
Argonne National Laboratory is managed by
The University of Chicago for the U.S. Department of Energy

Advanced MPI:
I/O and One-Sided Communication
William Gropp, Rusty Lusk, Rob Ross, and Rajeev Thakur

Mathematics and Computer Science Division

2

Table of Contents

• Conway’s Game of Life – 8
– Parallel I/O and Life – 19
– Exchanging Data with RMA – 49
– Life with 2D Block-Block Decomposition – 72

• Sparse Matrix I/O – 88
– Writing Sparse Matrices – 117

• pNeo: Modeling the Human Brain – 118
• Passive Target RMA – 128
• Improving Performance – 157

– Tuning MPI-IO – 158
– Tuning RMA – 195

• Conclusions - 214

3

Outline

Before Lunch
• Introduction

– MPI-1 Status, MPI-2 Status
– C++ and Fortran90

• Life, 1D Decomposition
– point-to-point
– checkpoint/restart

• stdout
• MPI-IO
• PnetCDF

– RMA
• fence
• post/start/complete/wait

After Lunch
• Life, 2D Decomposition

– point-to-point
– RMA

• Sparse Matrix I/O
– CSR format
– checkpoint/restart

• stdout
• MPI-IO

• pNeo application
• Passive Target RMA
• Tuning

– I/O tuning
– RMA tuning

• Conclusions

4

MPI-1

• MPI is a message-passing library interface standard.
– Specification, not implementation
– Library, not a language
– Classical message-passing programming model

• MPI was defined (1994) by a broadly-based group of parallel
computer vendors, computer scientists, and applications
developers.
– 2-year intensive process

• Implementations appeared quickly and now MPI is taken for
granted as vendor-supported software on any parallel machine.

• Free, portable implementations exist for clusters (MPICH, LAM,
OpenMPI) and other environments (MPICH)

5

MPI-2

• Same process of definition by MPI Forum
• MPI-2 is an extension of MPI

– Extends the message-passing model.
• Parallel I/O
• Remote memory operations (one-sided)
• Dynamic process management

– Adds other functionality
• C++ and Fortran 90 bindings

– similar to original C and Fortran-77 bindings
• External interfaces
• Language interoperability
• MPI interaction with threads

6

MPI-2 Implementation Status

• Most parallel computer vendors now support MPI-2 on
their machines
– Except in some cases for the dynamic process

management functions, which require interaction
with other system software

• Cluster MPIs, such as MPICH2 and LAM, support most
of MPI-2 including dynamic process management

• Our examples here have all been run on MPICH2

7

Our Approach in this Tutorial

• Example driven
– Structured data (Life)
– Unstructured data (Sparse Matrix)
– Unpredictable communication (pNeo)
– Passive target RMA (global arrays and MPI mutex)

• Show solutions that use the MPI-2 support for parallel I/O
and RMA
– Walk through actual code

• We assume familiarity with MPI-1

8

Conway’s Game of Life

• A cellular automata
– Described in 1970 Scientific American
– Many interesting behaviors; see:

• http://www.ibiblio.org/lifepatterns/october1970.html

• Program issues are very similar to those for codes that
use regular meshes, such as PDE solvers
– Allows us to concentrate on the MPI issues

9

Rules for Life

• Matrix values A(i,j) initialized to 1 (live) or 0 (dead)
• In each iteration, A(i,j) is set to

– 1(live) if either
• the sum of the values of its 8 neighbors is 3, or
• the value was already 1 and the sum of its 8 neighbors is 2

or 3
– 0 (dead) otherwise

j

i

j-1 j+1

i+1

i-1

10

Implementing Life

• For the non-parallel version, we:
– Allocate a 2D matrix to hold state

• Actually two matrices, and we will swap them between steps
– Initialize the matrix

• Force boundaries to be “dead”
• Randomly generate states inside

– At each time step:
• Calculate each new cell state based on previous cell states

(including neighbors)
• Store new states in second matrix
• Swap new and old matrices

11

Steps in Designing the Parallel Version

• Start with the “global” array as the main object
– Natural for output – result we’re computing

• Describe decomposition in terms of global array
• Describe communication of data, still in terms of the

global array
• Define the “local” arrays and the communication

between them by referring to the global array

12

Step 1: Description of Decomposition

• By rows (1D or row-block)
– Each process gets a group of adjacent rows

• Later we’ll show a 2D decomposition

Columns

R
ow

s

13

Step 2: Communication

• “Stencil” requires read access to data from neighbor cells

• We allocate extra space on each process to store neighbor cells
• Use send/recv or RMA to update prior to computation

14

Step 3: Define the Local Arrays

• Correspondence between the local and global array
• “Global” array is an abstraction; there is no one global

array allocated anywhere
• Instead, we compute parts of it (the local arrays) on

each process
• Provide ways to output the global array by combining

the values on each process (parallel I/O!)

