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Abstract

We investigate operating system noise, which we identify

as one of the main reasons for a lack of synchronicity in par-

allel applications. Using a microbenchmark, we measure

the noise on several contemporary platforms and find that,

even with a general-purpose operating system, noise can be

limited if certain precautions are taken. We then inject ar-

tificially generated noise into a massively parallel system

and measure its influence on the performance of collective

operations. Our experiments indicate that on extreme-scale

platforms, the performance is correlated with the largest in-

terruption to the application, even if the probability of such

an interruption is extremely small. We demonstrate that syn-

chronizing the noise can significantly reduce its negative in-

fluence.

Keywords: microbenchmark, noise, petascale,

synchronicity

1 Introduction

The interaction between operating and run-time sys-

tem components on massively parallel processing systems

(MPPs) remains largely a mystery. While anecdotal ev-

idence suggests that translation look-aside buffer (TLB)

misses, interrupts, and asynchronous events can dramati-

cally impact performance, the research community lacks a

clear understanding of such behavior at scale and on real

applications. Are there levels of operating system (OS) in-

teraction that are acceptable? How significant is the per-

formance difference between global collective operations,
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such as barriers and reductions, in the presence of OS in-

terference? Are there thresholds that can be tolerated for

some applications? Which? These and other questions re-

main largely unstudied as we search to build ever-larger

petascale MPPs and Linux clusters [9]. However, answers

to these questions are critical to the designs and compu-

tational models of future architectures and cluster designs.

Understanding how operating systems interact with applica-

tions and how interrupts, process scheduling, and I/O pro-

cessing affect performance on large-scale systems is key to

petascale systems research.

Operating system interference is commonly referred to

as “noise.” Intuitively, noise is the collection of background

activities that involuntarily interrupt the progress of the

main application. In this paper, we use noise to refer to the

overall phenomenon but choose the term detour when dis-

cussing any individual noise-comprising event, for example,

when an application is temporarily suspended to process an

OS-level interrupt.

Most asynchronous activities not initiated or managed

from user space can clearly be identified as noise, for exam-

ple, interrupts to update an internal OS kernel clock. Many

would also put TLB misses in this category, but we raise

an objection to this position. A TLB miss occurs when an

address supplied to the CPU by the application cannot be

resolved by using the entries in TLB; page table entries

(PTEs) must then be consulted, either by the CPU itself or

by the OS exception handler. While in many practical situa-

tions the exact times of TLB misses are difficult to predict,

they clearly depend on the application’s behavior; that is,

they are not strictly asynchronous—TLB misses take place

only if the application accesses a large number of memory

pages. Because of this causal relationship, it is debatable

whether considering TLB misses as system noise is useful.

Except for TLB misses within the OS code, the focus of

improvement should be on memory layout of the user code.
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The same is clearly true for cache misses. We do not con-

sider them to be noise. Similar problems arise from uneven

data partitioning. Some nodes will compute longer in itera-

tions, perturbing the synchronization of the system. All of

these issues are most strongly tied to the application, not the

asynchronous behavior of the OS. For this paper we focus

solely on the effects of OS noise outside users’ control—the

core scalability of an OS for petascale architectures.

2 Synchronicity

Several modes of cooperation exist between processes

in parallel applications. An important one is the lockstep

mode, where periodically all processes coordinate their

progress by using collective operations ranging from sim-

plest barriers to complex all-to-all message exchanges. Be-

cause all processes must take part in the collective opera-

tion, the overall speed is frequently reduced to that of the

slowest process. Hence, maintaining synchronicity between

the processes is vital; ideally, each process should take ex-

actly the same amount of time to perform the operations

between the collectives. With the collective invoked on all

processes at precisely the same moment, nodes will not be

left idle, waiting for the others to catch up. If just one pro-

cess experiences a significant delay arriving at the collec-

tive, however, the entire operation can suffer, and all re-

maining nodes will sit idle [16]. Large-scale clusters and

MPPs are especially prone to this behavior because of the

number of processes involved: the probabilities of delays

are cumulative, eventually turning into a virtual certainty.

Several common events can trigger a detour from the ap-

plication code, not all of which result in OS noise as defined

earlier. Some events have little impact on synchronization,

while others can cause dramatic delays. Table 1 provides an

overview of detours on a 32-bit PowerPC box running the

Linux 2.4 kernel.

