y),y)))).
.

P
P(j(j(x,i(y,z)),j(x,i(i(u,y),i(u,z)))))

(i(x,j(j(y,i(x,z)),j(y,z)))).
.

P
P(i(j(x,j(y,z)),j(j(u,j(x,y)),j(u,j(x,z)))))

(j(i(i(j(x,y),z),y),j(x,y))).

P
P(j(x,i(i(y,z),i(y,i(u,z))))).

(j(x,j(j(y,i(x,z)),j(y,z)))).
P(j(j(x,j(i(i(j(y,z),u),z),y)),j(x,j(i(i(j(y,z),u),z),z)))).

P
P(j(j(x,j(y,j(z,i(y,u)))),j(x,j(y,j(z,u))))).

(j(x,j(i(i(j(x,y),z),y),y))).

P
P(j(j(x,i(y,z)),j(y,j(x,z)))).

(j(x,j(i(y,i(j(x,y),z)),i(j(x,y),z)))).

P
P(j(i(x,y),j(z,i(x,i(u,y))))).

(j(j(x,j(y,i(z,i(j(y,z),u)))),j(x,j(y,i(j(y,z),u))))).

P
P(j(i(x,y),j(z,i(j(z,x),y)))).

(j(x,i(j(x,y),y))).
.

P
P(j(x,i(i(y,j(x,z)),i(y,z))))

(j(i(x,j(y,z)),j(y,i(x,z)))).
.

P
P(j(j(x,i(y,z)),i(y,j(x,z))))

(j(j(x,y),i(j(y,z),j(x,z)))).
.

P
P(j(j(x,j(y,i(z,u))),j(x,i(z,j(y,u)))))

(j(j(x,j(y,z)),j(x,i(j(z,u),j(y,u))))).

P
P(j(i(x,y),i(j(z,x),j(z,y)))).

(j(i(x,y),i(j(y,z),j(x,z)))).
end�of�list.
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-
list(hot).
P(i(x,y)) � -P(x) � P(y). % Modus

e
P(i(i(x,y),j(x,y))).
nd�of�list.

In this study, in the spirit of cramming relying on level saturation, a 41-step proof of thesis 2 was used
-

t
to find a so-called short proof of thesis 3. A 4-step proof was found. When the two proofs were so
o-speak combined in the next run, OTTER found a 44-step proof. Conclusion: Permission to retain

o
r
formulas of variable richness 5 rather than 4 shortly led to a small breakthrough, a proof of length 44 t
eplace one of length 45.

You might say, so what, after all, giving more latitude should enable the program to find a shorter
-

f
proof. But keep in mind, when using breadth first, the extra latitude can drown a program, and there
ore be impractical. Also, note that, in this case, you have a concrete example of success when more

-
m
latitude was given, in this context, regarding variable richness. Similar observations hold for assign

ents to max�weight and the like, such as the pick�given�ratio, and in the context of changing the
,

e
max�weight on the fly. However, you must not conclude that more latitude is always a good thing
ither for finding a better proof or for finding a first proof.

f
b

On the subject of individual formulas, perhaps obvious, there appear to be certain formulas that, i
locked from being used, prevent one from completing any proof shorter than that in hand. This

g
remark may seem obvious, but, if you take into account the huge number of proofs that exist for any
iven, perhaps there is meat in the observation. For example, when attempting to complete a short

g
proof of the conjunction of theses 2 and 3, the following formula when bocked seems to prevent pro-
ress.

P(i(x,i(y,i(x,y)))).

When you encounter this phenomenon, you might so-to-speak unblock the use of such a formula even if

c
temporary harm occurs in the context of proof length. Also, my experiments suggest that, given the
hoice, blocking a later formula rather than an earlier formula among the proof steps is more likely to

e
t
lead to additional progress. An intuitive explanation asserts that the program has more time to replac
he use of the later formula. (Of course, remars about and references to formulas also apply to equa-

tions from what I know.)

In general, the problem of finding a more elegant proof, especially in the context of length, or of

a
finding a first proof in part rests with the number approaches that can be taken. for example, if you
ssume that automation is the solution—and it would help—you might consider the so-called variables.

,
d
One can cram on different subproofs; one can make runs based on different assignments to max�weight

ifferent values for the pick�given�ratio, different assignments to max�distinct�vars, and such. One can
.