15

Boundary Regions

• In order to calculate next state of cells in edge rows,
need data from adjacent rows

• Need to communicate
these regions at each
step
– First cut: use isend

and irecv
– Revisit with RMA later

16

Life Point-to-Point Code Walkthrough

• Points to observe in the code:
– Handling of command-line arguments
– Allocation of local arrays
– Use of a routine to implement halo exchange

• Hides details of exchange
mdatamatrix

Allows us to use matrix[row][col] to address elements

See mlife.c pp. 1-8 for code example.

17

Note: Parsing Arguments

• MPI standard does not guarantee that command line arguments
will be passed to all processes.
– Process arguments on rank 0
– Broadcast options to others

• Derived types allow one bcast to handle most args
– Two ways to deal with strings

• Big, fixed-size buffers
• Two-step approach: size first, data second (what we do in

the code)

See mlife.c pp. 9-10 for code example.

18

Point-to-Point Exchange

• Duplicate communicator to ensure communications do
not conflict

• Non-blocking sends and receives allow implementation
greater flexibility in passing messages

See mlife-pt2pt.c pp. 1-3 for code example.

19

Parallel I/O and Life

20

Supporting Checkpoint/Restart

• For long-running applications, the cautious user checkpoints
• Application-level checkpoint involves the application saving

its own state
– Portable!

• A canonical representation is preferred
– Independent of number of processes

• Restarting is then possible
– Canonical representation aids restarting with a different

number of processes

21

Defining a Checkpoint

• Need enough to restart
– Header information

• Size of problem (e.g. matrix dimensions)
• Description of environment (e.g. input parameters)

– Program state
• Should represent the global (canonical) view of the

data
• Ideally stored in a convenient container

– Single file!
• If all processes checkpoint at once, naturally a parallel,

collective operation

22

Life Checkpoint/Restart API

• Define an interface for checkpoint/restart for the row-block
distributed Life code

• Five functions:
– MLIFEIO_Init
– MLIFEIO_Finalize
– MLIFEIO_Checkpoint
– MLIFEIO_Can_restart
– MLIFEIO_Restart

• All functions are collective
• Once the interface is defined, we can implement it for

different back-end formats

23

Life Checkpoint

• MLIFEIO_Checkpoint(char *prefix,
int **matrix,
int rows,
int cols,
int iter,
MPI_Info info);

• Prefix is used to set filename
• Matrix is a reference to the data to store
• Rows, cols, and iter describe the data (header)
• Info is used for tuning purposes (more later!)

24

Life Checkpoint (Fortran)

• MLIFEIO_Checkpoint(prefix, matrix,
rows, cols, iter, info)

character*(*) prefix
integer rows, cols, iter
integer matrix(rows,cols)
integer info

• Prefix is used to set filename
• Matrix is a reference to the data to store
• Rows, cols, and iter describe the data (header)
• Info is used for tuning purposes (more later!)

25

stdio Life Checkpoint Code
Walkthrough

• Points to observe
– All processes call checkpoint routine

• Collective I/O from the viewpoint of the program
– Interface describes the global array
– Output is independent of the number of processes

See mlife-io-stdout.c pp. 1-2 for code example.

26

Life stdout “checkpoint”

• The first implementation is one that simply prints out the
“checkpoint” in an easy-to-read format

• MPI standard does not specify that all stdout will be
collected in any particular way
– Pass data back to rank 0 for printing
– Portable!
– Not scalable, but ok for the purpose of stdio

See mlife-io-stdout.c pp. 3 for code example.

27

Describing Data

• Lots of rows, all the same size
– Rows are all allocated as one big block
– Perfect for MPI_Type_vector

MPI_Type_vector(count = myrows,
blklen = cols, stride = cols+2, MPI_INT, &vectype);

– Second type gets memory offset right
MPI_Type_hindexed(count = 1, len = 1,

disp = &matrix[1][1], vectype, &type);

matrix[1][0..cols-1]

matrix[myrows][0..cols-1]

See mlife-io-stdout.c pp. 4-6 for code example.