Five of the entries from Table 1 are associated with mem-

ory access, indicating how complicated memory manage-

ment can be across increasingly complex hierarchies [15]

Table 1. Overview of typical detours.

Source Magnitude Example

cache miss 100 ns accessing next row of a C array

TLB miss 100 ns accessing rarely used variable

HW interrupt 1 µs network packet arrives

PTE miss 1 µs accessing newly allocated memory

timer update 1 µs process scheduler runs

page fault 10 µs modifying a variable after fork()

swap in 10 ms accessing load-on-demand data

pre-emption 10 ms another process runs

on an OS that supports paging and virtual memory for effi-

ciency and flexibility.

The smallest disturbances come from cache misses. If

the data is not in cache, a cache line is loaded from main

memory. A memory access normally takes around 100 ns.

When an instruction attempts to access memory at a vir-

tual address that the CPU does not know how to translate

to the corresponding physical address, a TLB miss occurs.

This can take several hundred nanoseconds, provided a cor-

responding PTE is available. Otherwise, the OS exception

handler must create a new PTE entry for the virtual address,

a process that could take a few microseconds.

An OS exception handler is invoked if an attempt is made

to access a memory location that is protected. This process

need not indicate an error; optimizations such as copy-on-

write are implemented by using this mechanism. A detour

on the order of 10 µs is possible in this case. The detour will

be much longer if the page data needs to be read from disk;

the speed of the disk access (typically around 10 ms) is a

limiting factor then.

Hardware interrupts normally have a higher priority than

do application processes. Interrupts cause a handler to be

invoked. Even though they are designed for speed, inter-

rupt handlers take from a few microseconds to at most a

few hundred to complete. If computationally expensive op-

erations are required, a handler may trigger additional pro-

cesses, which are scheduled at a convenient time after the

handler has completed initial work. For example, a hard-

ware interrupt handler of a network driver simply sends an

acknowledgment to the hardware and registers a delayed

process to handle the newly arrived network packet(s).

Multitasking operating systems are usually based on re-

occurring “ticks.” A timer interrupt is periodically raised,

and the interrupt handler is invoked. Counters and timers are

updated; when a process runs out of its time slice, another

process is run. Typically, the timer interval is in the range

of 1 to 10 ms. The interrupt handler itself usually consumes

several microseconds.

Obviously, the process scheduler can introduce long de-

tours if the parallel application process is supplanted by

some other process. A typical detour will then take at least

10 ms—the time slice size—unless the newly scheduled

process voluntarily vacates the processor. Therefore, rogue

processes on a cluster, particularly those not I/O bound and

so using the full time slice, can be a significant problem.

One class of detours absent from Table 1 because of its

unpredictability is the lack of balance between individual

application processes. Poor programming excluded, some

problems are simply inherently difficult to balance prop-

erly (e.g., when the time needed to process data depends

on the data itself). Even assuming that such a problem is

properly balanced at startup, if processing the data alters it

and if multiple iterations of the algorithm are required, peri-



Table 2. Overhead of reading the CPU timer and of calling gettimeofday(). Experiments were

conducted in April 2006.

Platform CPU OS cpu timer [µs] gettimeofday() [µs]

BG/L CN PPC 440 (700 MHz) BLRTS 0.024 3.242

BG/L ION PPC 440 (700 MHz) Linux 2.6 0.024 0.465

Laptop Pentium-M (1.7 GHz) Linux 2.6 0.027 3.020

odic load redistribution will be required to maintain a good

balance. The dependence between processing time and data

may be clearly visible in the algorithm, but it may just as

well be a subtle effect of, for instance, different memory ac-

cess patterns employed on different processes, resulting in

substantially different cache hit ratios.

For an extreme-scale cluster, only some of these detours

will ultimately lead to dramatically desynchronizing par-

allel operations. Unsynchronized noise creates a problem,

as its effects increase with an increasing number of pro-

cesses. Even very long detours—in the range of several

milliseconds—have little overall effect as long as they oc-

cur at the same time on all processors [13]. At the other

end of the scale, exceedingly short detours, such as a cache

miss, take an order of magnitude less time than the fastest

collective operations. They do not contribute significantly

to desynchronization if their frequency is similar on all pro-

cesses.

