AUTOPACK User Manual *
Version 1.3

Raymond Loy
rloy@mcs.anl.gov
Math and Computer Science Division
Argonne National Laboratory

May 11, 2000

*This manuscript has been created by the University of Chicago as Operator of Argonne
National Laboratory (”Argonne”) under Contract No. W-31-109-ENG-38 with the U.S.
Department of Energy. The U.S. Government retains for itself, and others acting on its
behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce,
prepare derivative works, distribute copies to the public, and perform publicly and display
publicly, by or on behalf of the Government.

Contents

10

11

Introduction 1
Language Issues 2
2.1 CBindingIssues L 2
2.2 Fortran Binding Issues L. 2
Library Initialization and Settings 3
Sending and Receiving Messages 4
4.1 Message Buffer Memory Model 4
4.2 Sending 5
4.3 Send Semantics Lo 6
4.4 Recelving 7
Asynchronous Reductions 8
Deterministic Message Delivery 10
MPI Issues 10
Acknowledgments 11
Release Notes 12
9.1 Version 1.3. 12
Appendix A: Example Programs 13
Appendix B: Library Reference 14
AP_COPY_FREE 15
AP_RANK 16
AP_SIZE . . . 17
AP_alloc. o 18
AP_bsend 19
AP_check_sends 20
AP_check_sends_proc oL 22
AP_dsend_begin 24
AP _dsend_end 26
AP_finalizeo 27
AP _flush 28
AP _Tree 29
AP_init 30
AP_realloc 31

AP _recv . . . 32

AP_recv_count 35
AP_reduce_nsends 37
AP_send 38
AP_send_begin 39
AP_send_end 41
AP_setparam 43

1l

1 Introduction

AUTOPACK is a library that provides several useful features for programs
using the Message Passing Interface (MPI) [2]:

e An automatic message packing facility
e Management of send and receive requests
e Management of message buffer memory

e Determination of the number of anticipated messages from a set of
arbitrary sends

e Deterministic message delivery for testing purposes

Taking advantage of the message packing, a program may send large num-
bers of small messages without incurring large overhead. The small messages
are automatically assembled into larger packages. These packages are sent to
the destination where they are automatically burst and the individual mes-
sages delivered. This allows user code to be written in a natural style while
still achieving high efficiency. It avoids the need for the user to write code to
pack messages. Without modifying code, experimentation with package size
and other parameters is easily conducted to obtain optimal performance for
a given MPP architecture.

The library automatically manages message-passing send and receive
requests. In general, the user code need not be concerned with pending send
requests other than to query the library to determine if they have completed
or to determine the number pending. Internal space related to requests
is automatically released when requests have cleared. Receive requests are
managed without direct interaction from the user code.

This library incorporates a mechanism for dynamically allocating message
buffer memory for both outgoing and incoming messages. This design allows
for increased efficiency by avoiding memory-to-memory copy operations. In
particular it makes possible the construction of message packages without
copying.

Dynamic and irregular computation often results in an unpredictable
number of messages communicated among the processors. It is difficult to
determine how many of these messages have a given processor as their des-
tination without synchronized global communication. Yet this information
is essential since a processor must know how many messages to wait for be-
fore proceeding to the next step of an algorithm. AUTOPACK provides a
way to determine the number of incoming messages that does not require

barrier synchronization. This permits the code to obtain better performance
through asynchronous behaviour.

While developing parallel code, it is often desirable to have messages
delivered in a deterministic order. For example, this may aid in debugging
or benchmarking. However, MPI guarantees message ordering only on a
point-to-point basis. The AUTOPACK library provides a convenient way to
guarantee message ordering globally. For a given set of message sends among
the processors, a given destination processor will always receive the same
sequence of messages. This feature has attendant memory and performance
costs, but code that employs it can be easily switched to normal message
delivery (point-to-point ordering) when the global ordering is no longer
desired.

AUTOPACK is built on top of MPI and has similar syntax and semantics
for sending and receiving. The complete API consists of just 18 functions;
most applications will have need for less than half of these. It is easy to learn
how to use and adapting existing MPI code to use AUTOPACK is minimally
invasive.

Comments and suggestions are welcome.

2 Language Issues

2.1 C Binding Issues

All AUTOPACK names have the prefix “AP_". Programs must not declare
any symbols that begin with this prefix. Prototypes for all public functions,
and definitions of public constants, are provided in the file “autopack.h”.

2.2 Fortran Binding Issues

All AUTOPACK names have the prefix “AP_”, and all characters are cap-
itals. Programs must not declare any symbols that begin with this prefix.
Fortran PARAMETER definitions are provided in the file “autopack.th”.

The Fortran binding for a library function, if available, is documented
in the function’s description following the C synopsis. Functions that are
present only in the Fortran interface appear in the function index in all caps.

In general, the Fortran versions of routines have the same name as the C
routine, but with all letters capitalized. E.g. AP_INIT is the Fortran version
of AP_init (). A Fortran routine generally has the same arguments as its C
equivalent, but with value parameters being passed by reference as required
by Fortran. If the C routine has a return value, the Fortran version will have
an additional argument at the end of its parameter list, “return value”,
through which the return value is passed back.

Difficulties arise because Fortran does not have the ability to deal with
pointers. As a result, both sending and receiving introduce an additional
memory-to-memory copy. Details are discussed in Sections 4.2 and 4.4.

3 Library Initialization and Settings

Before use the library must be initialized. The initialization call must come
after the call to initialize MPI:

MPI_Init(&argc,&argv);
AP_init (&argc,&argv) ;
AP_setparam(size,packed,maxreq_proc,maxreq); /* optional */

The call to AP_setparam() is optional to specify settings that affect the
library’s behavior.

e size: Controls the library’s memory block allocation size which also
determines package size. This is only a default; if the user requests a
single message buffer larger than this, enough memory will be allocated
for a block that can hold the message.

e packed: If nonzero, enables message packing. Messages are automat-
ically grouped into packages and their actual send may be delayed. If
this argument is zero, message packing is disabled. Messages must still
be allocated through the library but they are sent individually. This
can be useful for making comparisons.

e maxreq_proc: This sets a per-destination limit on the number of MPI
send requests that will be posted at one time. This can help to prevent
overflowing the capacity of some MPI implementations.

e maxreq: This sets an overall limit on the number of MPI send requests
that will be posted at one time. It takes precedence over maxreq_proc.
If maxreq is negative, no global limit is set (it is effectively the number
of processors multiplied by maxreq_proc).

Different architectures and MPI implementations will achieve their best
performance with different settings.

4 Sending and Receiving Messages

4.1 Message Buffer Memory Model

AUTOPACK assumes the responsibility for memory allocation for all out-
going and incoming messages. This model of allocation allows the library
to do several things more efficiently. Although the user is unaware of it,
the library allocates messages going to the same destination contiguously
in memory. Thus, when the time comes to send a package, no memory-to-
memory copying is necessary; it simply sends a contiguous block of these
messages. On the receive side, a package is stored in memory and pointers to
the individual messages within are returned to the user rather than requiring
a copy operation to dispense each message. For both sending and receiving,
the underlying memory allocation is done in large blocks for efficiency.

Note: This model is best suited for dynamic situations where the message
must be constructed before it is sent. For example, the user might want to
allocate a struct, fill in its fields, send it, then delete it. It is not the most
appropriate for situations where the data to be sent already exists in memory.
For example, if the sender has a large array and wants to sent its contents
to an existing array on the destination. In that case, standard MPT calls are
the most efficient way to accomplish the communication. In the case where
the data already exists in memory, but is small, the user must evaluate the
tradeoff between the overhead of sending a small message versus the overhead
of copying the message from its current place in memory to a buffer allocated
by AUTOPACK . If there are many messages the latter is likely to be more
efficient.

4.2 Sending

In the spirit of malloc (), the user must call a function to allocate an outgoing
message. At the time of allocation, the user must declare not only the size
of the message but its destination and tag. The user may then store data in
this memory area, and notify the library when it is ready to be sent. After
sending the message, the user is not longer permitted to access the message

buffer (Figure 1).

int *message;

message= (int *)AP_alloc(destination,tag,2*sizeof (int));
message [0]=10;

message[1]=20;

AP_send(message);

Figure 1: Allocating and sending a message in C

In Fortran, there is no way to access a message buffer allocated by the
library, so it is not possible to have separate calls for message allocation and
sending. Fortran is provided with a single routine AP BSEND() to perform
the allocation, copy the data from a Fortran variable to the message buffer,
and send the message (Figure 2).

INTEGER*4 message(2)
message(0)=10

message(1)=20
CALL AP_BSEND(message,2+*4,destination,tag)

Figure 2: Sending a message in Fortran

4.3 Send Semantics

All message sends are non-blocking and return immediately. This corre-
sponds to MPT’s “immediate” send mode. Whether packing is enabled or
not, messages are non-overtaking as with MPI.

An AUTOPACK send operation is complete when the message has been
passed to MPI, and MPI is done using the message buffer. There are some
requirements for send completion:

o The library does not gquarantee any send to complete until after a
subsquent call is made to AP_flush().