28

Describing Data (Fortran)

• Lots of rows, all the same size
– Rows are all allocated as one big block
– Perfect for MPI_Type_vector

Call MPI_Type_vector(count = myrows,
blklen = cols, stride = cols+2, MPI_INTEGER, vectype, ierr)

Matrix(1,0:cols-1)

Matrix(myrows,0:cols-1)

29

Life Checkpoint/Restart Notes

• MLIFEIO_Init
– Duplicates communicator to avoid any collisions with other

communication
• MLIFEIO_Finalize

– Frees the duplicated communicator
• MLIFEIO_Checkpoint and _Restart

– MPI_Info parameter is used for tuning I/O behavior

Note: Communicator duplication may not always be necessary, but
is good practice for safety

See mlife-io-stdout.c pp. 1-8 for code example.

30

Parallel I/O and MPI

• The stdio checkpoint routine works but is not parallel
– One process is responsible for all I/O
– Wouldn’t want to use this approach for real

• How can we get the full benefit of a parallel file
system?
– We first look at how parallel I/O works in MPI
– We then implement a fully parallel checkpoint

routine
• Because it will use the same interface, we can
use it without changing the rest of the parallel life
code

31

Why MPI is a Good Setting for Parallel
I/O

• Writing is like sending and reading is like receiving.
• Any parallel I/O system will need:

– collective operations
– user-defined datatypes to describe both memory and file

layout
– communicators to separate application-level message

passing from I/O-related message passing
– non-blocking operations

• I.e., lots of MPI-like machinery

32

What does Parallel I/O Mean?

• At the program level:
– Concurrent reads or writes from multiple processes

to a common file
• At the system level:

– A parallel file system and hardware that support
such concurrent access

33

Collective I/O and MPI
• A critical optimization in parallel I/O
• All processes (in the communicator) must call the collective I/O

function
• Allows communication of “big picture” to file system

– Framework for I/O optimizations at the MPI-IO layer
• Basic idea: build large blocks, so that reads/writes in I/O system

will be large
– Requests from different processes may be merged together
– Particularly effective when the accesses of different processes

are noncontiguous and interleaved

Small individual
requests

Large collective
access

34

Collective I/O Functions

• MPI_File_write_at_all, etc.
– _all indicates that all processes in the group specified

by the communicator passed to MPI_File_open will
call this function

– _at indicates that the position in the file is specified as
part of the call; this provides thread-safety and clearer
code than using a separate “seek” call

• Each process specifies only its own access information —
the argument list is the same as for the non-collective
functions

35

MPI-IO Life Checkpoint Code Walkthrough

• Points to observe
– Use of a user-defined MPI datatype to handle the

local array
– Use of MPI_Offset for the offset into the file

• “Automatically” supports files larger than 2GB if
the underlying file system supports large files

– Collective I/O calls
• Extra data on process 0

See mlife-io-mpiio.c pp. 1-2 for code example.

36

Life MPI-IO Checkpoint/Restart

• We can map our collective checkpoint directly to a single
collective MPI-IO file write: MPI_File_write_at_all
– Process 0 writes a little extra (the header)

• On restart, two steps are performed:
– Everyone reads the number of rows and columns from

the header in the file with MPI_File_read_at_all
• Sometimes faster to read individually and bcast (see

later example)
– If they match those in current run, a second collective

call used to read the actual data
• Number of processors can be different

See mlife-io-mpiio.c pp. 3-6 for code example.

37

Describing Header and Data

• Data is described just as before
• Create a struct wrapped around this to describe the

header as well:
– no. of rows
– no. of columns
– Iteration no.
– data (using previous type)

See mlife-io-mpiio.c pp. 7 for code example.

38

Placing Data in Checkpoint

Rows Columns Iteration

Global Matrix

File Layout

Note: We store the matrix in global, canonical order with no ghost cells.

See mlife-io-mpiio.c pp. 9 for code example.