Lightweight kernels optimized for compute nodes, such

as BLRTS [10] or Catamount [8], try to avoid many of these

detours through a simplified architecture, for example, by

not supporting general-purpose multitasking. From the en-

tries in Table 1, cache misses are the only ones that will

certainly occur, and possibly also some hardware interrupts

and timer updates, but in a far more limited number than in

a general-purpose OS.

3 Noise Measurements

To explore the effect of noise on extreme-scale ma-

chines, we begin by gathering real benchmarks from exist-

ing platforms. In this section, we describe experiments con-

ducted to measure the inherent noise of several operating

systems.

3.1 Accurate Time Measurement

Since detours can be very short, careful benchmarking

is critical. Measuring cache or TLB misses is outside our

scope of interest; still, in order to measure hardware in-

terrupts, a clock-time measurement function with a submi-

crosecond precision is required. Thus, the commonly used

POSIX gettimeofday() system call is not quite good

enough: even if its precision matches its resolution (which

is not guaranteed), it will still have a precision of only 1 µs.

Besides, as we will show later, on some systems invoking

it takes several microseconds, simply because of the system

call overhead.

Most CPUs provide a precise CPU timer that can usu-

ally be read by using just a few assembly instructions, so it

only takes some ten to one hundred nanoseconds to obtain a

new value. The timer is synchronized with the CPU clock.

The updating frequency is either the same as the CPU fre-

quency (thus, the precision will be 1 ns on a 1 GHz CPU),

or it equals the timebase, which is lower than the CPU fre-

quency by a fixed factor. In the latter case, the precision will

be somewhat lower but still well under a microsecond on

any modern CPU. So long as power-saving variable clock

frequency capabilities are not enabled, measurements will

be accurate.

The overhead of reading the timer is CPU specific. The

counter itself is usually 64 bit, so, at least on architectures

with 32-bit registers, an implicit or explicit atomic opera-

tion may be required to obtain a consistent reading. Table

2 shows the overhead of reading the timer, and, for com-

parison, the overhead of calling gettimeofday(), on a

BG/L compute node (CN) and an I/O node (ION), as well

as on an x86 Linux laptop. As the table shows, using the

CPU timer is easily one to two orders of magnitude less

expensive than calling gettimeofday(), in addition to

providing a more accurate result.

3.2 Noise Measurement Technique

To measure noise, we use a benchmark loop as shown in

Figure 1. This loop detects detours and stores information

about them in an array for later processing. It will finish

when the recording array gets full; on a busy system, this

situation will take place almost immediately, because of the

frequency of context switches. On the other hand, this loop

can iterate for a long time on a virtually noiseless system

such as the BG/L compute node OS.

In the acquisition loop, the current timer value is repeat-

edly sampled (using a custom rdtsc() function) at a very

high rate. If the code is allowed to run undisturbed, this will

essentially be a periodic sampling, since the same set of in-



cnt=0;

min_ticks=INFINITY;

current=rdtsc();

while(cnt<N) {

  prev=current;      /* keep the previous timer value  */

  current=rdtsc();   /* obtain the current timer value */

  td=current-prev;

  if(td>threshold) {

    detour[cnt++]=prev;

    detour[cnt++]=current;

  }

  if(td<min_ticks) min_ticks=td;  

}

Figure 1. Acquisition loop of the noise mea-

surement benchmark.

structions is executed in each iteration. Randomly occurring

detours bring disturbances into that process; these are deter-

mined by simply subtracting the timer value obtained dur-

ing the previous iteration from the current one. We record

the start and end time of each detour. Since for this set of

experiments cache, TLB, and other memory effects are not

considered, the benchmark loop does not exercise the mem-

ory. Instead, it correctly measures the interruptions forced

by the OS when the application is quiescent. The thresh-

old level used for this benchmark was 1 µs. For modern

machines, an ordinary interrupt handler takes several mi-

croseconds (see Table 1).

Figure 2 shows how the benchmark (Figure 1) regularly

samples the clock until interrupted by a detour. The verti-

cal arrows pointing downwards represent sampling points;

empty rectangles are the detours. Three cases are shown:

1. No detour occurs, so t1 equals tmin (which is the final

value of min_ticks from Figure 1).

