

Access Grid Virtual Venues Design 2.0

3

Virtual Venues Design 2.0

The Futures Laboratory

Mathematics and Computer Science Division

Argonne National Laboratory

2/4/2003
Summary

	
	Requirement
	Description

	1.0
	Venue Data is persistent
	

	2.0
	Venues are Coherently Experienced
	

	3.0
	Venues are Collaboration Scopes
	

	4.0
	Venues are Extensible
	

	5.0
	Venues Broker Capabilities
	

	6.0
	Venues Fabrics are Scalable
	

	7.0
	Venues Fabrics are Topological
	

Design
At the highest level, the Virtual Venues design is made up Virtual Venues and Virtual Venues Servers. These Virtual Venues assume the underlying technology addresses security, further that each user is uniquely identifiable and that a user in the system has been authenticated (that is, identity has been proven securely).
The Virtual Venue Server provides a management interface for creating, destroying and configuring Virtual Venues. In order to support these functions, the Virtual Venue must know about administrators. Additionally, there is some functionality that is factored out of each Virtual Venue and is provided by the single Virtual Venue Server that hosts many Virtual Venues. These factored pieces include: data storage, multicast address allocation, and currently the Venue Server is responsible for keeping a list of services that are available to each Virtual Venue. This list could be replaced by some broader directory service or service discovery mechanism, but in 2.0 it is currently managed by the Virtual Venue Server.

The Virtual Venues Server supports a delegated authority model, meaning it’s possible for an administrator to create a Virtual Venue, then give administrative rights to another user, then give up administrative rights to the Virtual Venue. In practice this is probably not a common case, but it allows a singe Virtual Venue Server administrator to manage the creation and destruction of Virtual Venues, while allowing users to have administrative control over their Virtual Venue.

The Virtual Venue provides a coherent, secure scope for collaboration. Virtual Venues follow a spatial metaphor, since an innate understanding of space is available to leverage. In order to provide coherence the Virtual Venue maintains a persistent connection to all users currently inside, this persistent connection is used to communicate updates to the Venue state so that coherence can be maintained. Each users Venue Client sends periodic heartbeats to the Venue so that the Venue is able to monitor presence during collaborations.

The Virtual Venue also provides data storage functionality so that data can be persistent even when users are not present. This is another aspect of the spatial metaphor –
Technology Decisions
The Virtual Venues design must satisfy the architectural requirements, but also make conservative choices on what technology to build upon. It is important to consider the cost of maintaining software versus the user support cost of logically sub-contracting support by using external tools. The Virtual Venues 2.0 Design relies upon very few prerequisite software packages; this is intentional to make the installation, maintenance and support easier, so that more users can be supported
Virtual Venues are exposed to Virtual Venue clients as web services; however multiple Virtual Venues may want to be hosted by a single Virtual Venue Server. A Virtual Venues Server provides a management interface.

The Venues Server and Venues Services will be implemented in Python.

The SOAP implementation is provided by pyGlobus.

Security is provided by the Globus Toolkit, version 2.2.

[image: image1.emf]VenueServer

VenueManagement

UI

Data

Storage

1

1

1

1

1

1

1

1

1

1

0..n

0..n

1

1

Event

Service

Multicast

Address

Allocator

Authorization

Manager

Authorization

Manager

Venue

Specifications

Virtual Venue Server

The Virtual Venue Server provides access to multiple Virtual Venues. The Virtual Venue Server has a management interface for administrative tasks such as creating new Virtual Venues, adding new Services, and configuring the Virtual Venue Server. The Virtual Venue server maintains a list of Virtual Venues, a list of administrators, and a list of services.
	Attribute
	Description

	venues : Venue []
	List of Venue Objects.

	administrators : string []
	List of distinguished names of administrators.

	services : ServiceDescription []
	A list of service descriptions for services available to venues served by this venue server.

	multicastAddressAllocator: MulticastAddressAllocator
	An object that provides multicast addresses.

	dataStore : string[]
	(e.g. where to store data, default options, etc)

	Method Signature
	Description

	 AddVenue() : URIType
	

	 ModifyVenue(URIType, VenueDescription) : None
	

	 RemoveVenue(URIType) : None
	

	 AddAdministrator(string) : None
	string arg is DN

	 RemoveAdministrator(string) : None
	string arg is DN

	 AddService(ServiceDescription) : None
	

	 ModifyService(URIType, ServiceDescription) : None
	

	 RemoveService(URIType) : None
	

	 RegisterServer(URIType registryURL) : None
	

	
	

