
Scalable HEC
I/O Forwarding Layer

Rob Ross, Pete Beckman, Dries Kimpe, Kamil Iskra (Argonne)

James Nunez, John Bent, Gary Grider, Sean Blanchard,
Latchesar Ionkov, Hugh Greenberg (Los Alamos)

Steve Poole, Terry Jones (Oak Ridge)

Lee Ward (Sandia)

iskra@mcs.anl.gov

IOFSL

2

Contents

 Motivation
 Mission
 I/O Forwarding Framework
 ZOIDFS Protocol
 BMI
 ZOIDFS Server
 POSIX Support
 Current Status

3

Motivation

Research into I/O infrastructure for petascale architectures:

 Today: 100K nodes (LLNL BG/L), 300K cores (Juelich BG/P)
– will filesystems be able to handle an order of magnitude more?

 Argonne's 557 TF Blue Gene/P (Intrepid):
– 20% of the money spent on I/O
– full memory dump takes over 30 minutes

 I/O quickly becoming the bottleneck

4

Hardware Overview

5

Software Overview

 We need to make I/O software as efficient as possible

6

Mission

Design, build, and distribute a scalable, unified high-end computing
I/O forwarding software layer that would be adopted and supported by
DOE Office of Science and NNSA.

 Reduce the number of file system operations/clients that the parallel
file system sees

 Provide function shipping at the file system interface level
 Offload file system functions from simple or full OS client processes

to a variety of targets
 Support multiple parallel file system solutions and networks
 Integrate with MPI-IO and any hardware features designed to

support efficient parallel I/O

7

I/O Forwarding Framework

Client Processing Node

Network API

ZOIDFS Client

ROMIO libsysio FUSE

System Network

I/O Forwarding Server
Network API

ZOIDFS Server

PVFS POSIX Lustre PanFS

8

ZOIDFS Protocol

 Stateless
 NFSv3-like protocol
 opaque, 32-byte zoidfs_handle_t (no file descriptors)

 zoidfs_lookup, zoidfs_create (no open, close)

 zoidfs_getattr retrieves only the requested attributes

 zoidfs_readdir can do getattr if requested

 Maximally flexible zoidfs_read, zoidfs_write:
 int zoidfs_read(const zoidfs_handle_t *handle,
 size_t mem_count,
 void *mem_starts[],
 const size_t mem_sizes[],
 size_t file_count,
 const uint64_t file_starts[],
 uint64_t file_sizes[]);

9

BMI

 Buffered Message Interface
 Designed for PVFS2
 Asynchronous
 Thread-safe
 Support for multiple networks:

– TCP
– IB
– GM, MX
– Portals
– (need to write one for Blue Gene)

 XDR-encoded metadata between clients and servers
– data payload sent using expected messages

10

ZOIDFS Server

 Two server designs (basic and advanced)
 Multi-threaded or state machine
 “native” PVFS and POSIX drivers
 Will also use libsysio as file system abstraction layer
 Planning to leverage a cooperative caching layer from a related

NSF project
 Planning to use pipelining for large requests

– instead of fragmenting of requests on the client side
– requires careful buffer management

11

POSIX Support

 Client-side:
– FUSE (works, but performance not explored)
– SYSIO (still to be implemented)

 Server-side:
– SYSIO (still to be integrated) has a “native” POSIX driver
– Custom ZOIDFS POSIX driver
– How to translate between file handles and file descriptors?

• File handles are stateless, persistent, and global
• Globally accessible database?
• ESTALE for unknown handles forces a re-lookup

12

Security

 NNSA labs care...
 Concerns:

– authentication
– authorization

 I/O forwarding servers might need to forward data of multiple users
 Add credentials to requests
 We will use POSIX test suite from The Open Group, which includes

a security module

13

Early Measurements

Direct PVFSIOFSL/PVFS

 On this platform, IOFSL just introduces overhead

14

Current Status

 Client:
– FUSE client implemented
– Basic ROMIO driver implemented

 Networking:
– BMI extracted from PVFS
– ZOIDFS over BMI implemented

 Server:
– Several server designs explored
– libsysio file handle and credentials interfaces implemented
– ZOIDFS to PVFS and POSIX drivers implemented

15

Future

 Integrate libsysio on both client and server
 Pipelining
 Test on Cray XT
 Support for Blue Gene
 Cooperative caching between servers
 Security

 http://www.iofsl.org/ (mostly a placeholder for now)

http://www.iofsl.org/

16

(if you see this slide, then I must have pressed End instead of PgDn)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