2. A short detour of length d2 takes place. The intersam-

ple period t2 is approximately equal to tmin +d2 (it may

be slightly larger because executing the detour code

may flush the acquisition loop from the CPU cache).

t2 is below the threshold, so the detour will not be

recorded.

sampling time

d2 d3

t 1 t 2 t 3t min

Figure 2. A sample of detours.

3. A longer detour of length d3 takes place. This time t3 ≃

tmin + d3 is above the threshold, so the detour will be

recorded.

The minimum iteration time tmin is important because it

determines the maximum resolution of the benchmark. A

sample of the results captured on several platforms can be

found in Table 3. The results clearly indicate that all sam-

pled architectures are capable of instrumenting 1 µs events.

The exact tmin values depend on the CPU frequency, but

also on other factors, such as the quality of the branch pre-

diction and compiler optimization. Furthermore, the OS can

set memory page attributes, such as cache inhibit or page

guard on pages where the loop resides. If so, the minimum

iteration time will be different between two platforms even

if the underlying hardware is the same—this effect can be

observed on BG/L. The vastly superior timer resolution of

Cray XT3 can be attributed to its 64-bit CPU: most op-

erations in the loop are performed on 64-bit integers, and

the other platforms, featuring 32-bit CPUs, must implement

those in software.

Table 3. Minimum acquisition loop iteration

times. Most experiments were conducted in

May 2005, XT3 in Aug. 2005.

Platform CPU OS tmin [ns]

BG/L CN PPC 440 (700 MHz) BLRTS 185

BG/L ION PPC 440 (700 MHz) Linux 2.4 137

Jazz node Xeon (2.4 GHz) Linux 2.4 62

Laptop Pentium-M (1.7 GHz) Linux 2.6 39

XT3 Opteron (2.4 GHz) Catamount 7

This noise measurement technique is not without limita-

tions. It is meant for identifying inherent noise only: the sys-

tem is expected to be idle, and the benchmark itself is small

and simple enough to generate no user-triggered detours

when running. It will not measure any memory manage-

ment overhead or detours stemming from processing MPI

messages in the background as they arrive from a commu-

nication link.

3.3 Noise Measurement Results

We have applied our noise measurement technique to

several different platforms. Table 4 presents a statistical

analysis overview of the results obtained. Figures 3 to 5

provide a closer look at the actual data. Within the figures,

plots on the left are time series graphs: the x axis denotes the

execution time since the start of the benchmark, the y axis

the length of a detour that took place at that time (if any).

These plots give a good idea of the noise pattern. Plots on

the right also provide the length of the detours on the y axis,



Table 4. Statistical overview of the results. Most experiments were conducted in May 2005, XT3 in

Aug. 2005.

Platform Noise ratio [%] Max detour [µs] Mean detour [µs] Median detour [µs]

BG/L CN 0.000029 1.8 1.8 1.8

BG/L ION 0.02 5.9 2.0 1.9

Jazz node 0.12 109.7 6.2 8.5

Laptop 1.02 180.0 9.5 7.0

XT3 0.002 9.5 2.1 1.2
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Figure 3. Noise measurements on BG/L: compute node (top) and I/O node (bottom).

but the x axis is sorted by the detour length, providing a

better overview of the percentage of detours of a particular

length.

Looking at the results in Table 4, we see that the noise ra-

tio can vary widely between the platforms. The differences

in the maximum detour length observed, while also large,

are comparatively much smaller. The mean and median are

relatively close to each other, indicating that the noise dis-

tribution lacks extremely long detours. Our claim, that we

will further discuss in Section 5, is that the performance of

extreme-scale parallel applications is affected mostly by the

longest detours observed, and not by the noise ratio.

The data gathered from the compute node of IBM BG/L

stands out from its peers (Fig. 3, top). As of this writing,

BG/L is the largest MPP architecture available. The maxi-

mum detour is more than three times better than the other

platforms. The system is virtually noiseless. The only peri-

odic interrupt is a decrement timer: because the decrement
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Figure 4. Noise measurements on Linux platforms: Jazz cluster node (top) and a laptop (bottom).

register is a 32-bit integer, it would underflow after approx.

6.1 s (232/700 MHz), so it gets reset in an interrupt handler

every 6 s. On BG/L, however, even that interrupt is automat-

ically removed when the user code does not call user-level

timers.

It is interesting to compare this with the data obtained on

BG/L I/O node (Fig. 3, bottom), as the two platforms have

identical CPUs, so the differences can be attributed squarely

to the operating systems used: a specialized lightweight ker-

nel on compute nodes and an embedded Linux on I/O nodes.

From the data, three types of behavior can be observed.

First, 80% of the detours are 1.8 µs and correspond to a

Linux timer update scheduled for every 10 ms. Second, 16%

are slightly longer, approximately 2.4 µs, because on every

sixth timer interrupt the process scheduler is run. Third, a

handful of detours are less than 6 µs.

Compared to other platforms, the detours from BG/L

ION Linux are actually quite short. Jazz (Fig. 4, top) is a

relatively standard commodity Linux cluster. In spite of far

more capable CPUs, the maximum detour length is more

than an order of magnitude larger. The difference between

a specialized lightweight kernel and an optimized embed-

ded Linux kernel is far less than the difference between two

different Linux systems. The kernel is in fact the least re-

sponsible for these differences. BG/L IONs run a fairly stan-

dard embedded Linux kernel, without sophisticated low-

latency patches. The dramatic difference stems from other

processes run on these Linux platforms. BG/L ION Linux

is trim and can be run without extra management or moni-

toring processes. Jazz, on the other hand, even though op-

timized for cluster computation, maintains detour-causing

background processes. Often, these extra processes are mis-

takenly included while discussing the noise native to an op-

erating system, instead of separating the noise inherent to

the OS from the configuration of the system.

We can also compare the noise on BG/L with that mea-

sured on another lightweight MPP kernel: Catamount, run-

ning on the compute nodes of Cray’s large-scale MPP XT3

systems (Fig. 5). The noise ratio (Table 4) is clearly superior

to any of the Linux platforms but is still much higher than
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Figure 5. Noise measurements on XT3 compute node.

that of BLRTS running on BG/L compute nodes. In fact,

the maximum and mean are slightly higher than on BG/L

I/O nodes running Linux. The median, on the other hand, is

the lowest of all platforms tested, indicating that while XT3

is far from being noiseless, its detours are generally short.

It is difficult to attribute all of the differences to kernel de-

sign. The 64-bit AMD is significantly faster than the PPC at

the heart of BG/L. Until a portable lightweight kernel can

be run on both BG/L and x86 hardware, exact comparisons

cannot be made.

4 Noise Injection

The extremely low inherent noise of the BG/L compute

node kernel makes it suitable as a test harness for inject-

ing artificial noise and measuring its influence on applica-

tion performance. Beginning with the nearly noiseless oper-

ation of BG/L, we inject noise and explore the impact on ap-

plications that require synchronous behavior. This strategy

should allow us to get an impression of how such applica-

tions would perform if they ran on top of a noisier kernel—

performing such experiments in reality was infeasible for us

because of a lack of sufficiently massive parallel machines

that would support kernels other than BLRTS.

The operations most sensitive to desynchronizing de-

tours are collectives. With many of them, if even one of the

CPUs is late to the collective operation, the entire operation

will be delayed (this is the case with all three collectives we

discuss below). For example, if only one of possibly thou-

sands of nodes suspended the local application and sched-

uled a different process for a time slice, that single 10 ms

detour on one CPU would suddenly stall the collective dra-

matically. On a machine such as BG/L, with some fast col-

lectives taking just a few microseconds, such a misconfig-

ured system would slow the collective operation by a factor

of more than 1000.

To explore this behavior, we focus solely on the MPI col-

lective operations expected to be highly sensitive to noise

(barrier, allreduce, and alltoall) and slowly inject random

delays. The results presented below can thus be considered

a worst-case scenario, as real-world applications perform

collectives for only a fraction of their execution time.

A real-time interval timer was used to periodically force

execution of a delay loop. We explored both synchronized

and unsynchronized noise. In our implementation, the dif-

ference is only at initialization: with the unsynchronized in-

jection, individual processes of a parallel job are delayed

by a random interval before the first injection is scheduled.

A barrier is performed before the benchmark measurements

start, in order to synchronize the execution progress of the

processes; no further explicit (de)synchronizations are per-

formed.