	 GetVenueList() : VenueDescription []
	

	 GetEntryVenue() : VenueDescription
	

	
	

Virtual Venue

	Attribute
	Description

	 venueServer : ???
	

	 description : string
	

	 connections : ConnectionDescription []
	

	 users : ClientProfile []
	

	 nodes : ClientProfile []
	

	 data : DataDescription []
	

	 services : ServiceDescription []
	

	 networkServices : ServiceDescription []
	

	 streams : StreamDescription []
	

	 eventChannel : string
	address of event channel

	 administrators : string []
	sequence of DNs

	Method Signature
	Description

	 Destroy() : None
	

	
	

	Enter(ClientProfile) : VenueDescription, StreamDescription [], string privateId
	

	 Exit(string privateId) :
	

	 GetState(string privateId) : VenueDescription
	

	UpdateClientProfile(ClientProfile)
	

	
	

	
	

	
	

	 NegotiateCapabilities() : None
	

ClientProfile
	Attribute
	Description

	 techSupportInformation : string
	

	 profileType : string
	(USER/NODE)

	 geoLocation : string
	

	 email : string
	

	 name : string
	

	 phoneNumber : string
	

	 icon : IconType
	

	 uri : URIType
	

	 [key] publicId : string
	

	 privateId : string
	server-assigned

	 distinguishedName : string
	server-assigned

	 capabilities : Capability []
	retrieved from node service

VenueClient
	Attribute
	Description

	 homeVenue : VenueDescription
	

	 venueData/State : ???
	

	 serviceList : ServiceDescription []
	

	 leashedUserList : string []
	

	 authorizedUserList : string []
	

	Method Signature
	Description

	 GetCurrentVenue() : VenueDescription
	

	 SetCurrentVenue(URIType) : None
	

	 ExitVenue() : None
	

	 AddService(ServiceDescription) : None
	(e.g., AGService ServiceDesc)

	 ModifyService(URIType, ServiceDescription)
	

	 RemoveService(URIType)
	

	 GetHome() : VenueDescription
	

	 SetHome(VenueDescription) : None
	

	 Subscribe(UserProfile) : None
	

	 Unsubscribe(UserProfile) : None
	

	 TakeControl() : yes/no, token
	(should include returned token as argument to appropriate calls above)

VenueDescription
	Attribute
	Description

	 name : string
	

	 description : string
	

	 [key] uri : URIType
	

	 icon : IconType
	

	 attributes
	

ConnectionDescription
	Attribute
	Description

	 name : string
	

	 description : string
	

	 [key] uri : URIType
	

	 icon : IconType
	

	 attributes
	

DataDescription

	Attribute
	Description

	 name : string
	

	 description : string
	

	 [key] uri : URIType
	

	 storageType : string
	(Venue, User, ...)

	 icon : IconType
	

	 attributes
	

ServiceDescription

	Attribute
	Description

	 name : string
	

	 description : string
	

	 [key] uri : URIType
	

	 icon : IconType
	

	 attributes
	

StreamDescription

	Attribute
	Description

	 name : string
	

	 description : string
	

	 [key] uri : URIType
	

	 capability : Capability
	

	 attributes
	

Open Issues

Service Descriptions have to have a way to map services to client software.

Glossary

DN = distinguished name

Capability – (defined in NodeManagement document)

Related Documents

Please send comments to ag-arch@mcs.anl.gov.

This is a DRAFT document and a work in progress. Version: 2/4/2003
Please send comments to ag-arch@mcs.anl.govl address.

Please send comments to ag-arch@mcs.anl.gov.

This is a DRAFT document and a work in progress. Version: 2/4/20038/27/200
Please send comments to ag-tech@mcs.anl.gov.

_1105810354.vsd
�

�

�

�

�

�

Venue�

VenueServer�

VenueManagementUI�

�

Multicast
Address
Allocator�

Authorization Manager�

Authorization Manager�

1�

1�

1�

1�

1�

1�

1�

1�

1�

1�

0..n�

0..n�

Event
Service�

Data
Storage�

1�

1�

