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ABSTRACT

Despite the fact that Linux is a popular operating system for
high-performance computing, it does not ensure maximum
performance for compute-intensive workloads. In our previ-
ous work we presented “Big Memory”—an alternative, trans-
parent memory space that successfully removes the memory
performance bottleneck on Blue Gene/P Linux. The initial
Big Memory worked only as a per node resource. In this
work we extend it to a per core resource and describe the
details of the implementation. We evaluate our new imple-
mentation by running various benchmarks and the Nek5000
application. Compared with IBM’s Compute Node Kernel
that is noise-free and lightweight, the Nek5000 application
runs with only 1.2% performance loss on Linux with Big
Memory at 32 K cores. Our benchmark results show no sig-
nificant performance degradation from OS noise caused by
Linux at a scale of up to 32K cores, although irregular OS
events are still present.

Categories and Subject Descriptors

D.4.8 [Operating Systems]|: Performance—>Measurements;
D.4.2 [Operating Systems]: Storage Management—Main
memory; C.5.1 [Computer System Implementation]:
Large and Medium (“Mainframe”) Computers—=Super (very
large) computers
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1. INTRODUCTION

Linux is possibly the most popular operating system (OS)
today, used in embedded devices, smart phones, personal
computers, servers, mainframes, and high-performance com-
puting (HPC). Linux was originally designed to handle mul-
tiuser, multitasking workloads in PCs and servers. Different
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platform have unique characteristics and therefore require
tuning. On smart phones or PDAs, for example, power man-
agement and timer management are important. Linux as a
server OS has to handle a large number of user processes
and threads efficiently.

HPC is no exception and also has its own unique charac-
teristics. HPC applications are very CPU or memory inten-
sive and latency sensitive, so oversubscription significantly
affects the performance [14]. Unlike in general purpose envi-
ronments, only HPC applications and supporting processes
such as job management or I/O-related daemons run in a
HPC environment. Responsiveness of supporting processes
is also important because of the latency sensitivity. A well-
behaving scheduler needs to balance these two requirements;
the default scheduler in the Linux kernel does not always do
that, hampering the performance of HPC applications. The
Linux scheduler also migrates processes for load balancing,
which heavily impacts HPC application performance [12];
However we can mitigate the performance impact by using
existing OS features. For example, UNIX traditionally al-
lows users to change the scheduling priority, so that we can
set HPC applications to the highest priority. Linux has sys-
tem calls that enable users to change the scheduling policy
and set the CPU affinity.

Like other general-purpose operating systems, the Linux
kernel employs paged virtual memory, which provides var-
ious benefits, including process isolation, copy-on-write op-
timization, and simplicity of the physical memory alloca-
tion. However, the overhead from the memory management
is considerable for HPC [18]. Paged virtual memory dras-
tically degrades memory access performance as a result of
page faults and translation lookaside buffer (TLB) misses,
and it uses additional memory for page table maintenance.
Contiguity of physical addresses is not guaranteed with vir-
tual addresses crossing page boundaries. Furthermore, pages
can be remapped, so a physical address associated with a vir-
tual address is not guaranteed to be constant. This feature
is particularly problematic for direct memory access(DMA)
units that can deal only with physical addresses, so a soft-
ware layer must keep track of page mappings and convert
virtual addresses to physical ones. The overhead from this
activity can be enormous.

Another issue of Linux is OS noise. Linux is a tick-
based kernel, which periodically interrupts running tasks
for a very short time. Studying the relationship between
OS noise [1,3,8,9,13,19,20,22] and the scalability of large-
scale applications is a major research topic. In our later



work [23] we showed that for a certain class of applications
like the Parallel Oceans Program, a tick based kernel like
Linux provides a better performance.

In order to avoid the performance problems, some high-
end machines such as IBM Blue Gene use dedicated light-
weight kernels. IBM’s Compute Node Kernel (CNK) [10],
which is the default OS for Blue Gene/P (BGP), is not a
tick-based kernel and lacks multiuser support, time-sharing,
and multitasking. Each CNK process is pinned down to a
CPU core and never migrates. CNK allows the spawning
of additional user threads other than the main thread, but
context switch happens only at system calls that internally
yield the CPU. CNK does not employ paged virtual memory
but provides a simplified, offset-based mapping from physi-
cal memory to a process’s virtual address space. TLB entries
are statically installed to map kernel space, user space, and
some memory-mapped I/O (MMIO) at boot time. Thus,
there is no memory overhead. Basically, HPC applications
enjoy the native performance of the hardware. Unfortu-
nately, the simplicity of the design is also an obstacle; it
brings an inflexibility and a lack of features and capabili-
ties. This situation prompted us to replace CNK with a
Linux kernel as a part of the ZeptoOS project [25]. Our
aim is to create a fully open software stack that enables in-
dependent computer science research on massively parallel
architectures, enhances community collaboration, and fos-
ters innovation.

In our previous work we presented “Big Memory” [24]—
an alternative, transparent memory space that successfully
eliminates the memory performance bottleneck on Blue Gene
Linux. Our initial Big Memory implementation allowed
users to run only a single Big Memory process per node;
users had to create additional threads if they wanted to uti-
lize all the CPU resources. Here we discuss the extending of
Big Memory to a per core resource and the adding of strict
CPU affinity.

2. IBM BLUE GENE/P

The IBM Blue Gene/P (BGP) architecture [15] was in-
troduced in 2007 to replace the original Blue Gene/L de-
sign [17]. Blue Gene racks consist of two kinds of nodes:
compute nodes, running the application code, and I/O nodes,
responsible for system services such as file I/O. Compute
nodes and I/O nodes use the same system-on-a-chip (SoC)
design that consists of four PowerPC 450 cores, network de-
vices, etc.

The PowerPC 450 core is a 32-bit design with SMP sup-
port, running at 850 MHz. Each processor core has a dual-
pipeline floating-point unit with fused multiply-add (FMA)
instructions. The peak floating-point performance of the
whole CPU is 13.6 Gflops. Each core has a 32kB' L1 in-
struction cache and a 32kB L1 data cache (cache coherence
is maintained with a write-invalidate protocol). The peak
fill rate is 6.8 GB/s, with a latency of 4 CPU cycles. The L2
cache is smaller than the L1 and serves as a stream prefetch-
ing buffer. The CPU has a common 8 MB L3 cache with a
latency of approximately 50 CPU cycles. Nodes have either
2 GB or 4 GB of main memory. The main store bandwidth is
13.6 GB/s, with a latency of approximately 100 CPU cycles.

Linux runs on I/O nodes to handle I/O requests from as-

!Throughout this paper, we use kB, MB, or GB in the con-
text of memory size; 1 kB equals 1,024 bytes.

sociated compute nodes. IBM provides a patch that enables
PowerPC 44x Linux kernel to run on the BGP nodes: since
the base kernel lacks SMP support, interprocess-interrupt
(IPI) is added; FPU context is extended to store BGP FPU
registers; a special console driver is implemented to forward
kernel message via mailbox; and an ethernet driver is added
to enable the BGP 10 GbE hardware.

Regular 32-bit PowerPC executables work on the BGP
Linux kernel; however, code compiled specifically for BGP
using a patched GNU C compiler might not work on other
32-bit PowerPC processors because of the custom BGP FMA
instruction set.

The I/O node Linux kernel can be booted on compute
nodes, since the main processor core is the same. However,
modifications are required to make it useful; Root filesystem
is required to perform boot-time initialization. We created
a dedicated small ramdisk that contains the root filesystem
for compute nodes. After a basic node initialization, it in-
vokes the ZOID [16] daemon, which is responsible for job
control (spawning and termination of application processes),
forwarding of standard input and output streams to the con-
trol system, IP forwarding between compute nodes and I/0
nodes, and file I/O forwarding to the I/O nodes (directly
or via FUSE), since compute nodes cannot access storage
resources directly.

3. HIGH PERFORMANCE MODE

Initially, there existed a large gap between IBM CNK and
Linux in the memory access performance, even after we in-
creased the system page size under Linux to 64 kB from the
default size of 4kB. Linux suffers from TLB misses, where
none occur under CNK since it statically installs large TLB
entries to cover the whole address space of a user program.
In our previous study [23,24] we observed that, in the worst
case, Linux obtained approximately one-third of the memory
bandwidth of CNK (and only one-twelfth with 4kB pages).

Hugetlb can mitigate the memory performance issue. How-
ever, hugetlbfs does not eliminate TLB misses completely, so
for highly irregular memory access patterns significant per-
formance losses can still occur. Another problem of hugetlbfs
is that it is not transparent, requiring additional program-
ming. Transparent support for huge pages has been intro-
duced in kernel 2.6.38. However, it is currently limited; for
example, it is not supported for file-backed regions such as
application text and data sections.

In our earlier work, we presented the implementation of
“Big Memory”—an alternative, transparent memory space.
The idea was to reserve a dedicated physical memory region
at boot time and statically install TLB entries at page fault
time to cover the Big Memory region. The TLB entries re-
main in place until the process is scheduled out again. Also,
the Linux ezec handler transparently prepares Big Memory
when a special binary is about to be loaded. We verified
this result on 1,024 nodes of Blue Gene/P using the NAS
Parallel Benchmarks and found the performance on Linux
with Big Memory to fluctuate within 0.7% of CNK.

In the initial implementation of Big Memory, only one Big
Memory process per node, which is known as the SMP mode,
was supported. To take advantage of all CPU cores on the
node, the user had to create multiple threads within the Big
Memory process. This was inconvenient for common MPI-
only jobs, so we decided to extend Big Memory to support
four Big Memory processes per node, which is known as the



virtual node mode.

The basic idea of our extension of Big Memory is to strictly
bind a Big Memory process to particular core and never
allows the process to migrate when it runs in the virtual
node mode. Processor binding or processor affinity [2] is a
well-known technique to improve the performance of HPC
applications; a userspace job launcher spawns a job, setting
processor affinity to avoid over-subscription. We applied this
idea into the kernel implementation so that the in-kernel Big
Memory management codes can identify each Big Memory
process by just reading the CPU core identification, which
takes essentially one CPU cycle. This idea also keep the
implementation simple.

To support the virtual node mode, we extended the Big
Memory management code to be able to handle four in-
stances of the memory management data structure. Also
physical resource constraint is challenging. For example, or-
ganizing TLB entries efficiently is a challenge because Pow-
erPC 450 has only 64 TLB entries per core. Paged memory,
which under the ZeptoOS kernel can coexist with Big Mem-
ory, needs as many free TLB slots as possible; otherwise the
performance will degrade. The Linux kernel itself reserves
one to three TLB entries to cover the area where Linux ker-
nel text and data sections are loaded. CNS requires another
TLB entry to cover its text and data. BGP MMIO devices
such as lockbox, UPC, tree, and DMA require several more
TLB entries.

3.1 PowerPC 450 TLB

Unlike other processors, the PowerPC 450 TLB is fully
managed by software. It is flexible: the structure of the
page table entry (PTE) is left completely up to the software
designer. It also allows one to statically install a TLB. On
the other hand, the lack of hardware acceleration such as
page-table walking is a disadvantage that results in large
slowdowns with small page sizes.
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A TLB entry can be updated by using the tlbwe instruc-
tion. An entry is divided into three TLB registers: TLB
Word0, Wordl and Word2 (see Figure 1). TLB Word0 is
stores the virtual page address and the page size. Page sizes
of 1kB, 4kB, 16kB, 64kB, 256kB, 1 MB, 16 MB, 256 MB,
and 1GB are supported, and different page sizes can be
used simultaneously. TLB Word1 stores the physical page
address. TLB Word2 contains read, write, and executable
permission for both supervisor and user mode, cache inval-
idation control, write-through flag and so forth. The tlbre
instruction is used to read a TLB entry.