Figure 6 presents the results of several collective oper-

ations. Each collective was tested in configurations rang-

ing from a single midplane (512 nodes) to 16 racks (16,384

nodes) on the IBM T. J. Watson Research Center 20-rack

BG/L “BGW” system in Oct. 2005, as of this writing

the second fastest computer in the world [17]. The results

shown are for experiments performed in virtual node mode,

in other words, when both CPU cores on each node are oc-

cupied by application processes. We injected noise at fre-

quencies ranging from 10 Hz (interval 100 ms) to 1 kHz (in-

terval 1 ms). The minimum detour injected was 16 µs—the

overhead of the interval timer used. We tried several larger

values; in addition to 16 µs, Figure 6 shows results for 50,

100, and 200 µs. In general, we found the performance of

the noise-free experiments to be almost identical as that of

the experiments with a synchronized 16 µs noise at 100 ms

intervals; we have thus decided to omit the former results
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in a presence of artificially injected noise (synchronized (left) and unsynchronized (right)).



from the plots in order to avoid undue clutter.

The results for the simplest barrier can be found at the

top of the figure. Barriers on BG/L are implemented by us-

ing a dedicated global interrupt network, providing excel-

lent performance. As can be observed, synchronized noise

(Fig. 6, top left) only slightly affects the performance—

by 26% in the worst case. Unsynchronized noise (Fig. 6,

top right) presents more of a challenge—an execution time

increase by up to a staggering factor of 268 can be ob-

served. However, that statement alone does not tell the full

story. While the absolute increase in execution time is im-

portant, more interesting is the relationship between per-

formance and detour length. As can be observed, that re-

lation is mostly linear, and it saturates at twice the time

length of a detour (check the curve for interval 1 ms). As

far as we know, barriers in virtual node mode are imple-

mented by first synchronizing the two processes running on

the same node and then synchronizing all nodes over the

network. Each of these steps can be slowed by as much as

a single detour time, but no more than that, simply because

nodes execute each step independently, in parallel. Interest-

ing, there appears to be another saturation point at the level

equal to a single detour length (check the curve for interval

100 ms). The relationship between the execution time and

the node count seems to be nonlinear, at least for high injec-

tion intervals: there is a critical value of parameters, where

a phase transition takes place between a very efficient exe-

cution largely unaffected by noise, and a less efficient one,

where the effect of noise is linear (note that the node count

axis is logarithmic; the effect is even more apparent in a

linear scale). We stress that we do not see any prohibitive,

superlinear execution time growth related to the size of the

machine.

The second collective operation tested was allreduce.

There are at least two sorts of reduction operations on BG/L.

Certain simple cases can be handled by the network hard-

ware; others require a cooperation of the message layer code

linked with the application, or even of the application code

itself. The results shown here are for the latter case, as noise

has a more interesting influence then. Allreduce with a syn-

chronized noise (Fig. 6, middle left) behaves quite similarly

to a barrier, only the logarithmic complexity of the opera-

tion in respect to the number of processes is more apparent.

The behavior with an unsynchronized noise (Fig. 6, middle

right) is different. Depending on perspective, it can be char-

acterized as either less susceptible to noise than the perfor-

mance of barriers (execution time increase by at most a fac-

tor of 18), or worse overall (the increase observed is by over

1000 µs). As with barriers, execution time is mostly linear

in relation to detour length. The larger degree of coopera-

tion required from the application processes by the reduc-

tion operation means that there are more opportunities for

noise to influence the performance. As the algorithm is log-

arithmic, the maximum slowdown is not fixed as it was with

barriers, but also increases logarithmically with the number

of processes.

The last collective operation we tried was alltoall (Fig. 6,

bottom). Unlike the previous two, it has a linear complexity

with respect to the number of nodes, so on a massively par-

allel machine like BG/L its performance leaves something

to be desired: we had to label the z axis in milliseconds to

fit the plots. Noise injection has a comparatively minor in-

fluence on the performance, probably because alltoall has

a higher degree of parallelism than do the other collectives

tried, so occasional detours do not stall the whole opera-

tion. Results indicate little difference between a synchro-

nized and unsynchronized noise injection. The slowdown

we observe ranges from 173% for 1,024 processes to 34%

for 32,768 processes, although in absolute terms the latter

is the highest, reaching around 53 ms. What is worrisome,

though, is that the increase with the detour length has be-

come superlinear. In fact, that was to a limited extent al-

ready the case with allreduce, but it is far more pronounced

with alltoall (see Fig. 6, bottom right). However, we point

out that the noise level where that happens is very high:

there is a detour of 200 µs every 1000 µs. This is more like

a cacophony than a noise, and hence affects the performance

in that way.