39

The Other Collective I/O Calls

•MPI_File_seek
•MPI_File_read_all
•MPI_File_write_all
•MPI_File_read_at_all
•MPI_File_write_at_all
•MPI_File_read_ordered
•MPI_File_write_ordered

combine seek and I/O
for thread safety

use shared file pointer

like Unix I/O

40

Portable Checkpointing

41

Portable File Formats

• Ad-hoc file formats
– Difficult to collaborate
– Cannot leverage post-processing tools

• MPI provides external32 data encoding
• High level I/O libraries

– netCDF and HDF5
– Better solutions than external32

• Define a “container” for data
– Describes contents
– May be queried (self-describing)

• Standard format for metadata about the file
• Wide range of post-processing tools available

42

File Interoperability in MPI-IO

• Users can optionally create files with a portable binary data
representation

• “datarep” parameter to MPI_File_set_view
• native - default, same as in memory, not portable
• external32 - a specific representation defined in MPI,

(basically 32-bit big-endian IEEE format), portable across
machines and MPI implementations

• internal – implementation-defined representation
providing an implementation-defined level of portability
– Not used by anyone we know of…

43

Higher Level I/O Libraries

• Scientific applications work with structured data and desire
more self-describing file formats

• netCDF and HDF5 are two popular “higher level” I/O libraries
– Abstract away details of file layout
– Provide standard, portable file formats
– Include metadata describing contents

• For parallel machines, these should be built on top of MPI-IO
– HDF5 has an MPI-IO option

• http://hdf.ncsa.uiuc.edu/HDF5/

44

Parallel netCDF (PnetCDF)

• (Serial) netCDF
– API for accessing multi-dimensional data

sets
– Portable file format
– Popular in both fusion and climate

communities
• Parallel netCDF

– Very similar API to netCDF
– Tuned for better performance in today’s

computing environments
– Retains the file format so netCDF and

PnetCDF applications can share files
– PnetCDF builds on top of any MPI-IO

implementation

ROMIOROMIO

PnetCDFPnetCDF

PVFS2PVFS2

Cluster

IBM MPIIBM MPI

PnetCDFPnetCDF

GPFSGPFS

IBM SP

45

I/O in netCDF and PnetCDF

• (Serial) netCDF
– Parallel read

• All processes read the file independently
• No possibility of collective optimizations

– Sequential write
• Parallel writes are carried out by shipping

data to a single process
• Just like our stdout checkpoint code

• PnetCDF
– Parallel read/write to shared netCDF file
– Built on top of MPI-IO which utilizes optimal

I/O facilities of the parallel file system and
MPI-IO implementation

– Allows for MPI-IO hints and datatypes for
further optimization

P0 P1 P2 P3

netCDF

Parallel File System

Parallel netCDF

P0 P1 P2 P3

Parallel File System

46

Life PnetCDF Checkpoint/Restart

• Third implementation of MLIFEIO interface
• Stores matrix as a two-dimensional array of integers in the

netCDF file format
– Same canonical ordering as in MPI-IO version

• Iteration number stored as an attribute

47

PnetCDF Life Checkpoint Code
Walkthrough

• Points to observe
– Creating a netCDF file
– Defining dimensions
– Defining variables
– Storing attributes
– Discovering dimensions on restart

See mlife-io-pnetcdf.c pp. 1-6 for code example.

48

Discovering Variable Dimensions

• Because netCDF is self-describing, applications can
inquire about data in netCDF files:
err = ncmpi_inq_dimlen(ncid,

dims[0], &coldimsz);

• Allows us to discover the dimensions of our matrix at
restart time

See mlife-io-pnetcdf.c pp. 7-8 for code example.

49

Exchanging Data with RMA

50

Revisiting Mesh Communication

• Recall how we designed the parallel implementation
– Determine source and destination data

• Do not need full generality of send/receive
– Each process can completely define what data needs to

be moved to itself, relative to each processes local mesh
• Each process can “get” data from its neighbors

– Alternately, each can define what data is needed by the
neighbor processes
• Each process can “put” data to its neighbors

51

Remote Memory Access
• Separates data transfer from indication of completion

(synchronization)
• In message-passing, they are combined

store
send receive

load

Proc 0 Proc 1 Proc 0 Proc 1

fence
put
fence

fence

fence
load

store
fence fence

get

or

52

Remote Memory Access in MPI-2
(also called One-Sided Operations)

• Goals of MPI-2 RMA Design
– Balancing efficiency and portability across a wide class

of architectures
• shared-memory multiprocessors
• NUMA architectures
• distributed-memory MPP’s, clusters
• Workstation networks

– Retaining “look and feel” of MPI-1
– Dealing with subtle memory behavior issues: cache

coherence, sequential consistency

53

Remote Memory Access Windows and
Window Objects

Get

Put

Process 2

Process 1

Process 3

Process 0

= address spaces = window object

window

54

Basic RMA Functions for Communication

• MPI_Win_create exposes local memory to RMA operation by
other processes in a communicator
– Collective operation
– Creates window object