Rationale: If the user has enabled message packing, packages are only
sent when full. User allocation of a message send buffer which is too
large to fit into the remaining space of a package causes the package
to be sent and a new one allocated. A call to AP_flush() forces the
library to send any partially full packages. It is good programming
practice to call AP_flush() even if packing is not enabled, so that in
the future packing may be enabled easily.

o The library does not guarantee any send to complete until after a call
to AP_check_sends () returns a value less than or equal to 0. The call
is not just informational; it is required to ensure progress.

Rationale: Parameters maxreq proc and maxreq (see AP_setparam())
govern the number of simultaneous MPI send requests the library will
make. Once either limit has been reached, the library will defer sending
any additional messages. The status of prior MPI send requests is
checked when the user calls AP_check_sends(). Whenever a send
request completes, the library will automatically post as many deferred
messages as possible. A negative return value indicates there are
no remaining deferred sends; a 0 return value indicates all sends are
complete and their buffer space has been freed.

As with MPI, completion of a send operation does not necessarily imply
that the destination has received the message.

For convenience, the library will also try to process deferred sends when-
ever AP recv() retrieves new messages from MPI. While progress will be
made sending deferred messages, the user will not be aware if any remain
and must eventually call AP_check_sends().

4.4 Receiving

On the receiving side, the user calls AP_recv () giving criteria for the message
it wishes to receive. Flags may be specified to select various options such
as blocking. Memory is automatically allocated to receive messages from
MPI. If a message is available that matches the user’s criteria, a pointer into
the library’s storage area is returned. When the user is done examining the
contents of the message, a call to the library notifies it that the space may
be reclaimed (Figure 3).

int *ret_msg;

if (AP_reCV(MPI_ANY_SOURCE,MPI_ANY_TAG,flags,
&ret_msg,&ret_size,&ret_sender,&ret_tag))

{
printf ("Received message %d %d\n",ret_msg[0],ret_msg[1]);
AP_free(ret_msg);

}

Figure 3: Receiving and freeing a message in C

In Fortran, the AP_RECV () routine is unable to pass back a pointer to the
received message. Instead, it returns an integer descriptor. Once the user
code has examined the tag and size, and decided which Fortran variable to
store the message in, this descriptor is given to AP_COPY _FREE() to copy the
message there and free the library’s buffer (Figure 4).

INTEGER m(2), ret_msg

call AP_RECV(MPI_ANY_SOURCE,MPI_ANY_TAG,flags,
1 ret_msg,ret_size,ret_sender,ret_tag,
return_value)

if (return_value.ne.0) then
call AP_COPY_FREE(m,ret_msg,ret_size)
write(6,*) ’Received message’,m(0),m(1)
endif

Figure 4: Receiving and freeing a message in Fortran

5 Asynchronous Reductions

AUTOPACK provides a way to determine the number of incoming mes-
sages that result from a group of sends (Figure 5). Each processor calls
AP_send begin() prior to sending its messages, and AP_send_end() after-
wards. During this interval, on each processor the library automatically
keeps track of how many messages are sent to each destination. A global
reduction of this data yields the total number of messages to be received on
each processor. The library can perform this reduction without global syn-
chronization. A call to AP_recv_count () queries the result of the reduction.
If the return value is zero, the reduction is not complete and the processor
should wait for additional messages. It is safe to block on incoming mes-
sages as long as the AP _DROPOUT flag is specified. This flag causes the call
to unblock if the result of the reduction arrives. When AP_recv_count () in-
dicates the reduction is complete, the argument will indicate the number of
messages that were sent to this processor. This number can be compared to
the number already received to see how many more are yet to arrive. After
receiving all its messages, a processor should call AP_check _sends() before
proceeding so as to ensure that any deferred messages are sent out.

The entire process may be repeated without performing any synchroniza-
tion. However, be careful that messages sent from processors that enter the
second stage early are not accidentally received by processors in the first
stage, which will cause confusion in the count. One way to avoid this prob-
lem is to use distinct tags for sending in each stage of the communication,
and do not use MPI_ANY _TAG when receiving.

tag=AP_send_begin();

for (...)

{
msg=AP_alloc(dest,tag,size);

AP_send(msg) ;
}

AP_send_end();
i=0;
while (!'(AP_recv_count(&count) || i<count)
if (AP_recv(MPI_ANY_SOURCE, tag, AP_BLOCKING | AP_DROPOUT,

(void #**)&msg, &size, &sender, &tag))
{

AP_free(msg) ;

AP_check_sends (AP_WAITDEFER) ;

Figure 5: Using asynchronous reduction to determine number of messages to
receive.