Figure 2 illustrates how a virtual address is converted into
a physical one. On a PowerPC 450, technically, the vir-
tual address is 41 bits long, and the physical address is 36
bits long. TID is not currently used, so the effective ad-

dress, which is calculated from storage instructions, is es-
sentially the virtual address. The bit size of the offset is
log, (pagesize). Note that the start address of both the vir-
tual and physical page must be aligned to the page size.
Mapping the virtual address 0x10000000 into the physical
address 0x20000000 with a 256 MB page, for example, is
valid; but mapping the same addresses with a 1 GB page,
for example, is invalid. There is little chance of using 1 GB
pages on a 32-bit architecture.
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32-bit Effective Address

[ nl n 31
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Figure 2: TLB Lookup

3.2 Physical Memory Allocation

The physical memory area used in Big Memory is reserved
at boot time so that we can avoid complicated physical mem-
ory management. The size of Big Memory can be specified
with Linux kernel parameters. The Linux kernel cannot use
the reserved memory for regular paging; our memory system
is targeted at HPC applications. BGP compute nodes are
normally rebooted between jobs, so the reservation will be
reset for the next job.

The physical memory area used by Big Memory is adja-
cent to the lowmem region where Linux kernel text, data,
and runtime kernel data structures reside. To reserve the
physical memory region, we modified the MM U_init() func-
tion, an early-stage physical memory setup code, to reduce
the detected DRAM size by the specified size of Big Mem-
ory. We also had to write a code that relocates the CNS
into a preallocated section within the kernel lowmem region
because the CNS was originally loaded at the end of DRAM,
preventing us from using a large TLB near the end of the
memory space.

To maximize the performance of the DMA unit and sim-
plify the software layer, we ensure that contiguous virtual
addresses are also contiguous in the physical memory. More-
over, TLB page addresses must be aligned to the TLB page
size; for example, 1 GB TLB must be aligned to the 1 GB
boundary.

The Big Memory area is divided by the number of com-
pute node processes, which is determined by the running
mode. In our previous implementation, only the SMP mode
(one task per node) was supported; no physical memory
partitioning was required. In the virtual node mode, for ex-
ample, the Big Memory area is partitioned into four areas,
each assigned to one core.

3.3 ELF Flag and Kernel ELF Loader

Having an explicit, custom API to use a resource is fre-
quently a hassle. Transparency is important, so we decided
to alter the ELF header of application binaries and mod-



ify the Linux kernel ELF binary interpreter, specifically, the
load_elf_binary function, which is invoked from the ex-
ecve system call.

We use the e_flags field in the ELF header, which is re-
served for processor-specific data. More specifically, we use
the 24th bit? in the e_flags field. We refer to the exe-
cutables with the flag set as ZeptoOS Compute Binaries, or
ZCBs.

The load_elf _binary function examines the ELF header
to see whether the binary being loaded is a ZCB. If it is,
the function requests a new Big Memory process. If the
request succeeds, the kernel sets a bit in the personality
field in the task structure so that other kernel functions can
easily determine, with minimum runtime overhead, that the
process is a ZCB by accessing the current variable. Once
the flag is set, the Big Memory region becomes available;
however, the first access attempt will result in a page fault
(see Section 3.4).

The Big Memory loader constructs the initial stack frame
that contains the command line arguments, environment
variables, and auxiliary vectors. Unlike a regular process,
the contents of the initial stack is copied into the Big Mem-
ory region at exec. Similarly, the text and data sections
of the program are also loaded into it. The next step is
to install a virtual memory area (VMA) that covers all Big
Memory address ranges to prevent the Linux kernel from
invading the virtual address ranges that are assigned to Big
Memory.

