Para 2010 — State of the Art in Scientific and Parallel Computing — extended abstract no. 133

University of Iceland, Reykjavik, June 6—9 2010
http://vefir.hi.is/paralO/extab/paralO-paper-133.pdf

Grids and HPC: not as different as you might think?
I/O Forwarding in Grids

Jason Cope* I Kamil Iskra™, Dries Kimpei]’z, and Robert Ross?!

' Mathematics and Computer Science Division, Argonne National Laboratory
2Computation Institute, University of Chicago

Abstract Traditionally there has been little interaction between
the Grid and High-Performance Computing (HPC) storage re-
search communities. Grid research often focused on optimizing
data accesses for high-latency, wide-area networks while HPC
research focused on optimizing data accesses for local, high-
performance storage systems. Recent software and hardware
trends are blurring the distinction between Grids and HPC. In
this paper, we investigate the use of I/O forwarding — a well
established technique in leadership-class HPC machines — in a
Grid context. We show that the problems that triggered the
introduction of I/O forwarding for HPC systems also apply
to contemporary Grid computing environments. We present
the design of our I/O forwarding infrastructure for Grid com-
puting environments. Finally, we discuss the advantages our
infrastructure provides for Grids, such as simplified application
data management in heterogeneous computing environments and
support for multiple application I/O interfaces.

Keywords ioforwarding, hpc, grid, io

1 Introduction

Grid computing environments, such as the National Sci-
ence Foundation (NSF) funded TeraGrid project, have
recently begun deploying massively-parallel computing
platforms similar to those in traditional HPC centers.
While these systems do not support distributed or multi-
resource MPI applications[8, 3], they do support a vari-
ety of HPC applications well suited for tightly-coupled
resources, including high-throughput workloads [19]] and
massively-parallel workloads [6]. To efficiently connect
these resources, TeraGrid has has focused on enhancing
Grid data services. This trend is evident in the goals for
the emerging third phase of TeraGrid operations, known
as TeraGrid “eXtreme Digital” (XD).

This shift in resource usage and deployments aligns
Grids more closely with traditional HPC data-centers, such
as the DOE leadership computing facilitates at Argonne
National Laboratory and Oak Ridge National Laboratory.
This realignment poses several data access challenges.
One such challenge is enabling efficient, remote data

*Email: copej@mcs.anl.gov
TEmail: iskra@mcs.anl.gov
YEmail: dries@uchicago.edu
$Email: [rross@mcs.anl.gov.

access by Grid applications using large numbers of pro-
cessing elements. Massively-parallel applications can
overwhelm file systems with large numbers of concurrent
I/O requests. Leadership-class computing platforms face a
similar data access problem for local data access to high-
performance storage systems. Grid computing platforms
experience similar problems for both local and remote
data accesses. Existing Grid data management tools
do not address the impact of increased concurrency on
remote data access performance or account for the limited
capacity of network and storage resources as application
data continues to increase.

In this paper, we describe how I/O forwarding can
improve the performance of Grid application data accesses
to both local and remote storage systems. In the following
sections, we present our I/O forwarding infrastructure for
Grid computing environments and how this infrastruc-
ture optimizes application remote data accesses in Grids.
Section [2| presents I/O forwarding and its use in HPC.
Section |3| describes typical I/O mechanisms used by Grid
applications and how I/O forwarding integrates into Grids.
In Section] we describe related work and conclude this

paper.
2 HPC /O

In this section, we introduce the concept of I/O forwarding,
followed by a description of our portable, open source
implementation.

2.1 A Revised I/O Software Stack

The current generation of leadership-class HPC machines
such as the IBM Blue Gene/P supercomputer at Argonne
National Laboratory or the Roadrunner machine at the
Los Alamos National Laboratory consist of a few hundred
thousand processing elements. Future generations of
supercomputers will incorporate millions of processing
elements. This significant increase in scale is brought
about by an addition in the number of nodes along with
new multi-core architectures that can accommodate an
increasing number of processing cores on a single chip.
While the computation power of supercomputers keeps
increasing with every generation, the same is not true for

copej@mcs.anl.gov
iskra@mcs.anl.gov
dries@uchicago.edu
rross@mcs.anl.gov

High-Level 1/0
Library

maps application 1/0 M!ddleware
abstractions onto High-Level I/O Library ?rgamzes accesses
storage abstractions rom many processes,

and provides ’»especially those using

Application

data portability. 1/0 Middleware collective 1/0.

1/0 Forwarding —
bridges between
app. tasks and
storage system

and provides
aggregation for
uncoordinated 1/0.

1/0 Forwarding

Parallel File
System

maintains logical
space and provides
efficient access to
data.