6 Deterministic Message Delivery

This feature allows the user to trade performance and memory in return for
deterministic delivery of messages. For a given set of message sends among
multiple processors, a given destination processor will always receive the
same sequence of messages. This is the case regardless of the receive criteria
(requested tag and source) as long as the same receive criteria are issued in
the same order each time.

In order to accomplish this, use the same library constructs as for an
Asynchronous Reduction (Section 5), with the exception that AP_dsend begin()
and AP_dsend_end () are called rather than AP_send_begin() and AP_send_end ()

There are several restrictions and caveats to deterministic message deliv-
ery:

e Upon entry to AP_dsend begin(), there must be no outstanding mes-
sages (i.e. messages that have been sent but not yet received). If any
are detected it is considered a fatal error as the library will not be able
to guarantee ordering.

e AP_dsend begin() and AP_dsend_end() will both perform barrier syn-
chronizations.

e AP dsend end() will not return until all messages from the block of
sends have been received into library memory. It is not possible to
start processing the incoming messages before all have arrived, and
memory requirements are therefore increased.

7 MPI Issues

AUTOPACK creates its own MPI communicator and will not interfere with
any normal MPI operations. The user may mix and match calls to either
library as appropriate.

At present, all messages are sent and received using type MPI_BYTE. No
data conversion is done between sender and receiver.

The library reserves use of several message tags at the top of the per-
missible range of tag numbers. The maximum MPI tag is set by the
AP_MAX_TAG (default 32767). The user code must use message tags that
are less than AP_LIB_TAG (default 32764). These constants are defined in
the source file “header.h”.

The library requires the message tag to be declared at the time of message
buffer allocation. The library does not actually need to know the tag until
the message is sent, but for simplicity the API asks for all the information
up front.

10

At present, all receives are performed via MPI_Probe()/MPI_Iprobe() and
MPI_Recv(). While this is a correct use of MPI, some MPI implementations
may not operate as efficiently as they could compared to using MPI_Irecv().
Implementing the library functionality using MPI_Irecv() is planned although
its use will impose some restrictions.

8 Acknowledgments

AUTOPACK is based on a prototype developed at Rensselaer Polytechnic
Institute and described in [1].

The author thanks James Teresco for his suggestions and help with
testing.

References

[1] J. E. Flaherty, R. M. Loy, P. C. Scully, M. S. Shephard, B. K. Szymanski,
J. D. Teresco, and L. H. Ziantz. Load balancing and communication
optimization for parallel adaptive finite element computation. In Proc.
XVII Int. Conf. Chilean Comp. Sci. Soc., pages 246-255, Los Alamitos,
CA, 1997. IEEE.

[2] Message Passing Interface (MPI) Forum. MPI documents.
http://www.mpi-forum.org/docs/docs.html.

11

9 Release Notes

9.1 Version 1.3

The arguments of AP_init () have been changed (AP_init (&argc,&argv)) to

be likeMPI_Init(). To update old code, change the call to AP_init()

to be a call to AP_setparam() with the same arguments, and immediately
prior to that statement insert a call to AP_init(&argc,&argv) (or
AP_init (NULL,NULL) if argc and argv are not available).

The global variables AP nprocs and AP mypid (as well as the Fortran
interface functions AP NPROCS and AP MYPID are still supported but
deprecated. New code should use AP rank/AP RANK and AP_size/AP SIZE.
The names were changed to more consistant with MPI.

12

10 Appendix A: Example Programs

This section under construction.
Some example programs and a Makefile may be found in the subdirectory
‘‘examples’’.

13

11 Appendix B: Library Reference

14

AP_COPY_FREE AP_COPY_FREE

AP_COPY_FREE --- Copy message to Fortran variable and
free buffer

Synopsis

SUBROUTINE AP_COPY_FREE(dest, src, count)
<anytype> dest
INTEGER src, count

Parameters

dest a Fortran variable where the user wants to copy the
message

src the descriptor passed back by AP_RECV()

count the size passed back by AP_RECV()

Description

After receiving a message using the Fortran binding of
AP_recv(), call this function to copy the message into Fortran
memory space. After copying, this function will free the
message descriptor so there is no need to call AP_free().

15

AP_RANK AP_RANK

AP_RANK --- get the rank of this processor

Synopsis

SUBROUTINE AP_RANK (rank)
INTEGER rank

Parameters

rank on return this will be set to the rank

Description

Duplicates MPI functionality; provided for convenience in the
Fortran interface.

Note - in C, the user should access the global variable AP_rank
to obtain the processor rank.