In addition to the experiments in virtual node mode,

we performed analogous ones in coprocessor mode, that

is, when only one application process per node is run and

some message-passing services are offloaded onto the sec-

ond core. One could expect that this separation would make

coprocessor mode far more insensitive to noise. Experi-

ments have shown, however, that the influence of noise

is similar irrespective of the execution mode; presumably

that is the case because even in coprocessor mode the bulk

of communication-related operations are performed by the

main CPU core.

5 Discussion

The issue of operating system noise has been studied by

others for several years, and the roots can be traced back

to over a decade. The experiments described by Burger

et al. [4], while focusing on another aspect of the problem

(evaluation of gang scheduling and demand paging on mas-

sively parallel systems), employ techniques similar to what

we used in Section 4: they inject artificial delays to simulate

the effect of sharing CPUs with other processes. In a more

recent study, Petrini et al. [11] found nonessential processes

to be responsible for a significant slowdown of the ASCI Q

machine and devised techniques to identify the sources of

noise and eliminate them. However, because the difficulties

stemmed from a misconfigured system running printer dae-



mons and other nonessential processes, it cannot be gener-

alized to the nature of noise inherent in tick-based operating

systems.

Several studies have shown that, on 4-CPU SMP ma-

chines, the overall parallel job performance is better if one

of the CPUs is left idle [7] so that it can handle the interrupts

or other processes. The remaining CPUs can remain tightly

synchronized. Coscheduling processes of a parallel appli-

cation across the whole machine allowed Jones et al. [6] to

reduce the execution time of collectives such as allreduce

by a factor of 3 on a large IBM SP.

Sottile and Minnich [12] argue that microbenchmarks

based on a fixed work quantum principle do not provide

enough insight; they recommend using a fixed time quan-

tum principle as an alternative, since it makes the results

much easier to analyze with established techniques from

signal processing and spectral analysis. The benchmark in-

troduced in Section 3 samples the CPU timer as frequently

as possible, performing a minimal, constant set of opera-

tions between the samples. This means that it works accord-

ing to the fixed work quantum principle, since sample in-

tervals will not be constant if detours occur. The fixed time

quantum principle would be impractical in our case because

the overhead of timer interrupts on BG/L is over 10 µs—

much more than the shortest detours we are interested in.

We still did our best to avoid cache effects by storing infor-

mation only on detours that were above a predefined thresh-

old.

In an initial theoretical study into the problem of noise,

Agarwal et al. [1] determined that noise can drastically re-

duce the performance of collective operations, but only with

some noise distributions, such as heavy-tailed or Bernoulli.

On the other hand, Petrini et al. [11] claim that, at least in

case of fine-grained applications, short but frequent detours

on all nodes are more detrimental to the performance than

are long but less frequent ones on just a few nodes. They

further claim that performance is affected most if noise res-

onates with an application, that is, if their granularities are

similar. We believe that claim to be only partially true. Ob-

viously, fine-grained noise will have little effect on a coarse-

grained application, as it simply will not be able to desyn-

chronize the processes in any significant way—we could see

that in case of the expensive alltoall collective (Fig. 6, bot-

tom). However, we see no reason why coarse-grained noise

should not affect a fine-grained application. On the con-

trary, its effects are likely to be devastating, as one could

conclude from looking at the results of lightweight barriers

(Fig. 6, top right). Essentially, even fairly infrequent detours

become very likely with a rapidly increasing number of pro-

cesses; once they are close to certain to occur, they dwarf all

the shorter, but more frequent detours.

This phenomenon is confirmed by Tsafrir et al. [14]. Us-

ing a probabilistic model, they show that the impact of noise

on a parallel job is linearly proportional to the number of

nodes, but only if noise probability is small enough. Once

the job exceeds a particular size, a detour is nearly certain

to occur, and further increases in node count do not affect

noise. This result confirms our findings from Section 4 re-

garding barriers. According to their model, for 100k nodes,

one needs a per node noise probability no higher than 10−6

per phase (i.e., between two collectives) for a machinewide

probability of a detour to be lower than .1. They identify

fine-grained clock ticks to be a major source of overhead:

even though 1 kHz ticks take no more than 1% of CPU

time, they slow a microbenchmark by at least 40%—on

one node. Cache pollution due to an execution of kernel

code is blamed for that, and eliminating ticks is the recom-

mended solution, because synchronizing so frequent events

on a massively parallel machine might be impractical.