Parallel File System

1/0 Hardware

Figure 1: I/0 Forwarding in HPC systems

their I/O subsystems. The data access rates of storage
devices has not kept pace with the exponential growth
in processing performance. In addition to the growing
bandwidth gap, the increase in compute node concurrency
has revealed another problem: the parallel file systems
available on current leadership-class machines, such as
PVFS2 5], GPFES [14]], Lustre [1]] and PanFS [12]] were de-
signed for smaller systems with fewer file system clients.
While some of these file systems incorporate features for
enhanced scalability, they are often not prepared to deal
with the enormous increase in clients brought on by the
increasing trend towards more concurrency.

MPI-IO, distributed as part of the MPI library, is the
standard parallel I/O API for HPC systems. In certain
cases, by using collective I/0, the MPI-10 implementation
is able to reduce the number of requests made to the
filesystem. However, not all applications use the MPI-IO
interface or are able to use collective I/O, so improvements
made at the MPI-IO layer may not be available to the entire
spectrum of scientific applications. Parallel high-level
libraries such as Parallel-NetCDF [11]] use MPI-IO and
as such face many of the same limitations outlined above.
POSIX implementations and serial high-level libraries are
an artifact from an earlier generation and are only available
on current HPC systems to support legacy applications.

To address this I/O bottleneck, another layer needed to
be introduced into the I/O software stack. Clients, instead
of directly making requests to the parallel filesystem,
forward their I/O operations to an I/O forwarder node,
which performs the I/O operation on their behalf. One I/O
node is typically responsible for 32 to 128 compute clients.
Due to its position in the I/O path, the I/O forwarder is
able to perform a wide range of optimizations that were not
previously possible. For example, it can aggregate requests
of unrelated software running on multiple compute nodes.
As such, it reduces both the number of requests and the
number of clients visible to the parallel filesystem. Since
the I/O forwarding software — running on the I/O node
— does not share any resources (CPU or memory) with
the compute clients, it is free to dedicate memory and
compute power to optimizing I/O traffic without slowing
down computation.

Another benefit of moving the actual I/O calls to the
forwarder is that the compute client can be simplified.
Instead of requiring a full I/O stack, it only needs to be
able to send and receive requests to the I/O forwarder. The
I/O forwarder then takes care of using the correct protocol
to access the remote filesystem. Likewise, authentication
(to the remote filesystem) can be handled by the I/O
forwarder. This enables compute clients to use a simpler,
local authentication scheme to authenticate to the I/O
forwarder. Figure|[I]shows the resulting I/O software stack.

2.2 /O Forwarding Scalability Layer (IOFSL)

In view of the importance of I/O forwarding in HPC sys-
tems, it is desirable to have a high quality implementation
capable of supporting multiple architectures, file systems
and high-speed interconnects. While a few I/O forwarding
solutions are available for the IBM Blue Gene and other
leadership class platforms, such as the Cray XT, they are
each tightly coupled to one architecture [20, [7]. The lack
of an open-source, high-quality implementation capable of
supporting multiple architectures, file systems and high-
speed interconnects has hampered research and makes the
deployment of novel I/O optimizations difficult.

To address this issue, we created a scalable, unified
I/0 forwarding framework for high-performance comput-
ing systems called the I/O Forwarding Scalability Layer
(IOFSL) [2]. IOFSL includes features such as the coalesc-
ing of I/O calls on the I/O node, reducing the number of
requests to the file system, and full MPI-1O integration,
which translates into improved performance for MPI ap-
plications. Ongoing work includes the integration of some
other techniques for improving HPC I/O performance,
such as [21]] and [[13].

3 Grid Data Access

Two approaches to application data accesses in Grids have
emerged. They are described in section Section
describes how IOFSL can be used to improve the perfor-
mance and enhance the useability of these approaches.

3.1 Traditional Grid I/O

The first approach stages data at the resource where the
application executes or offloads data locally generated by
an application to a remote storage system. This approach
often uses GridFTP to perform bulk data transfers between
the high-performance storage systems attached to Grid
resources. While this approach offers good performance,
as remote I/O is only used for staging files in and out the
local storage, it has a number of drawbacks. For one, it is
hard to maintain consistency between the local and remote
copy. The second issue is related to the access granularity.
Typically, the whole file needs to be transferred, reducing
efficiency if the application only requires a subset of the
file data.

The second approach is to host data on wide-area
file systems. These file-systems construct a distributed,

shared storage space, which is mounted locally on each
Grid resource to provide local application access. Exam-
ples of Grid specific filesystems include Gfarm [16] and
Chirp [17]. These filesystems typically do not provide tra-
ditional I/O semantics and are currently not well supported
by parallel applications. For example, in Gfarm, files are
basically write-once and parallel read-write I/O has to be
emulated through versioning and creating new files[/15].

In addition to these Grid specific filesystems, traditional
HPC filesystems such as Lustre and GPFS have been
adapted for Grid environments. While these do offer
familiar parallel I/O facilities, the high latencies and large
number of filesystem clients severely limits their perfor-
mance and stability.

3.2 1/O Forwarding in a Grid environment

When designing IOFSL, portability and modularity was an
important goal. IOFSL does not make any assumptions
about operating system kernels, interconnects, filesystems
or machine architectures. A such, it can be easily retar-
geted to other environments, such as computational Grids.

In large HPC systems, I/O forwarding isolates local
compute clients, connected by a high bandwidth, low
latency interconnect from the more distant, higher latency
parallel filesystem. At the same time, it protects the
filesystem from being crippled by a storm of requests,
by aggregating and merging requests before sending them
to the filesystem. From the viewpoint of the remote
filesystem, this reduces the number of visible clients and
requests, hence increasing performance.

In a Grid environment, these optimizations are also
applicable, albeit on a different scale. While latencies
might be much higher, the same discontinuity exists when
an application, running on a local Grid resource needs to
fetch data from a remote data store. As is the case in large
HPC systems, a large number of simultaneous requests
to a remote site might adversely affect the stability and
throughput of the remote file server. This observation is
valid both for data staging and wide area Grid filesystems.

Figure 2] shows the location of I/O forwarding in a Grid
environment. Being located at the gateway between the
local compute resources and the remote data, IOFSL acts
as both a connection and request aggregator: local appli-
cations can share the same set of outgoing connections,
increasing efficiency and reducing the load on the remote
filesystem. For example, if GridFTP is used as a data
transport between the site where data is stored and the
site where data is consumed or generated, when using
IOFSL, the number GridFTP connections will not depend
on the number of clients. Instead, each I/O forwarder
can be configured to use an optimal number of GridFTP
connections to obtain the data. Clients interacting with the
I/0 forwarder will transparently share existing connections
when possible.

Another important advantage of deploying I/O forward-
ing in a Grid environment is that, to the client software,

{ MPI Application Application

] |]
] [FUSE]

[MPI-IO

GridFTP Server
[GridFTP Server] [GridFTP Server]

' '

High-Performance Archival Storage
Storage System System

Figure 2: I/0 Forwarding in a Grid environment

IOFSL can offer a more familiar access API. Currently,
IOFSL implements 2 client side APIs: POSIX and MPI-
I0. For POSIX, there is a FUSE and SYSIO implemen-
tation. The former enables redirecting I/O accesses of
unmodified binary applications. While the latter requires
relinking applications with the SYSIO library, it provides
support on platforms that do not support FUSE (for ex-
ample, minimal OS kernels such as Cray’s Catamount
kernel[9]] or IBM BG/P’s compute node kernel).

By directly supporting MPI-IO, the defacto I/O API
for parallel MPI programs, IOFSL enables unmodified
MPI applications (such as parallel analysis or visualiza-
tion software) to transparently access remote data using
GridFTP or other protocols not normally supported by
HPC software. In this case, IOFSL effectively acts as a
bridge between a local HPC programs and remote Grid-
style storage.

Dedicating some nodes as I/O forwarders also helps
with high latency network links, a typical problem when
spanning multiple remote sites using a POSIX-like filesys-
tem such as Lustre or GPFS. By using local system
memory of the I/O forwarders for buffering read and
write data, IOFSL is able to transform synchronous client
accesses into asynchronous remote accesses, reducing the
detrimental effects high latency links. Often requested data
can be buffered locally, where it can be accessed over a
low-latency high bandwidth network.

As IOFSL transparently captures all accesses, all the op-
timizations discussed above apply to unrelated programs;
i.e. if two or more independent applications request the
same data only one request needs to be made to the remote
site.

4 Related Work and Conclusions

4.1 Related Work

In [4], a method is described to allow MPI-IO access
to GridFTP stores. It differs from our work in that the
MPI application itself makes the GridFTP connection, as
opposed to the I/O forwarder node when IOFSL is used.
This precludes optimizations such as request merging or
link aggregation.

Stork [10]] tries to improve I/O access time by explicitly
scheduling data staging. While IOFSL will also buffer data
using local temporary storage, it does this transparently —
without explicit data staging — and on a sub-file granularity.

Condor [18] enables remote I/O by shipping I/O oper-
ations back to the submission site. It requires application
to relink with the condor library.While our approach also
uses function call forwarding, the calls are not shipped to
the remote site but to local aggregators.

4.2 Conclusions

An overview was given of [OFSL, the I/O forwarding Scal-
ability Layer. We describe the concept of I/O forwarding
in HPC systems and show how the same technique can be
applied in a Grid environment. We discuss its advantages
and disadvantages, and show how it enables connecting
existing HPC and posix applications with Grid data stores.

References

[1] Lustre: A scalable, high-performance file system. Cluster
File Systems Inc. white paper, Nov. 2002.