16

AP_SIZE AP_SIZE

AP_SIZE --- get the number of processors

Synopsis

SUBROUTINE AP_SIZE(size)
INTEGER size

Parameters

size on return this will be set to the number of processors

Description

Duplicates MPI functionality; provided for convenience in the
Fortran interface.

Note - in C, the user should access the global variable AP_size
to access the number of processors.

17

AP_alloc AP_alloc

AP _alloc --- Allocate an outgoing message buffer

Synopsis

#include "autopack.h"

void *AP_alloc(int destpid, int tag, int size)

Parameters

destpid the destination of the message
tag the message’s tag

size size of the message in bytes
Description

Allocates a buffer for an outgoing message with the given
destination, tag, and size. Returns a pointer to this buffer.
After the caller has stored data in the buffer, AP_send() is
used to send it.

Return Value

A pointer to the allocated buffer.

18

AP _bsend AP _bsend

AP _bsend --- buffered send

Synopsis

#include "autopack.h"
void AP_bsend(void *buf, int size, int dest, int tag)

SUBROUTINE AP_BSEND(buf, size, dest, tag)
<anytype> buf
INTEGER size, dest, tag

Parameters

buf the data to send

size size (in bytes) of data to send
dest destination rank

tag message tag

Description

Allocates a send buffer, copies the data to this buffer, and
sends it.

Try to avoid using this function because it introduces a
potentially unnecessary memory-memory copy.

This function provided mainly for backwards compatibility, and
for use within the Fortran interface.

19

AP _check_sends AP _check_sends

AP_check_sends --- check status of underlying MPI sends

Synopsis

#include "autopack.h"

int AP_check_sends(int flags)

SUBROUTINE AP_CHECK_SENDS(flags, return_value)
INTEGER flags, return_value
INCLUDE ’autopack.fh’

Parameters

flags specify options (see below)

Description

Check to see if MPI has finished sending any messages, and free
their buffer space if they are done. Also, if there are any
deferred messages, send as many as possible.

Flags may be a bitwise OR of the following (in Fortran use
addition):

AP_NOFLAGS

Do not block (default)
AP_BLOCKING

Block until at least one send completes
AP_WAITDEFER

Block until all deferred sends are posted to
MPI (always returns <=0)

AP_WATITALL

Block until MPI completes all sends (always
returns 0)

20

Caution must be used to avoid deadlock when using AP_BLOCKING.
For example, if two processors call this after sending each
other messages, neither send is guaranteed to complete before a
receive is performed.

Return value

0 if all sends have completed.

If there are deferred sends, returns how many.

If there are no deferred sends, returns -1 times the number of
incomplete MPI send requests.

(Note: packages are only counted as a single send.)

21

AP _check_sends_proc AP _check_sends_proc

AP _check_sends_proc --- check sends to a single destination

Synopsis

#include "autopack.h"
int AP_check_sends_proc(int pid, int flags)

SUBROUTINE AP_CHECK_SENDS_PROC(pid, flags, return_value)
INTEGER pid, flags, return_value
INCLUDE ’autopack.fh’

Parameters

pid destination rank to check
flags specifies options (see below)
Description

Like AP_check_sends(), but only check sends to the given
destination. If there are deferred messages to the
destination, send as many as possible.

Flags may be one of the following:

AP_NOFLAGS
Do not block (default)
AP_BLOCKING

Block until the first MPI send request for
the specified proc is complete, then check
remaining ones without blocking.

22

Return Value

Like AP_check_sends() but value only reflects sends
deferred/waiting for the specified processor.

I.e.

0 if all sends to the destination have completed.

If there are deferred sends to the destination, returns how
many.

If there are no deferred sends to the destination, returns -1
times the number of incomplete MPI send requests.

(Note: packages are only counted as a single send.)

23

AP_dsend_begin AP _dsend_begin

AP_dsend_begin --- denote the start of a batch of
deterministic sends

Synopsis

#include "autopack.h"

int AP_dsend_begin(void)

SUBROUTINE AP_DSEND_BEGIN(return_value)
INTEGER return_value

Parameters

None

Description

Like AP_send_begin(), but denote the start of a batch of sends
that are guaranteed to arrive in deterministic order. After
the sends, call AP_dsend_end().

Caveats

When this is called, there must be no outstanding messages
(i.e. sent but not received) in the system.

Messages sent within the bounds of
AP_dsend_begin()/AP_dsend_end() will arrive in a deterministic
order.

Unlike AP_send_begin(), this call will cause a global
synchronization.

Memory requirements will be substantially higher than for
AP_send_begin(), because no messages are passed on to the user
until all have arrived at this processor.

Return value

Same as for AP_send_begin().