O
rely on resonators or on hints or on both. The choice for resonators or for hints has a material effect

ne can block proof steps one at a time, two at a time, or (sometimes) three at a time. Even worse,

b
blocking one step may force the program into a cul de sac, so, in principle, one had best examine the
locking of proof steps in all combinations, not a trivial task. Sometimes the way out of a cul de sac is

g
to return to a slightly less pleasing proof and focus on it which may enable the program to so-to-speak
o down a sideroad.

Also of interest, experimentation suggests that blocking the first deduced step often prevents
f

a
further progress toward finding an even shorter proof; such occurs frequently even when the set o
xioms contains more than three members, which means that a number of possibilities exist for the first

d
step of a proof. By way of some amusement, if you are studying an area of logic with condensed
etachment as the sole rule of inference applied to but one function—as is the case, for example, in

e
fi
various studies of classical propositional calculus—and if a single axiom is in use, then blocking th

rst application of the rule, the first step, prevents the completion of any proof of length 1 or greater.

o
The type of term that is blocked matters much. In that context, you might enjoy studying what
ccurred in many of my experiments when I blocked the use of double-negation terms. The problem is

s
n
further complicated because of the interplay of the various parameters and options. In particular, it i
ot their fault; the obstacle rests with the nature of proof search. for example, reducing max�weight

t
might require you to increase the value assigned to max�distinct�vars, and this is but one small taste of
he problem. In short, a complete examination of all of the possible paths to shortening a given proof,
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.in view of the numerous cited approaches and their interplay, is far more than daunting

In the context of an earlier topic, you might enjoy taking a proof that you have shortened as
f

c
much as you can where the axiom set consists of independent axioms only and possibly the omission o
hosen independent axioms (as occurs throughout this essay), then make a run with the inclusion of the

.
F
axioms omitted. You would then take the resulting proof and shorten it with various approaches

inally, you would take this new proof, comment out the adjoined axioms with the goal of shortening it
t

p
to compare with your first success. In other words, you now know of yet another way to seek shor
roofs.

As an example of adding back in formulas at the axiomatic level, I have in hand a 20-step proof
t

a
of thesis 1, with 3, 6, 7 as part of the axiom set. Of course, you correctly conclude that a statemen
bout proof length should, to be precise, indicate what the underlying axiom set is. In the cited proof,

i
3, 6, and 7 are permitted to participate at the deduced level, but not needed in that they are part of the
nput. This result takes nothing away from the success focusing on the given 24-step proof.

s
d

Insight into the structure of a proof can sometimes be gained by placing the negations of it
educed steps in list(passive), relying on a level-saturation search, and assigning a rather small value to

-
t
max
�

weight. (That list is used to detect unit conflict and also used in the context of forward subsump
ion.) You can then see the possible levels of the various deduced steps, keeping in mind that they may

,
t
be derived in a manner not precisely the same as in the proof in hand. You might find, for example
hat the proof breaks into two subproofs, each of length roughly half that of the total proof, with the

b
last step of the entire proof obtained from the last steps of the two subproofs. I had in hand recently—
ut have not yet relocated it—a proof whose last step was obtained from condensed detachment applied

s
w
to the preceding two steps. What was interesting is that the proof of the earliest of the two cited step

as a subproof of the proof of the next-to-the-last step of the entire proof.

-
g

Regarding choices of paths to pursue, if have two proofs on which to focus, experimentation sug
ests the preferred is that in which the difference between level and length is greater.

6. Challenges, Mysteries, and Open questions

I shall number the challenges and open questions offered in this section and repeat some offered
l

r
earlier in the essay. for example, ch02,tr1 is the notation for the second challenge in this technica
eport, report1. I shall also include mysteries to solve, occurrences and behaviors I cannot explain.

s
e

CH01.TR1: The challenge you are offered is to automated much of what is detailed in thi
ssay. In particular, with the knowledge that an exhaustive attack is, in most cases, untenable, you are

,
h
asked to write a program that takes a proof of a given theorem and eventually returns a shorter proof
opefully, a far shorter proof. That program would be useful in the context of what I expect to present

in future technical reports.

CH02.TR1: In this challenge, you are asked to extend, modify, and adapt the material presented
-

o
here whose goal is proof shortening to the goal of proof finding. I believe that much of the methodol
gy presented in this first essay, as well as succeeding essays, can be employed in the discovery of first

fi
proofs. Specifically, to complement Veroff’s brilliant and powerful sketches technique for proof

nding, I am rather confident that, although quite difficult, you can extrapolate from what is offered
o

p
here to produce methodology or methodologies to proof finding. I have in mind the case in which n
roof exists to your knowledge, whether the so-called theorem is claimed to be true or not. Conjectures

f
p
would be one of the targets. For example, in the spirit of cramming, an approach would consist o
roving lesser results than the target, lemmas and theorems of less interest, and then have the program

d
t
rely on their proof steps to complete the proof of the target. This challenge, if met, might indeed lea
o one or more publications of significance.

