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Motivation

Research into I/O infrastructure for petascale architectures:

 Today: 100K nodes (LLNL BG/L), 300K cores (Juelich BG/P)
– will filesystems be able to handle an order of magnitude more?

 Argonne's 557 TF Blue Gene/P (Intrepid):
– 20% of the money spent on I/O
– full memory dump takes over 30 minutes

 I/O quickly becoming the bottleneck
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Hardware Overview
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Software Overview

 We need to make I/O software as efficient as possible
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Mission

Design, build, and distribute a scalable, unified high-end computing    
I/O forwarding software layer that would be adopted and supported by 
DOE Office of Science and NNSA.

 Reduce the number of file system operations/clients that the parallel 
file system sees

 Provide function shipping at the file system interface level
 Offload file system functions from simple or full OS client processes 

to a variety of targets
 Support multiple parallel file system solutions and networks
 Integrate with MPI-IO and any hardware features designed to 

support efficient parallel I/O
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I/O Forwarding Framework
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ZOIDFS Protocol

 Stateless
 NFSv3-like protocol
 opaque, 32-byte zoidfs_handle_t (no file descriptors)

 zoidfs_lookup, zoidfs_create (no open, close)

 zoidfs_getattr retrieves only the requested attributes

 zoidfs_readdir can do getattr if requested

 Maximally flexible zoidfs_read, zoidfs_write:
  int zoidfs_read(const zoidfs_handle_t *handle,
                  size_t mem_count,
                  void *mem_starts[],
                  const size_t mem_sizes[],
                  size_t file_count,
                  const uint64_t file_starts[],
                  uint64_t file_sizes[]);
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BMI

 Buffered Message Interface
 Designed for PVFS2
 Asynchronous
 Thread-safe
 Support for multiple networks:

– TCP
– IB
– GM, MX
– Portals
– (need to write one for Blue Gene)

 XDR-encoded metadata between clients and servers
– data payload sent using expected messages
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ZOIDFS Server

 Two server designs (basic and advanced)
 Multi-threaded or state machine
 “native” PVFS and POSIX drivers
 Will also use libsysio as file system abstraction layer
 Planning to leverage a cooperative caching layer from a related 

NSF project
 Planning to use pipelining for large requests

– instead of fragmenting of requests on the client side
– requires careful buffer management
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POSIX Support

 Client-side:
– FUSE (works, but performance not explored)
– SYSIO (still to be implemented)

 Server-side:
– SYSIO (still to be integrated) has a “native” POSIX driver
– Custom ZOIDFS POSIX driver
– How to translate between file handles and file descriptors?

• File handles are stateless, persistent, and global
• Globally accessible database?
• ESTALE for unknown handles forces a re-lookup
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Security

 NNSA labs care...
 Concerns:

– authentication
– authorization

 I/O forwarding servers might need to forward data of multiple users
 Add credentials to requests
 We will use POSIX test suite from The Open Group, which includes 

a security module
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Early Measurements

Direct PVFSIOFSL/PVFS

 On this platform, IOFSL just introduces overhead



14

Current Status

 Client:
– FUSE client implemented
– Basic ROMIO driver implemented

 Networking:
– BMI extracted from PVFS
– ZOIDFS over BMI implemented

 Server:
– Several server designs explored
– libsysio file handle and credentials interfaces implemented
– ZOIDFS to PVFS and POSIX drivers implemented
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Future

 Integrate libsysio on both client and server
 Pipelining
 Test on Cray XT
 Support for Blue Gene
 Cooperative caching between servers
 Security

 http://www.iofsl.org/ (mostly a placeholder for now)

http://www.iofsl.org/
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(if you see this slide, then I must have pressed End instead of PgDn)
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