We added a memory manager to the Linux kernel to keep
track of the memory chunks for mmap requests in Big Mem-
ory, which utilizes the kernel’s red-black tree—a structure
normally used for managing VMAs. The red-black tree is a
self-balancing search tree, which can be searched in O(logn)
time, where n is the total number of elements in the tree. In
our previous implementation, Big Memory only supported
one instance. We extended the memory manager to support
up to four instances to support the virtual node mode.

While VM As are installed to cover the Big Memory virtual
address ranges, no PTE is installed for the ranges.

In the virtual node mode, the ZOID control process forks
the application processes with the CPU affinity to match
the BGP rank mapping. The affinity is preserved across
the execve system call; once a ZCB binary is started, the
sched_setaffinity system call is disabled for that process
so that it cannot migrate away to another core. Setting CPU
affinity is not needed in the SMP (one task per node) mode.

3.4 Page Fault

The rounded rectangle in Figure 3 denotes the extension
that we have added for Big Memory handling. If a PTE
is found for a faulting address, the handler simply fills in
a TLB entry from the PTE. This situation never happens
for the Big Memory region since Big Memory does not have
an associated PTE. If no PTE is found, our extension han-
dler is invoked. It checks whether the current task is a ZCB
and whether the faulting address is within the Big Mem-
ory virtual address ranges. If so, it installs the TLB en-
tries that cover the Big Memory region. Note that a set of
TLB entries is chosen based on the faulting CPU core, since
the Big memory process never migrates in the virtual node
mode. The Big Memory TLB entries stay installed until

2PowerPC bit ordering

the process is scheduled out; all the TLB entries except ker-
nel lowmem and MMIO TLB entries are invalidated at the
context switch. Within a process context, no TLB misses
occur.

TLB miss
Yes Install TLB
from PTE
| No

|
Zepto Yes Within Yes Install
Binary? bigmem? Blg Memory TLBs

No No Zepto Big Memory
|

Extension
‘@ Yes

No
Memory Fault!

Install PTE
from VMA

Figure 3: Big Memory Page Fault Handler

4. PERFORMANCE EVALUATION
4.1 Node Characteristics

To evaluate single node characteristics, we ran our OS
noise measurement benchmark Selfish [3] and a random mem-
ory access benchmark.

The single-node Selfish benchmark reported a 0.05% OS
noise ratio (see the upper graph in Figure 4) on a 2.6.29-
based Linux kernel, which is the base kernel for our cur-
rent work. Previously we obtained approx. 0.03% from the
benchmark on a 2.6.19-based Linux kernel; the OS noise ra-
tio has thus slightly increased.

We extended the benchmark to be able to capture the OS
noise events in a parallel fashion. We ran it in the virtual
node (four tasks per node) mode and found that the OS
noise is unbalanced between cores (see the lower graph in
Figure 4). As the figure shows, one of the cores has sig-
nificantly different behavior. Core 1 experiences ten times
higher OS noise than do the other cores: 0.53% noise ratio,
with 0.05% on the remaining cores; the average OS noise
ratio is 0.17%. We have identified this additional OS noise
to be caused by the BGP kernel console driver.

Our random memory access benchmark first allocates an
array and sets a random number in each array element.
Then it reads an array element and use that value as an
index for the next element.

We ran the benchmark in two modes: binding and non-
binding. Binding means that the processor affinity mask is
explicitly set for each MPI task so that the tasks run on
separate cores and process migration never occurs. Non-
binding means that the default process scheduling policy of
the Linux kernel is in use, so migrations can occur. Note
that Big Memory requires the use of binding.

Figure 5 shows the results obtained by running the bench-
mark on all four cores under CNK, Linux with 64 KB pages,
and Linux with Big Memory. We confirmed that there is es-
sentially no performance gap between Linux with Big Mem-
ory and CNK. The memory performance on Linux with
64 KB pages dramatically drops after 4 MB because of TLB
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misses; the maximum memory area that can be covered by
64 KB TLB entries is slightly less than 4 MB because sev-
eral TLBs are reserved for kernel lowmem mapping, MMIO,
and other system purposes. Also, low performance in the
nonbinding mode shows that the Linux process scheduler
can be a source of significant performance problems if left
unchecked.
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Figure 5: Memory Benchmarks: CNK vs Linux with
Big Memory vs Linux with 64 KB page

4.2 MPI Microbenchmark

We ran a custom MPI microbenchmark to compare CNK
and Linux with Big Memory in the virtual node mode.