CH03.TR1: As shorter and still shorter subproofs are found, you are challenged to identify pro-

s
perties of subproofs that strongly suggest progress is being made toward the goal of completing a
horter proof of the final result. Further, you are asked to find so-called metaproperties that suggest that

s
the actions being taken are wise ones. In the context of the first of these two, as noted earlier, shorter
ubproofs of members of a conjunction or of some intermediate step do not necessarily indicate pro-

gress is being made toward the final goal. On the other hand, sometimes shorter subproofs do enable a
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program or person to complete a shorter total proof. Why do some shorter subproofs prove useful

t
while others (in effect) get in the way? When is it profitable to use a shorter subproof found later after
he goal has been reached? Related, can one predict which shorter subproofs are useful and which not,

p
when the goal is a shorter total proof? As for the second of the two, Blocking the first step of a given
roof, for example, can prevent further advance in proof shortening. Similarly, raising or lowering the

e
a
value assigned to max�weight can aid or hinder progress. Are their metaproperties, or properties, of th
ctions that predict, before the fact, that wise choices are being made?

-
i

CH04.TR1\\fR: You are challenged to solve a puzzle that asks you to explain why the follow
ng input file yields an 18-step proof of the dependence of A7 when the ratio strategy is used and

t
l
when level saturation is not, whereas a 20-step proof is returned when the ratio strategy is avoided bu
evel saturation is used. Indeed, if you run the file I now give, you will soon have in hand an 18-step

n
s
proof. On the other hand, if you comment out the pick�given�ratio option and comment i
et(sos�queue) (by removing ‘‘%’’), you will obtain as the best proof a 20-step proof. I have given this

l
s
puzzle some thought, but I cannot explain the disparate behaviors, cannot say why the use of leve
aturation does not lead to an 18-step proof. I conjecture that the answer is readily available—even

e
m
though I do not have it—and the analysis that solves the puzzle may be of use in uncovering som

ore of the mystery of proof search.

An Input File for a Puzzling Occurrence

a
set(hyper�res).
ssign(max�weight,23).

.
%
% assign(change�limit�after,600)

assign(new�max�weight,15).

s
clear(print�kept).
et(ancestor�subsume).

a
set(back�sub).
ssign(max�mem,600000).

.
%
% assign(max�seconds,2)

assign(report,900).
.

a
assign(pick�given�ratio,4)
ssign(max�proofs,-1).

%
set(input�sos�first).

set(sos�queue).

%
set(order�history).

set(process�input).
.

a
assign(max�distinct�vars,3)
ssign(bsub�hint�wt,3).

.
a
set(keep�hint�subsumers)
ssign(heat,0).

weight�list(pick�and�purge).
.

w
weight(i(i(i(i($(1),$(1)),$(1)),$(1)),$(1)),100)

eight(j(j(j(j($(1),$(1)),$(1)),$(1)),$(1)),100).

l

end�of�list.

ist(usable).
-P(i(x,y))
�
-P(x)
�
P(y).

.
-
-P(j(x,y))
�
-P(x)
�
P(y)

P(j(i(A,B),i(j(B,C),j(A,C))))
�
-P(j(i(B,C),i(j(A,B),j(A,C))))

�
$ANS(THESIS�23).

e
-P(i(p,i(q,p)))
�
-P(i(i(i(p,q),p),p))
�
-P(i(i(p,q),i(i(q,r),i(p,r))))

�
$ANS(tba�all).

nd�of�list.

P
list(sos).

(i(x,i(y,x))). % (A1)
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%
P(i(i(x,i(y,z)),i(i(x,y),i(x,z)))). % (A2)

P(i(i(i(x,y),x),x)). % (A3)

P
P(i(x,j(y,x))). % (A4)

(i(j(x,j(y,z)),j(j(x,y),j(x,z)))). % (A5)
)

%
% P(i(j(x,j(y,z)),j(y,j(x,z)))). % (A6

P(i(j(j(x,y),x),x)). % (A7)

P
P(i(j(i(x,y),y),j(i(y,x),x))). % (A8)

(j(i(x,y),j(x,y))). % (A9)

e
P(i(j(j(x,y),y),j(j(y,x),x))). % A10
nd�of�list.