24

Overview

The general organization of user code should be as follows.
Each processor calls AP_send_begin(), then does some sends,
then calls AP_send_end(). Then it loops calling AP_recv(),
blocking if desired (but using the AP_DROPOUT flag if
blocking). AP_recv_count() will indicate when the loop should
terminate. It is not necessary to synchronize the processors
at any point during this process.

25

AP _dsend_end AP _dsend_end

AP_dsend_end --- End a batch of deterministic sends, initiate
asynchronous reduction

Synopsis

#include "autopack.h"

void AP_dsend_end(void)

SUBROUTINE AP_DSEND_END(return_value)
INTEGER return_value

Parameters

None

Description

Like AP_send_end(), but end a batch of messages that are
guaranteed to arrive in deterministic order.

Unlike AP_send_end(), this call will cause a global
synchronization.

Return value

None

Overview

The general organization of user code should be as follows.
Each processor calls AP_send_begin(), then does some sends,
then calls AP_send_end(). Then it loops calling AP_recv(),
blocking if desired (but using the AP_DROPOUT flag if
blocking). AP_recv_count() will indicate when the loop should
terminate. It is not necessary to synchronize the processors
at any point during this process.

26

AP _finalize AP _finalize

AP _finalize --- terminate the AUTOPACK library

Synopsis

#include "autopack.h"
void AP_finalize(void)

SUBROUTINE AP_FINALIZE

Parameters

None

Description

This routine should be called when user is done using AUTOPACK.
Call before MPI_Finalize().

Return Value

None

27

AP _flush AP _flush

AP_flush --- flush all pending sends

Synopsis

#include "autopack.h"

void AP_flush(void)

SUBROUTINE AP_FLUSH

Parameters

None

Return Value

None

Description

Flush all sends. Any open packages are closed and sent.

AP_send() tells the library to send the message, but the

underlying MPI send is governed by the settings passed to
AP_init() or AP_setparam().

28

AP _free AP _free

AP _free --- free a message buffer

Synopsis

#include "autopack.h"
void AP_free(void *buf)

SUBROUTINE AP_FREE (buf)
INTEGER buf

Parameters

buf the buffer to free (in Fortran, the descriptor)

Return Value

None

Description

Call this function to free message buffer space allocated by
AP_recv().

Note that in the Fortran binding, it is not necessary to call
this after AP_COPY_FREE() since that function frees that buffer
before returning. However, this function may be of use in case
the user wants to free the message without actually accessing
it.

29

AP _init AP _init

AP_init --- initialize the AUTOPACK library
Synopsis
#include "autopack.h"

void AP_init(int *argc, char *x*argv)

SUBROUTINE AP_INIT

Parameters
argc pointer to number of command line arguments
argv pointer to array of command line arguments
Description

This routine must be called prior to any other AUTOPACK calls.
The version for C accepts the argc and argv that are provided
by the arguments to main(). They may be passed as NULL if no
values are available.

During initialization, certain library parameter values will be
set to default values. The user may wish to change them using
AP_setparam(). In future there will be provision to set the
defaults through the command line arguments.

Call this routine after MPI_Init().

Return Value

None

30

AP _realloc AP _realloc

AP _realloc --- Reallocate an outgoing message buffer

Synopsis

#include "autopack.h"

void *AP_realloc(void *buf, int newsize)

Parameters

buf an outgoing buffer previously allocated by AP_alloc()
newsize the new desired size of the buffer

Description

Still being tested.

Changes the size of the buffer pointed to by buf to newsize
bytes and returns a pointer to the (possibly moved) buffer.
The contents will be unchanged up to the lesser of the new and
old sizes.

The buffer must be the most recently allocated buffer for the
destination, otherwise it is an error. It is also erroneous to
specify a buffer which has previously passed to AP_send().
These errors may or may not be detected depending on whether
the library was compiled with NO_USER_CHECKS.

If the buffer is reduced in size, it is guaranteed not to be
moved. If the buffer is increased in size, it may or may not
move depending on available space in the current internal
memory block (package).

Return Value

A pointer to the reallocated buffer.

31

AP _recv AP _recv

AP _recv --- Receive a message

Synopsis

#include "autopack.h"

int AP_recv(int sender, int tag, int flags,
void **ret_msg, int *ret_size, int *ret_sender, int *ret_tag)

SUBROUTINE AP_RECV(sender, tag, flags, ret_msg, ret_size,
ret_sender, ret_tag, return_value)

INTEGER sender, tag, flags, ret_msg, ret_size, ret_sender,
ret_tag, return_value

INCLUDE ’autopack.fh’

Parameters

sender specifies rank of the message source (may be
MPI_ANY_SOURCE)

tag specifies tag of the message (may be MPI_ANY_TAG)

flags flags to specify options (see below)

ret_msg the received message (or in Fortran, a descriptor)

ret_size size of the received message

ret_sender sender of the received message

ret_tag tag of the received message

Return Value

Returns nonzero if a message has been successfully received,
otherwise returns 0. If a message has been received, the
arguments ret_msg, ret_size, ret_sender, and ret_tag pass back
information about the message.