Brightwell et al. [3] compared performance between

Linux and a lightweight Cougar kernel (a predecessor of

Catamount) on the ASCI Red machine. While we cannot

draw broad conclusions from their comparison of Linux

with an interrupt-driven TCP adapter to Cougar’s far more

efficient transport layer, the authors do provide many use-

ful insights. They observe that not-massively-parallel code

running under Linux can perform significantly better than

on Cougar, probably because of continuous improvements

to the compilers and libraries made by free software devel-

opers. Essentially, the overheads of maintaining a state-of-

the-art software bundle are much higher for a niche product

than for the mainstream.

Also, as MPP platforms become more popular, they are

put into new uses, requiring more capabilities from the ker-

nel. For example, some BG/L users have been requesting a

support for dynamically loaded libraries so that tools such

as Python can be used on the compute nodes. Basically,

users want MPPs to be more like the systems they are used

to; it may be difficult to achieve that goal and at the same

time maintain the performance advantage of lightweight

kernels.

6 Conclusions

This paper focused on the synchronicity of processes in

parallel scientific applications and the desynchronizing ef-

fects that can be introduced via the OS. We provided an

overview of typical detours that can be attributed to con-

temporary computer architectures and general-purpose op-

erating systems. We pointed out that so far as synchronicity

is concerned, only some of those detours are actually rele-

vant.

In Section 3, we used a microbenchmark to measure

noise on several platforms. Our results, which are an exten-

sion of work published in [2], indicate that while special-



ized lightweight kernels have a clearly superior noise ratio,

the average detour length among all platforms tested is of

the same order of magnitude. Even a fairly standard Linux

kernel can have a low maximum detour length, provided

that the hardware it manages is fairly simple and the set of

processes limited. With sophisticated low-latency patches

or real-time enhancements [5], the differences in maximum

detour length compared to lightweight kernels would likely

be even smaller. The differences in noise ratio could be

mostly eliminated with a move to a tickless kernel.

To get more insight into the effect of noise on syn-

chronicity, in Section 4, we benchmarked the performance

of several collective operations under various levels of arti-

ficially injected noise. While the slowdown in many cases

is rather large, the experiments represent a worst-case sce-

nario, as a real-world application would perform collective

operations far less frequently and thus would be affected to

a far lesser degree.

The most significant result of this paper is that detours

needed to be quite large in order to significantly impact per-

formance on extreme-scale architectures. Remember that

the detour times for the BG/L ION Linux were all less

than 6 µs—without any special latency-reducing patches or

other optimizations. The minimum noise we could artifi-

cially inject for BG/L was 16 µs, with the resulting data

hardly distinguishable from the case where there was no

noise at all. It is not until detours as long as 50 µs occur

every 1 ms that any appreciable impact can be seen. This

result strongly indicates that the noise from even tick-based

operating systems with unsynchronized schedulers, such

as Linux, would have little impact on overall system per-

formance. However, a single rogue stealing an occasional

timeslice could slow collectives by a factor of 1000. Clearly,

impact is an issue of scale; it is dominated by the relation-

ship between the absolute performance of collective opera-

tions to the longest unsynchronized detours in the system.

For this reason, the noise within an extreme-scale Linux

cluster may pose little real performance impact. Without the

benefit of a lightning-fast global interrupt and tree-reduction

networks, such as are available on BG/L, the noise intro-

duced by the Linux kernel can be relatively small compared

to that of collectives formed from point-to-point operations

(even on BG/L we could see this effect for alltoall). We be-

lieve that unless extra processes or interrupt processing dra-

matically desynchronizes a Linux cluster, OS noise does not

cause significant performance degradation.

The experiments also show what an improvement a sim-

ple initial synchronization of noise can bring, especially for

more lightweight collectives. The slowdown is not cumu-

lative in any significant way: we do not see significantly

superlinear growth in execution time, relative to either the

number of nodes or the detour length. Thus, noise should

not pose serious problems even on extreme-scale machines,

as long as we can keep it synchronized.

All in all, we believe the data gathered confirms that run-

ning a general-purpose OS such as Linux on massively par-

allel machines should be viable and is definitely worth pur-

suing.
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