• MPI_Win_free deallocates window object

• MPI_Put moves data from local memory to remote memory
• MPI_Get retrieves data from remote memory into local memory
• MPI_Accumulate updates remote memory using local values
• Data movement operations are non-blocking
• Subsequent synchronization on window object needed to

ensure operation is complete

55

Performance of RMA

Caveats: On SGI, MPI_Put uses specially allocated memory

56

Advantages of RMA Operations

• Can do multiple data transfers with a single
synchronization operation
– like BSP model

• Bypass tag matching
– effectively precomputed as part of remote offset

• Some irregular communication patterns can be more
economically expressed

• Can be significantly faster than send/receive on
systems with hardware support for remote memory
access, such as shared memory systems

57

Irregular Communication Patterns with RMA

• If communication pattern is not known a priori, the
send-recv model requires an extra step to determine
how many sends-recvs to issue

• RMA, however, can handle it easily because only the
origin or target process needs to issue the put or get
call

• This makes dynamic communication easier to code in
RMA

58

RMA Window Objects

MPI_Win_create(base, size, disp_unit, info,
comm, win)

• Exposes memory given by (base, size) to RMA
operations by other processes in comm

•win is window object used in RMA operations
•disp_unit scales displacements:

– 1 (no scaling) or sizeof(type), where window is an
array of elements of type type

– Allows use of array indices
– Allows heterogeneity

59

RMA Communication Calls

•MPI_Put - stores into remote memory

•MPI_Get - reads from remote memory

•MPI_Accumulate - updates remote memory

• All are non-blocking: data transfer is described, maybe
even initiated, but may continue after call returns

• Subsequent synchronization on window object is needed
to ensure operations are complete

60

Put, Get, and Accumulate

• MPI_Put(origin_addr, origin_count,
origin_datatype,
target_rank, target_offset,
target_count, target_datatype,
window)

• MPI_Get(...)

• MPI_Accumulate(..., op, ...)

• op is as in MPI_Reduce, but no user-defined operations are
allowed

61

The Synchronization Issue

• Issue: Which value is retrieved?
– Some form of synchronization is required between

local load/stores and remote get/put/accumulates
• MPI provides multiple forms

local
stores

MPI_Get

62

Synchronization with Fence

Simplest methods for synchronizing on window objects:
• MPI_Win_fence - like barrier, supports BSP model

Process 0

MPI_Win_fence(win)

MPI_Put
MPI_Put

MPI_Win_fence(win)

Process 1

MPI_Win_fence(win)

MPI_Win_fence(win)

63

Mesh Exchange Using MPI RMA

• Define the windows
– Why – safety, options for performance (later)

• Define the data to move
• Mark the points where RMA can start and where it

must complete (e.g., fence/put/put/fence)

64

Outline of 1D RMA Exchange

• Create Window object
• Computing target offsets
• Exchange operation

65

Computing the Offsets

• Offset to top ghost row
– 1

• Offset to bottom ghost row
– 1 + (# cells in a row)*(# of rows – 1)
– = 1 + (nx + 2)*(e – s + 2)

e

s

nx

a(1,e)

a(1,s)

66

Fence Life Exchange Code Walkthrough

• Points to observe
– MPI_Win_fence is used to separate RMA accesses from

non-RMA accesses
• Both starts and ends data movement phase

– Any memory may be used
• No special malloc or restrictions on arrays

– Uses same exchange interface as the point-to-point
version

See mlife-fence.c pp. 1-3 for code example.

67

Comments on Window Creation

• MPI-2 provides MPI_SIZEOF for Fortran users
– Not universally implemented
– Use MPI_Type_size for portability

• Using a displacement size corresponding to a basic
type allows use of put/get/accumulate on
heterogeneous systems
– Even when the sizes of basic types differ

• Displacement size also allows easier computation of
offsets in terms of array index instead of byte offset

68

More on Fence

• MPI_Win_fence is collective over the group of the
window object

• MPI_Win_fence is used to separate, not just complete,
RMA and local memory operations
– That is why there are two fence calls

• Why?
– MPI RMA is designed to be portable to a wide

variety of machines, including those without cache
coherent hardware (including some of the fastest
machines made)

– See performance tuning for more info

69

Scalable Synchronization with
Post/Start/Complete/Wait
• Fence synchronization is not scalable because it is

collective over the group in the window object
• MPI provides a second synchronization mode: Scalable

Synchronization
– Uses four routines instead of the single MPI_Win_fence:

• 2 routines to mark the begin and end of calls to RMA
routines
– MPI_Win_start, MPI_Win_complete

• 2 routines to mark the begin and end of access to the
memory window
– MPI_Win_post, MPI_Win_wait

• P/S/C/W allows synchronization to be performed only
among communicating processes

70

Synchronization with P/S/C/W

• Origin process calls MPI_Win_start and MPI_Win_complete
• Target process calls MPI_Win_post and MPI_Win_wait

Process 0

MPI_Win_start(target_grp)

MPI_Put
MPI_Put

MPI_Win_complete(target_grp)

Process 1

MPI_Win_post(origin_grp)

MPI_Win_wait(origin_grp)

71

P/S/C/W Life Exchange Code
Walkthrough

• Points to Observe
– Use of MPI group routines to describe neighboring

processes
– No change to MPI_Put calls

• You can start with MPI_Win_fence, then switch to
P/S/C/W calls if necessary to improve
performance

See mlife-pscw.c pp. 1-4 for code example.

72

Life with 2D Block-Block
Decomposition

73

Why Use a 2D Decomposition?

• More scalable due to reduced communication requirements
– We can see why with a simple communication model.
– Let the time to move n words from one process to another be

Tc = s + rn
– 1D decomposition time on p processes is

• T = 2(s+rn) + T1/p
– 2D decomposition time on p processes is

• T = 4(s + r(n/√p)) + T1/p
– For large n, 2D decomposition has much smaller

communication time
– (Even stronger effect for 3D decompositions of 3D problems)

74

Designing the 2D Decomposition

• Go back to global mesh view
• Define decomposition
• Define data to move
• Define local mesh

75

Mesh Exchange for 2D Decomposition

• Creating the datatypes
• Using fence
• Using scalable synchronization

76

Outline of 2D RMA Exchange

• Create Window Object
• Computing target offsets

– Even for less regular decompositions
• Creating Datatypes
• Exchange Operation

77

Creating the Window

MPI_Win win;
int *localMesh;

/* nx is the number of (non-ghost) values in x, ny
in y */
nx = ex - sx + 1;
ny = ey - sy + 1;
MPI_Win_create(localMesh,

(ex-sx+3)*(ey-sy+3)*sizeof(int),
sizeof(int), MPI_INFO_NULL,
MPI_COMM_WORLD, &win);

• Nothing new here

78

Creating the Window (C++)

MPI::Win win;
int *localMesh;

// nx is the number of (non-ghost) values in x,
// ny in y
nx = ex - sx + 1;
ny = ey - sy + 1;
win = MPI::Win::Create(localMesh,

(ex-sx+3)*(ey-sy+3)*sizeof(int),
sizeof(int), MPI::INFO_NULL,
MPI::COMM_WORLD);

• Nothing new here

79

Creating the Window (Fortran)

integer win, sizedouble, ierr
double precision a(sx-1:ex+1,sy-1:ey+1)

! nx is the number of (non-ghost) values in x, ny in y
nx = ex - sx + 1
ny = ey - sy + 1
call MPI_TYPE_SIZE(MPI_DOUBLE_PRECISION, sizedouble,&

ierr)
call MPI_WIN_CREATE(a, (ex-sx+3)*(ey-sy+3)*sizedouble, &

sizedouble, MPI_INFO_NULL, &
MPI_COMM_WORLD, win, ierr)

• Nothing new here

80

Computing Target Offsets
• Similar to 1D, but may include some computation since neighbor

with shared boundary still needs to know the size of the other
dimension as that is needed to compute the offsets

81

Creating Datatypes for Columns

MPI_Datatype coltype;
/* Vector type used on origin process */
MPI_Type_vector(1, ny, nx+2, MPI_INT, &coltype);
MPI_Type_commit(&coltype);

GLastRow

GFirstRow

LCols

LRows

GFirstCol GLastCol

Stride
elements

• For both the left and right side

82

Creating Datatypes for Columns (C++)

MPI::Datatype coltype;
// Vector type used on origin process
coltype = MPI::Type::Create_vector(1, ny, nx+2, MPI::INT);
coltype.Commit();

GLastRow

GFirstRow

LCols

LRows

GFirstCol GLastCol

Stride# elements

• For both the left and right side

83

Creating Datatypes for Columns
(Fortran)

integer coltype
! Vector type used on origin process
call MPI_TYPE_VECTOR(1, ny, nx+2,&

MPI_DOUBLE_PRECISION, &
coltype, ierr)

call MPI_TYPE_COMMIT(coltype, ierr)

sy

ey

nx

ny

sx ex

Stride
elements

• For both the left and right side

84

2D Life Code Walkthrough

• Points to observe
– More complicated than 1D!
– Communication of noncontiguous regions uses derived

datatypes
• For the RMA version (mlife2d-fence)

– Be careful in determining the datatype for the target process
– Be careful in determining the offset
– MPI_Win_fence must return before data may be used on

target

See mlife2d.c, mlife2d-pt2pt.c, mlife2d-fence.c for code examples.

