
The Model Coupling
Toolkit

Jay Larson and Rob Jacob

**

Outline
1. Introduction—Coupled Earth System

Models
2. Overall Design of the new Community

Climate System Model (CCSM) Next-
Generation Coupler (NGC)

3. Description of the Model Coupling
Toolkit

Typical Coupled Model

AGCM

Temp, Rain, Radiation, Wind

Sea Ice

Temp, Albedo

OGCM
Temp, Currents, Salinity

Land Surface

Temp, Soil Moisture

General Obstacles to Coupling

Resolution of (usually fixed) numerical grid
n Atmosphere and Land Surface: 2-4 degrees
n Ocean/Sea Ice: 1-2 degrees
n Each model might be on a different grid

Timesteps
n Atmosphere, Land Surface, Sea Ice: .5--1 hour
n Ocean: 6 hours -- 1 day
n Each model might have a different timestep

Code History
n Each model is a Fortran “dusty deck” with

different amounts of dust.

Coupling Parallel Models
How do you assign processors to models?
n Distinct processors for each model

w load balancing? Exactly how many for each model?
w Models which share a grid may be on different numbers

of processors.

n All models on the same physical processors
w May increase total execution time since each model must

execute in turn.
w Optimum number of processors for one model may push

another model into regime where intra-model
communication dominates computation.

Given above choice, how to transfer data between
models.
n Trivial Solution: Always gather to one node first.

Current Coupler Architectures

Parallel Climate Model—message
passing parallel model, with component
models and coupler executed as an
event loop
CCSM—Multiple load image mixed-mode
parallel program; components run
asynchronously and the coupler is only
shared-memory parallel

DOE’s Motivation

US Climate Researchers have faced
problems exploiting microprocessor-
based parallel systems to achieve high
performance for their applications
This situation impedes science efforts:
n National assessment climate simulations
n Ongoing climate system model

development and testing

ACPI Avant Garde

Begun June, 2000, this project is a joint
enterprise between DOE laboratories and
NCAR to develop the next-generation
Community Climate System Model (CCSM):
n High-performance, multiple dynamical core,

object-oriented (OO) atmosphere
n High-performance, OO flux coupler
n Optimization / Enhancement of other model

components
n Parallel I/O

Our Objectives

Create a model coupling environment
that is:
n Flexible
n Extensible
n Performance Portable—supports message-

passing, shared-memory, and hybrid
parallelism

n Highly configurable and easy-to-use

Coupled Modeling System

The Flux Coupler

The Coupler has two basic functions:
n Command/Control
n Data flow between component models

We need to support both functions, but need
solutions that are highly extensible and
configurable

Assumptions

Only real and integer data is passed
between component models
Field data passed to the coupler is
represented as vectors
Regridding is implemented as sparse
matrix-vector multiplication with matrix
elements computed off-line

Layered Design:

Listed from Lowest to Highest Level:
Vendor utilities (MPI, BLAS, shared-

memory)
Message Passing Environment Utilities

(mpeu), Spherical Coordinate Remapping and
Interpolation Package (SCRIP)

Model Coupling Toolkit (mct), Message-
Passing Handshaking (MPH)

Coupler Applications

mpeu
Provides the following services:

F90 module-style access to MPI
Portable/Flexible definition of types
Support for multiprocessor stdout/stderr
Error handling / shutdown
Timing/Load balance monitoring tools
Sorting Tools
Support for basic derived types on which low-
level classes in the mct are built

MPH
Multiple Program-Components Handshake
Utility

F90 module which provides support for carving up
MPI_COMM_WORLD among different models.
Supports different processor allocation strategies.
Each model gets its own communicator.
Functions allow each model to find which processors
the others are running on.
Written by Chris Ding and Helen Ye of LBNL

Basic, low-level classes:
Data decomposition—GlobalMap,
GlobalSegMap

Internal data representation—AttrVect
Indexing—Navigator

Coupler functionality classes:
Grid representation—GeneralGrid

Transformation Matrices—SparseMatrix

Time Sum/Average—Accumulator

Flux Merging—MergeMask

Parallel Data Transfer and Transpose
Diagnostics / Global and Hemispheric
averages

Coupler application classes:
Couplings between component models—
Contract

The Contract encapsulates all the lower-level
data types used to effect transfer and
conversion of data between components.

Once supported, it will be possible to create a
coupled modeling system with component
models and connections all specified at run-
time

1-D Contiguous Data Decomposition—the
GlobalMap

Type GlobalMap
integer :: comm
integer :: gsize
integer :: counts(:)
integer :: displs(:)

End Type GlobalMap

Methods—create, destroy, et cetera

1-D Segmented Data Decomposition—the
GlobalSegMap

Type GlobalSegMap
integer :: comm
integer :: ngseg
integer :: gsize
integer :: lsize
integer, dimension(:) :: start
integer, dimension(:) :: length
integer, dimension(:) :: pe_loc

End Type GlobalSegMap

Suitable for describing a 2-D decomposition of a
grid

1-D Internal Data Representation—
the Attribute Vector AttrVect

Type AttrVect
type(List) :: iList
type(List) :: rList
integer, dimension(:,:), pointer ::
iAttr
real, dimension(:,:), pointer :: rAttr

End Type AttrVect

AttrVect Methods—
Create, Destroy
Count and Reference Attributes
Scatter, Gather, Broadcast
(implemented in a separate module)
Sort, Permute, SortPermute

AttrVect Example—store n values of
2m winds and temperature in
AttrVect named av_2m:

Tags—tag 2m zonal wind as u2m, 2m
meridional wind as v2m, and 2m
temperature as t2m.

Call AttrVect_init(av_2m,rList=‘u2m:v2m:t2m’,n)

Initialization:
Call AttrVect_init(av_2m,rList=‘u2m:v2m:t2m’,n)

Indexing/Access:
Index_t2m = AttrVect_indexRA(av_2m,‘t2m’)

2m temperature stored in
av_2m%rAttr(index_t2m,:)

Local Indexing—the Navigator
(built on top of the AttrVect
class)

Unstructured Multidimensional Grid
Representation—the GeneralGrid

Type GeneralGrid
type(List) :: coordinates

type(List) :: weights
type(List) :: ordering
type(AttrVect) :: points

End Type GeneralGrid

Methods—create, destroy, sort—all built upon
AttrVect methods

Time Sum/Average—the Accumulator
Type Accumulator

integer :: num_steps

integer :: steps_done

type(AttrVect) :: av

End Type Accumulator

Methods—create, destroy, sort…and of
course accumulation!

Linear Transformations—the SparseMatrix
Built on AttrVect class, with restricted
attributes. For SparseMatrix variable
S_mat
n Smat%iList = ‘row:column’

n Smat%rList = ‘weight’

Inherits all AttrVect methods

Proposed Parallel Transfer Alogrithm
Component1 Component2

MPH provides nprocs1 and nprocs2 for allocating memory
Describe decomposition with GlobalMap

Each Component is on the same grid.
Grid points are numbered

Each processor handles a range of points.
Exact range determined at runtie given nprocs1 and nprocs2

Gather local ranges to root
Send to Component1

Receive Component2 ranges on root
Broadcast to other Component1 processors

Use local range and Component2 local ranges
to determine which Component2 processors must

have data sent to them.
Store this information in SendMap

SendMap: for each processor on Component2,
provide list of points to send

Gather SendMaps to root and send Receive SendMaps
to Component2 on root and broadcast

Send data to Component2 Use SendMap to determine
which Component1

processors to receive from

Intermodel couplings—the Contract
Type Contract

logical :: new
type(String) :: partner
type(String) :: operation
integer :: frequency
type(GlobalSegMap) :: remote_map
type(GlobalSegMap) :: local_map
type(GeneralGrid) :: local_grid
type(GeneralGrid) :: remote_grid
..
type(AttrVect) :: data

End Type Contract

Goal—each component model is initialized with an array
of Contracts, which govern inter-component data
transfer and conversion

Status of the mct:
Numerous modules containing classes and
their methods have been implemented
Lower-level class/method APIs released
Coupler functionality class/method APIs under
construction
Initial (alpha) Toolkit release expected
February 2001

Potential Future Applications

Coupling of a 0-D box atmospheric
chemistry model to CCSM
Direct coupling of CCSM to MM5 to
provide better temporal resolution of
boundary conditions for MM5
Regional Coupled Modeling System
Starting point for portions of Earth
System Modeling Framework (ESMF)