Figure 6, top, shows the results of MPI latency measure-
ments. With MPI Barrier, the latency gap between CNK
and ZeptoOS slightly increases as the total core count in-
creases. We believe the OS noise contributes to this, but
the effect is minor and is unlikely to be observed in real
applications (as they do not normally invoke MPI Barrier
400,000 times per second). In the MPI Send/Recv ping-
pong latency benchmark, Linux with Big Memory performs

slightly better than CNK. The message size is 4 bytes. The
performance is due to the fact that the low-level userspace
library, which converts the virtual to physical memory ad-
dresses for the DMA unit, has less overhead under ZeptoOS
than under CNK. Again, this is unlikely to be a significant
effect in real applications.

Figure 6, bottom, shows the bandwidth measurements. In
both the Send/Recv and Broadcast benchmark, the perfor-
mance gap between ZeptoOS and CNK is small (0.1-0.5%)
and does not exhibit any scalability degradation. The in-
dividual message size is 16 MB. Both communication meth-
ods use the torus DMA unit, which offloads the CPU, mak-
ing the communication less sensitive to noise. With Allre-
duce, the performance gap is slightly larger (0.9-1.7%), but
again there are no signs of any scalability problems. AllRe-
duce uses the collective network, which does not have the
DMA feature, so the CPU has to take care of copying the
message packets from main memory to the network device.
Thus, AllReduce is more noise-sensitive than is Send/Recv
or Bcast.

4.3 NAS Parallel Benchmarks

We ran NAS Parallel Benchmarks (NPB) version 3.3 to
compare Linux with 64 kB pages, Linux with Big Memory,
and CNK. We chose the EP and FT benchmarks. EP (Em-
barrassingly Parallel) generates independent Gaussian ran-
dom variates using the Marsaglia polar method and does not
invoke MPI primitives during computation. FT performs a
fast fourier transform to solve a three-dimensional partial
differential equation and heavily depends on MPI_Alltoall,
which could cause scalability problems. We used the same
IBM XL compiler to compile source code in all cases.

Figure 7 shows the results from experiments with class
C problem size, comparing two Linux memory models. In a
strict sense, this comparison is not accurate because not only
the memory models but also the communication stacks used
are different. With Big Memory, we can use highly tuned
BGP communication libraries originally written for CNK.
These do not work with paged memory, however, and fixing
them would be highly nontrivial. Instead, we used a Linux
Ethernet driver built on top of the torus network, devel-
oped by IBM, and ran a stock MPICH library configured for
TCP/IP. We ran with MPICH in two modes: binding and
nonbinding. Even with EP, which is not communication-
intensive, Linux with Big Memory shows a significant ad-
vantage over paged memory. As we observed in the random
access benchmark result, the nonbinding benchmark per-
forms poorly.

Figure 8 shows the results from experiments with class E
problem size, comparing CNK and Linux with Big Memory.
With EP, Linux is slower than CNK by 1.4-1.9%. EP is
a CPU-intensive program and stresses the memory system.
We suspect that Linux timer interrupts and other kernel ac-
tivities thrash the L1 cache, resulting in these differences.
With FT, Linux is faster than CNK by 0.2-3.9%. We as-
sume that, just like with earlier latency measurements, the
efficiency of the userspace address translation layer imple-
mentation under Linux contributes to this gain. In either
cases, there are no signs of any scalability problems.