85

LUNCH

86

I/O for General Distributed Data

87

Handling Irregular Data Structures

• One strength of MPI is that you can handle any kind of
situation (because you have to do much of the work
yourself)

• Example: sparse matrix operations, such as used in
PDE codes

88

Sparse Matrix I/O

• We have seen how to use MPI-I/O with regular data
structures. What about irregular data structures?
– Each process has a different amount of data

• For a simple example, we look at I/O for sparse
matrices
– Similar code can be used for unstructured meshes

• First more on I/O, then the example

89

Sparse Matrix I/O Characteristics

• Local to global data mapping not known by each
process
– Depends on number of nonzeros on previous ranks!

• Will need to communicate to determine relative
positions before performing I/O

• Will use independent I/O in some cases
• Will read noncontiguous regions from file

90

Independent I/O with MPI-IO

91

Writing to a File

• Use MPI_File_write or MPI_File_write_at
• Use MPI_MODE_WRONLY or MPI_MODE_RDWR as the

flags to MPI_File_open
• If the file doesn’t exist previously, the flag
MPI_MODE_CREATE must also be passed to
MPI_File_open

• We can pass multiple flags by using bitwise-or ‘|’ in C, or
addition ‘+” in Fortran

92

Ways to Access a Shared File

•MPI_File_seek
•MPI_File_read
•MPI_File_write
•MPI_File_read_at
•MPI_File_write_at
•MPI_File_read_shared
•MPI_File_write_shared

combine seek and I/O
for thread safety

use shared file pointer

like Unix I/O

93

Using Explicit Offsets

#include “mpi.h”
MPI_Status status;
MPI_File fh;
MPI_Offset offset;

MPI_File_open(MPI_COMM_WORLD, “/pfs/datafile”,
MPI_MODE_RDONLY, MPI_INFO_NULL, &fh)

nints = FILESIZE / (nprocs*INTSIZE);
offset = rank * nints * INTSIZE;
MPI_File_read_at(fh, offset, buf, nints, MPI_INT,

&status);
MPI_Get_count(&status, MPI_INT, &count);
printf(“process %d read %d ints\n”, rank, count);

MPI_File_close(&fh);

94

Using Explicit Offsets (C++)

#include “mpi.h”
MPI::Status status;
MPI::Offset offset;

fh = MPI::FILE::Open(MPI::COMM_WORLD,“/pfs/datafile”,
MPI::MODE_RDONLY, MPI::INFO_NULL);

nints = FILESIZE / (nprocs*sizeof(int));
offset = rank * nints * sizeof(int);
fh.Read_at(offset, buf, nints, MPI::INT, status);
count = status.Get_count(MPI::INT);
cout << “process “ << rank << “read “ << count <<

“ints” << “\n”;
fh.Close();

95

Using Explicit Offsets (Fortran)

include 'mpif.h'

integer status(MPI_STATUS_SIZE)
integer (kind=MPI_OFFSET_KIND) offset

C in F77, see implementation notes (might be integer*8)

call MPI_FILE_OPEN(MPI_COMM_WORLD, '/pfs/datafile', &
MPI_MODE_RDONLY, MPI_INFO_NULL, fh, ierr)

nints = FILESIZE / (nprocs*INTSIZE)
offset = rank * nints * INTSIZE
call MPI_FILE_READ_AT(fh, offset, buf, nints,

MPI_INTEGER, status, ierr)
call MPI_GET_COUNT(status, MPI_INTEGER, count, ierr)
print *, 'process ', rank, 'read ', count, 'integers'

call MPI_FILE_CLOSE(fh, ierr)

96

Why Use Independent I/O?