.
%
list(passive)

Following negs of an 18/8/3 proof of dependence of a7 on near smaller basis.

-
-P(j(a1,i(a2,j(a3,a2))))
�
$ANS(inter).

P(j(j(i(a1,a2),a2),j(i(a2,a1),a1)))
�
$ANS(inter).

.
-
-P(j(j(a1,j(a2,a3)),j(j(a1,a2),j(a1,a3))))

�
$ANS(inter)

P(j(a1,j(a2,a1)))
�
$ANS(inter).

.
-
-P(j(a1,i(a2,a1)))
�
$ANS(inter)

P(j(j(j(i(a1,a2),a2),i(a2,a1)),j(j(i(a1,a2),a2),a1)))
�
$ANS(inter).

.
-
-P(j(j(j(a1,j(a2,a3)),j(a1,a2)),j(j(a1,j(a2,a3)),j(a1,a3))))

�
$ANS(inter)

P(j(j(a1,a2),j(a1,a1)))
�
$ANS(inter).

.
-
-P(j(a1,j(a2,i(a3,a2))))
�
$ANS(inter)

P(j(j(i(j(a1,a2),a2),a2),j(a1,a2)))
�
$ANS(inter).

-
-P(j(j(a1,j(a1,a2)),j(a1,a2)))

�
$ANS(inter).

P(j(j(a1,a2),j(a1,i(a3,a2))))
�
$ANS(inter).

-
-P(j(j(j(a1,a2),a1),a1))
�
$ANS(inter).

P(j(a1,j(j(j(a2,a3),a2),a2)))
�
$ANS(inter).

.
-
-P(j(j(a1,j(j(a2,a3),a2)),j(a1,a2)))

�
$ANS(inter)

P(j(j(j(i(a1,a2),a3),a2),i(a1,a2)))
�
$ANS(inter).

.
-
-P(j(j(i(j(j(a1,a2),a1),a1),a1),a1))

�
$ANS(inter)

P(i(j(j(a1,a2),a1),a1))
�
$ANS(inter).

-
-P(i(j(j(a1,a2),a1),a1))
�
$ANS(a7).

P(i(p,i(q,p)))
�
$ANS(tba�1).

.
-
-P(i(i(i(p,q),p),p))
�
$ANS(tba�2)

P(i(i(p,q),i(i(q,r),i(p,r))))
�
$ANS(tba�3).

%
-P(i(j(A,B),i(A,B)))
�
$ANS(thm).

-P(i(j(a1,j(a2,a3)),j(a2,j(a1,a3))))
�
$ANS(A6).

%
% -P(i(j(j(a1,a2),a1),a1))

�
$ANS(a7).

-P(i(i(i(a1,a2),a1),a1))
�
$ANS(a3).

.
%
% -P(i(i(A,B),j(A,B)))
�
$ANS(THESIS�1)

-P(j(i(A,B),i(j(B,C),j(A,C))))
�
$ANS(THESIS�2).

.
e
% -P(j(i(B,C),i(j(A,B),j(A,C))))

�
$ANS(THESIS�3)

nd�of�list.

%
list(hints).

Following 18/8/3 apparently proved A7 dependent on BCSK+, without 3, 6, and of curse 7.

P
P(j(x,i(y,j(z,y)))).

(j(j(i(x,y),y),j(i(y,x),x))).
.

P
P(j(j(x,j(y,z)),j(j(x,y),j(x,z))))

(j(x,j(y,x))).
.

P
P(j(x,i(y,x)))

(j(j(j(i(x,y),y),i(y,x)),j(j(i(x,y),y),x))).
.

P
P(j(j(j(x,j(y,z)),j(x,y)),j(j(x,j(y,z)),j(x,z))))

(j(j(x,y),j(x,x))).
P(j(x,j(y,i(z,y)))).



50

P
P(j(j(i(j(x,y),y),y),j(x,y))).

(j(j(x,j(x,y)),j(x,y))).

P
P(j(j(x,y),j(x,i(z,y)))).

(j(j(j(x,y),x),x)).
.

P
P(j(x,j(j(j(y,z),y),y)))

(j(j(x,j(j(y,z),y)),j(x,y))).
.

P
P(j(j(j(i(x,y),z),y),i(x,y)))

(j(j(i(j(j(x,y),x),x),x),x)).

e
P(i(j(j(x,y),x),x)).
nd�of�list.

.
%
list(demodulators)

(P(i(i(x,i(j(y,x),z)),i(x,z))) = junk).