4.4 Nek5000

Nek5000 is a mature DNS/LES computational fluid dy-
namics solver developed at the Mathematics and Computer
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Science Division of Argonne National Laboratory. Nek5000
simulates unsteady incompressible fluid flow with thermal
and passive scalar transport. It can handle general two- and
three-dimensional domains described by isoparametric quad
or hex elements. In addition, it can be used to compute
axisymmetric flows. It is a time-stepping-based code and
does not currently support steady-state solvers, other than
steady Stokes and steady heat conduction.

Figure 9 shows the results from Nek5000 of fluid flow sim-
ulation in a T-Junction, comparing CNK and Linux with
Big Memory. The Nek5000 application runs with only 1.2%
performance loss on Linux with Big Memory at 32 K cores.
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Figure 9: NEK: CNK vs Linux with Big Memory

S. RELATED WORK

Linux provides support for large memory pages through
the hugetlbfs [4] mechanism. Using these pages dramatically
reduces the number of TLB misses, improving performance.
However, this feature is not transparent—applications need
to invoke the mmap system call explicitly to make that mem-
ory available, and by then it is too late to use the memory
for segments such as application text, heap, or stack.

Shmueli et al. [21] evaluated Linux on the compute nodes
of Blue Gene/L and identified TLB misses as a major source
of node-level performance degradation. To mitigate the prob-
lem, they used hugetlbfs. They employed libhugetlbfs [11],
a wrapper library that semi-transparently maps an appli-
cation’s text, data, and heap to a memory area backed by
hugetlbfs. Their approach allowed Linux to achieve a per-
formance comparable to CNK, both at the node level and
systemwide. However, hugetlbfs does not eliminate the TLB
misses completely, so they can still be a performance prob-
lem for some applications. This approach also does not help
with programming the DMA engine on BGP. Moreover, the
approach requires dynamic linking, while on Blue Gene al-
most all executables are statically linked, since this is the
compiler default on that platform. The authors also found
that dynamic linking introduced an overhead when accessing
floating-point constants.

Ferreira et al. [9] did an empirical study of HPC appli-
cations that are sensitive to OS noise and the impact sys-
tem design parameters have on them. The work examined
the effects of varying the ratio of peak network bandwidth
to compute performance and showed how it influences OS
noise.

De et al. [5] identified that about 63% of operating system
jitter came from timer interrupts. The rest of the jitter was
shown to originate from other, mostly nonessential operat-
ing system services. They introduced a tool to identify new
sources of operating system jitter. In their later work [6]
they show that by synchronizing jitter, one can significantly
reduce performance degradation. They also introduce a sys-
tem that can predict scalability based on jitter traces and
other system latency measurements [7].

6. CONCLUSIONS

Memory management overhead and process scheduling
policies remain an obstacle on the road toward successful
adoption of Linux on large-scale massively parallel systems.
This paper described how we incorporated high-performance
mode into Linux kernel while keeping other Linux features
intact. We presented the implementation details and latest
performance data for Big Memory—an alternative, trans-
parent, high-performance memory space that we recently
reimplemented as a per core resource, enabling the execution
of up to four MPI tasks per Blue Gene/P compute node. We
compared Big Memory with regular Linux paged memory as
well as with the memory architecture of IBM’s lightweight
kernel CNK. The results show that our ZeptoOS Linux ker-
nel nearly matches the performance of the CNK. We did not
observe any significant performance degradation from OS
noise caused by Linux in communication and computation
benchmarks at a scale of up to 32K cores, although irregu-
lar OS events are still present, including order-of-magnitude
differences in OS noise ratio between cores. We also found
that the efficiency of the virtual-to-physical address trans-
lation for the DMA engine can impact the performance of
some workloads, giving our implementation under Linux a
slight advantage.

We are entering a massive multicore processor era. Ir-
regular OS noise like what we have observed might impact
the node scalability of future systems. We will continue to
study the performance of Linux with larger and more com-
plex HPC applications on existing systems and will work
to identify scalability bottlenecks on emerging and future
platforms. Re-designing the kernel mechanisms as we find
problems will continue to be part of our future research.
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