In the Fortran binding, it is not possible to return a pointer
to the message in ret_msg. Instead, a descriptor is returned
that may be passed to AP_COPY_FREE() to retrieve the message.

32

Description

Receive a message with given sender and tag (MPI_ANY_SQOURCE and
MPI_ANY_TAG may be used). If such a message 1is available,
returns nonzero and sets *ret_msg, *ret_size, *ret_sender, and
*ret_tag. If no message matching the criteria is found,
returns zero.

Any of ret_size, ret_sender, and ret_tag may be passed NULL if
the caller is not interested in the return information.

After the caller has processed the information in ret_msg, the
function AP_free() must be called to free the buffer space.
Failure to do this will result in a memory leak.

Flags may be a bitwise OR of the following (in Fortran, use
addition):

AP_NOFLAGS
Default
AP_BLOCKING

Block until a matching message is received
(by default, do not block). Will always
return 1 unless AP_DROPOUT is specified.

AP_DROPOUT

Used in conjunction with AP_BLOCKING. If some
change in status occurs (e.g. an
asynchronous reduction message is received)
before a message is available, then unblock
and return O.

AP_FIFO

When searching for messages, only look at
first incoming message from each source.
Default action is to search all incoming
messages from a source (then continuing to
the next source if MPI_ANY_SOURCE was
specified).

If there are deferred sends, the library will try to process
them before each attempt to receive a new message from MPI.
This is the case whether the call to AP_recv() is blocking or
non-blocking,

33

Efficiency notes

The library will be most efficient when messages are received
in the same order they arrive. If all the messages have the
same tag, this is not a concern. However, if the incoming
messages have a variety of tags, MPI_ANY_TAG will always match
the first one and is the most efficient. If a particular tag
is specified, use AP_FIFO if the circumstances permit.

The library will be more efficient when a particular source is
specified rather than MPI_ANY_SOURCE. If MPI_ANY_SOURCE is
specified, sources will be checked in round-robin fashion
starting with the rank from which the last message was
received. The search is depth-first (although AP_FIFO may
truncate the search).

34

AP _recv_count AP_recv_count

AP _recv_count --- query the result of an asynchronous
reduction

Synopsis

int AP_recv_count(int *count)

SUBROUTINE AP_RECV_COUNT(count, return_value)
INTEGER count, return_value

Parameters

count result of the reduction

Description

Queries the result of the pending asynchronous reduction to
determine how many messages from the prior batch of sends were
sent to this processor.

Return value

If it returns zero, the asynchronous reduction is not yet
complete. The user code must call AP_recv() with the
expectation of receiving more messages. If desired, it is safe
to block as long as the AP_DROPOUT flag is specified (this flag
makes AP_recv() unblock and return 0 if any reduction-related
messages are seen). AP_recv_count() can then be queried again.
If it returns nonzero, the asynchronous reduction is complete
(at least as far as this processor 1is concerned) and *count is
set to the number of messages whose destination is this
processor. It ©s up to the caller to compare this with the
number received so far to determine whether more messages are
yet to arrive. After AP_recv_count() returns nonzero, it is
not necessary for this processor to call AP_recv() any longer.

35

Overview

The general organization of user code should be as follows.
Each processor calls AP_send_begin(), then does some sends,
then calls AP_send_end(). Then it loops calling AP_recv(),
blocking if desired (but using the AP_DROPOUT flag if
blocking). AP_recv_count() will indicate when the loop should
terminate. It is not necessary to synchronize the processors
at any point during this process.

36

AP _reduce_nsends AP _reduce_nsends

AP _reduce_nsends --- start reduction with explicit send count

Synopsis

#include "autopack.h"

void AP_reduce_nsends(int *nsends)

Parameters

int *nsends - array with count of sends to each destination

Description

Still in testing.
Alternate interface to the asynchronous reduction.

Return Value

None

Overview

The general organization of user code should be as follows.
Each processor calls AP_send_begin(), then does some sends,
then calls AP_send_end(). Then it loops calling AP_recv(),
blocking if desired (but using the AP_DROPOUT flag if
blocking). AP_recv_count() will indicate when the loop should
terminate. It is not necessary to synchronize the processors
at any point during this process.