(
(P(i(i(i(x,y),x),x)) = junk). % A3
P(i(j(x,j(y,z)),j(y,j(x,z)))) = junk). % A6

(
% (P(i(j(j(x,y),x),x)) = junk). % A7
i(x,junk) = junk).

.
(
(i(junk,x) = junk)
j(x,junk) = junk).

.
(
(j(junk,x) = junk)
P(junk) = $T).

l

end�of�list.

ist(hot).
-P(i(x,y))
�
-P(x)
�
P(y). % Modus

e
P(i(i(x,y),j(x,y))).
nd�of�list.

OQ01.TR1: In the BCSK logic, with the axiom set consisting of 1, 2, 4, 5, 8, and 9, does there
)

s
exist a proof of length strictly less than 14 (applications of the two forms of condensed detachment
howing A3 to be dependent?

OQ02.TR1: Does there exist a proof of length strictly less than 24 (applications of the two
2

4
forms of condensed detachment for the BCSK logic) deriving thesis 1 from the system consisting of 1,
, 5, 8, and 9?

OQ03.TR1: With condensed detachment as the only inference rule, and with the only admissible
e

i
targets for the completion of a proof one of the fourteen shortest single axioms (other than XCB) or th
ndependent 2-basis consisting of symmetry and transitivity, does there exist a proof of length strictly

less than 22 that establishes XCB to be a single axiom for EC?

The following mystery confronts me, a situation that is contrary to intuition. I had a proof of
-

g
length 252 in which equality was the key relation. I blocked its steps one at a time and made no pro
ress. However, when I blocked (with demodulation) steps two at a time, OTTER returned a 251-step

f
s
proof all of whose steps are among the 252. I would have strongly conjectured that blocking the proo
teps one at a time would clearly find a 251-step proof with the given property, if such a proof existed.

s
Can you explain what is happening; can you solve this mystery? Further, the run based on blocking
teps two at a time yielded but one such 251-step proof, at least in the first 20,000 combinations. (The

s
n
program that allows me to conduct such an enormous set of experiments is called otter-loopn; it doe
ot return the proof but, instead, says such exists and, in effect, how to get it.)

f
p

I have another mystery to solve, one that Veroff might, given a fair amount of time, well solve i
resented to him. Imagine that you have a proof P obtained by using a set A of hints. Next, imagine

A
that various methodologies you apply yield a new proof Q shorter than P. I would guess that replacing

with B, where B consists of the deduced steps of Q, might yield an even shorter proof but, failing
.

W
that, at least yield Q. I have in hand a study in which such a replacement yields no proof of any type

hat goes wrong? How might one proceed wisely?
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7. Review and Overview

There will probably be some readers that find goals of the sort I discuss in this essay somewhat

b
unsatisfying. These goals reflect my real beliefs, the following. First, I believe it is important that we
egin to understand the characteristics of the often huge space of conclusions encountered when seeking

n
e
a proof or the completion of some other assignment. Second, the study of how to shorten proofs is a
xcellent way to begin accruing data for analysis and gaining insight into the nature of proof spaces.

fi
Third, advances in understanding how to shorten proofs may indeed lead to powerful means for finding

rst proofs. Fourth, over the last decade—especially in the last five years—I have made substantial
advances in shortening proofs.

I believe that some serious readers may tentatively agree with the first two points but may have
l

a
reservations about the third. For those readers, I propose that they address a concrete problem in detai
nd explore what is necessary to actually shorten a proof. In particular, I believe that the problem of

finding shorter proofs showing that XCB is a single axiom is a good place to start.

I am delighted that Mark Stickel, upon reading my original challenge, was able to shorten the
s

s
proof from 25 steps to 24 steps. His result is the response of a serious researcher. Because of Stickel’
uccess, I now have a 22-step proof that I will present only when someone else gives a proof at least as

f
s
short. (I have shown the proof to both D. Ulrich and Stickel.) For the record, I would be delighted i
omeone were able to produce a proof as short as mine, and I believe that an even shorter proof may

-
m
exist. If someone were able to discover a proof of less than 20 steps (applications of condensed detach

ent),, it would almost surely require either remarkable luck or a significant advance in understanding
e

a
the structure of these large proof spaces. I believe that anyone who makes a serious effort to complet

proof of less than 20 steps will inevitably begin to face issues that we only vaguely understand at this
I

d
point. I think that it likely that such an individual would have to utilize techniques that relate to those
iscuss in this technical report, but it is also possible that someone might succeed using fresh

approaches and insights. In either case, the success would surely be a moment worth savoring.