[2] N. Ali, P. Carns, K. Iskra, D. Kimpe, S. Lang, R. Latham,
R. Ross, L. Ward, and P. Sadayappan. Scalable I/O
Forwarding Framework for High-Performance Computing
Systems. In IEEE Int’l Conference on Cluster Computing
(Cluster 2009), September 2009.

[3] G. Allen, T. Dramlitsch, I. Foster, N. Karonis, M. Ripeanu,
E. Seidel, and B. Toonen. Supporting efficient execution
in heterogeneous distributed computing environments with
cactus and globus. In Proceedings of SC 2001, November
10-16 2001.

[4] T. Baer and P. Wyckoff. A parallel I/O mechanism for
distributed systems. In cluster, pages 63—69. IEEE, 2004.

[5] P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur.
PVFS: A parallel file system for Linux clusters. In
Proceedings of the 4th Annual Linux Showcase and
Conference, pages 317-327, 2000.

[6] L. Grinberg and G. Karniadakis. A scalable domain
decomposition method for ultra-parallel arterial flow
simulations. Communications in Computational Physics,
4(5):1151-1169, 2008.

[7] K. Iskra, J. W. Romein, K. Yoshii, and P. Beckman. ZOID:
I/O-forwarding infrastructure for petascale architectures.
In ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pages 153-162, Salt Lake City,
UT, 2008.

[8] N. Karonis, B. Toonen, and I. Foster. Mpich-g2: A grid-
enabled implementation of the message passing interface.
Journal of Parallel and Distributed Computing, 2003.

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

S. Kelly and R. Brightwell. Software architecture of the
light weight kernel, Catamount. In Proceedings of the 2005
Cray User Group Annual Technical Conference, 2005.

T. Kosar and M. Balman. A new paradigm: Data-
aware scheduling in grid computing. Future Generation
Computer Systems, 25(4):406—413, 2009.

J. Li, W. Liao, A. Choudhary, R. Ross, R. Thakur,
W. Gropp, R. Latham, A. Siegel, B. Gallagher, and
M. Zingale. Parallel netCDF: A high-performance
scientific I/O interface. In ACM/IEEE Conference on
Supercomputing, Phoenix, AZ, Nov. 2003.

D. Nagle, D. Serenyi, and A. Matthews. The
Panasas ActiveScale storage cluster—delivering scalable
high bandwidth storage. In ACM/IEEE Conference on
Supercomputing, Pittsburgh, PA, Nov. 2004.

P. Nowoczynski, N. Stone, J. Yanovich, and J. Som-
merfield. Zest: Checkpoint storage system for large
supercomputers. In 3rd Petascale Data Storage Workshop
Supercomputing, pages 1-5, November 2008.

F. Schmuck and R. Haskin. GPFS: A shared-disk
file system for large computing clusters. In USENIX
Conference on File and Storage Technologies, Monterey,
CA, 2002.

O. Tatebe, Y. Morita, S. Matsuoka, N. Soda, and
S. Sekiguchi. Grid datafarm architecture for petascale data
intensive computing. In ccgrid, page 102. Published by the
IEEE Computer Society, 2002.

O. Tatebe, N. Soda, Y. Morita, S. Matsuoka, and
S. Sekiguchi. Gfarm v2: A Grid file system that supports
high-performance distributed and parallel data computing.
In Proceedings of the Computing in High Energy and
Nuclear Physics Conference (CHEP’04), 2004.

D. Thain, C. Moretti, and J. Hemmes. Chirp: a practical
global filesystem for cluster and Grid computing. Journal
of Grid Computing, 7(1):51-72, 2009.

D. Thain, T. Tannenbaum, and M. Livny. Distributed com-
puting in practice: The Condor experience. Concurrency
and Computation Practice and Experience, 17(2-4):323—
356, 2005.

M. Wilde, I. Ioan Raicu, A. Espinosa, Z. Zhang,
B. Clifford, M. Hategan, S. Kenny, K. Iskra, P. Beckman,
and I. Foster. Extreme-scale scripting: Opportunities for
large task-parallel applications on petascale computers.
Journal of Physics: Conference Series, 180(1), 2009.

H. Yu, R. K. Sahoo, C. Howson, G. Almasi, J. G.
Castanos, M. Gupta, J. E. Moreira, J. J. Parker, T. E.
Engelsiepen, R. Ross, R. Thakur, R. Latham, and W. D.
Gropp. High performance file I/O for the Blue Gene/L
supercomputer. In International Symposium on High-
Performance Computer Architecture, Feb. 2006.

F. Zheng, M. Abbasi, C. Docan, J. Lofstead, Q. Liu,
S. Klasky, M. Prashar, N. Podhorszki, K. Schwan, and
M. Wolf. Predata - preparatory data analytics on peta-
scale machines. In Proceedings of 24th IEEE International
Parallel and Distributed Processing Symposium, 2010.