37

AP _send AP _send

AP_send --- send a message

Synopsis

#include "autopack.h"

void AP_send(void *buf)

Parameters

buf a message buffer previously allocated via AP_alloc()

Return Value

None

Description

Send a message previously allocated with AP_alloc(). After
sending the message, the user may no longer access buf.
Parameter values packed, nwait, and nwait_proc (see
AP_setparam()) will affect when the send actually takes place.
If packing is enabled, the message will not be sent until a
full package has been accumulated or the user calls AP_flush().
The send may be also be deferred depending on the current
number of sends posted to MPI, and the value of nwait_proc and
nwait (see AP_setparam()).

In order for the library to free memory associated with the
sends, and to process deferred messages, the user should call
AP_check_sends() periodically until the return value indicates
no messages are deferred. Calls to AP_recv() will also
expedite deferred messages.

Caveats

At present, all messages are sent using type MPI_BYTE.

38

AP_send_begin AP_send_begin

AP_send_begin --- Initiate a batch of sends

Synopsis

#include "autopack.h"
int AP_send_begin(void)

SUBROUTINE AP_SEND_BEGIN(return_value)
INTEGER return_value

Parameters

None

Description

Tells the library that the user code is about to begin a batch
of sends. The library will then internally keep track of how
many sends go to each destination. After doing the sends, call
AP_recv_count() to initiate an asynchronous global reduction to
determine how many incoming message to expect.

It is an error to call AP_send_begin() again before
AP_recv_count() indicates the reduction is complete.

This routine will free space (via AP_check_sends()) from any
previous sends that are complete.

Return Value

Returns the number of reductions since the library was
initialized. It can be used as a tag for the subsequent sends.
When the maximum tag number has been reached, the count will
wrap around to O.

Overview

The general organization of user code should be as follows.
Each processor calls AP_send_begin(), then does some sends,

39

then calls AP_send_end(). Then it loops calling AP_recv(),
blocking if desired (but using the AP_DROPOUT flag if
blocking). AP_recv_count() will indicate when the loop should
terminate. It is not necessary to synchronize the processors
at any point during this process.

40

AP _send_end AP _send_end

AP _send_end --- End a batch of sends, initiate asynchronous
reduction

Synopsis

#include "autopack.h"
void AP_send_end(void)

SUBROUTINE AP_SEND_END

Parameters

None

Description

This function denotes the end of a batch of sends. (To start
of a batch of sends, see AP_send_begin().)

After flushing the send buffers (see AP_flush()), this function
initiates an asynchronous reduction to compute how many
messages this processor will receive from the batch of sends.
The result of this reduction may be queried through
AP_recv_count ().

Caveats

Messages to implement the asynchronous reduction are handled
transparently. However, each processor is obligated to call
AP_recv() repeatedly until AP_recv_count() has indicated the
reduction is complete. Otherwise, the reduction will not
complete on this processor (and possibly others).

Messages that implement the asynchronous reduction are always
sent immediately and are never deferred. This may use up to 2
MPI send requests per processor which are not counted in the
nwait or nwait_proc setting (see AP_setparam()).

41

Return Value

None

Overview

The general organization of user code should be as follows.
Each processor calls AP_send_begin(), then does some sends,
then calls AP_send_end(). Then it loops calling AP_recv(),
blocking if desired (but using the AP_DROPOUT flag if
blocking). AP_recv_count() will indicate when the loop should
terminate. It is not necessary to synchronize the processors
at any point during this process.

42

AP_setparam AP_setparam

AJ?_setparann --- Reset the parameters that govern behavior of
AUTOPACK

Synopsis
#include "autopack.h"
void AP_setparam(int size, int packed, int nwait_proc, int nwait)

SUBROUTINE AP_SETPARAM(size, packed, nwait_proc, nwait)
INTEGER size, packed, nwait_proc, nwait

Parameters

size preferred size in bytes for memory blocks (packages)
packed if nonzero, enable automatic packing

nwait_proc max number of MPI sends per destination proc

nwalit max number of MPI sends for all destinations. If nwait<O,

use only per-destination limit.

Return Value

None

Description

AUTOPACK parameters may be changed at any time. Changes to
size or packed will affect subsequent messages but will not
affect any message already allocated. Changes to nwait_proc or
nwait will govern subsequent MPI sends. If the limit is
reduced, no pending sends are cancelled; the limit may not be
attained until some sends complete.

User advice

Size is a guideline; allocation will be made larger if
necessary. If it is too small, you will end up with one
message per package/memory block. Setting it too large will

43

waste memory and reduce potential overlap of
computation/communication.

44