• Sometimes the synchronization of collective calls is not
natural

• Sometimes the overhead of collective calls outweighs
their benefits
– Example: very small I/O during header reads

97

Sparse Matrix Operations

• A typical operation is a matrix-vector multiply
• Consider an example where the sparse matrix is

produced by one application and you wish to use a
parallel program to solve the linear system

98

Sparse Matrix Format
n – number of rows/cols (matrix dimensions)
nz – number of nonzero elements
ia[0..n] – index into data for first element in row i
ja[0..nz-1] – column location for element j
a[0..nz-1] – actual data

(0, 0, 0, 0, 4
1, 0, 3, 0, 0
5, 2, 0, 0, 8
0, 6, 7, 0, 0
0, 0, 0, 9, 0)

n = 5
nz = 9
ia[] = (0, 1, 3, 6, 8, 9)
ja[] = (4, 0, 2, 0, 1, 4, 1, 2, 3)
a[] = (4, 1, 3, 5, 2, 8, 6, 7, 9)

(known as CSR or AIJ format)
Note: Format isn’t a win for a matrix of this size and density.

99

Steps in Designing the Parallel Version

• Same as our other examples:
– Decomposition
– Communication (for the matrix-vector product)
– Define the local representation

100

Step 1: Description of Decomposition

• By rows (matches equations)
• In practice, the diagonal block and off-diagonal block

are stored separately
– For simplicity, we will ignore this

101

Step 2: Communication
• For matrix-vector product, we would need

– Elements of vector (also distributed in the same way as
the matrix) from other processes corresponding to
columns in which there are non-zero entries

• Can be implemented with send and receive or with RMA
– For simplicity, we will not show this part of the code

102

Step 3: Define the Local Arrays

• Correspondence between the local and global arrays
• “Global” array is an abstraction; there is no one global

array allocated anywhere. Instead, we compute parts
of it (the local arrays) and provide ways to output the
global array by combining the values on each process
(parallel I/O!)

103

I/O in Sparse Matrix Codes

• Define the file format
• We want the file to be independent of the number of

processes
• File requires:

– Header information
• Size of matrix, number of non-zeros
• Name of matrix

– ia, ja, and A vectors

104

Placing Data in Checkpoint

• Unlike data layout in the Life case, positioning of data
for a given process depends on the values held by
other processes (number of nonzero values)!

• Each process has pieces that are spread out in the file
(noncontiguous!)

title n nz ia[0..n]

File Layout

ja[0..nz-1] a[0..nz-1]

105

stdio CSRIO Code Walkthrough

• Points to observe
– MPI_Exscan and MPI_Allreduce to discover starting

locations and complete sizes of vectors
– Passing data to rank 0 for printing
– Converting ia from local to global references

See csrio-stdout.c pp. 1-2 for code example.

106

Writing Sparse Matrices (stdout)

• Steps:
– MPI_Exscan to get count of nonzeros from all previous

processes
• gives starting offset in ja[] and a[] arrays and value to add to

ia[] elements
– MPI_Allreduce to get total count of nonzeros (nz) – gives size of

ja[] and a[] arrays
– Process zero writes header (title, n, nz)
– Copy ia[] and adjust to refer to global matrix locations
– Pass data back to rank zero for printing

title n nz ia[0..n]

File Layout

ja[0..nz-1] a[0..nz-1]

See csrio-stdout.c pp. 3-8 for code example.

107

Noncontiguous I/O in File

• Each process describes the part of the file that it is
responsible for
– This is the “file view”
– Described in MPI with an offset (useful for headers)

and an MPI_Datatype
• Only the part of the file described by the file view is

visible to the process; reads and writes access these
locations

• This provides an efficient way to perform
noncontiguous accesses

108

Noncontiguous Accesses

• Common in parallel applications
• Example: distributed arrays stored in files
• A big advantage of MPI I/O over Unix I/O is the ability

to specify noncontiguous accesses in memory and file
within a single function call by using derived datatypes

• Allows implementation to optimize the access
• Collective I/O combined with noncontiguous accesses

yields the highest performance

109

File Views

• Specified by a triplet (displacement, etype, and
filetype) passed to MPI_File_set_view

• displacement = number of bytes to be skipped from the
start of the file
– E.g., to skip a file header

• etype = basic unit of data access (can be any basic or
derived datatype)

• filetype = specifies which portion of the file is visible to
the process

110

A Simple Noncontiguous File View
Example

etype = MPI_INT

filetype = two MPI_INTs followed by
a gap of four MPI_INTs

displacement filetype filetype and so on...

FILE
head of file

111

Noncontiguous File View Code

MPI_Aint lb, extent;
MPI_Datatype etype, filetype, contig;
MPI_Offset disp;

MPI_Type_contiguous(2, MPI_INT, &contig);
lb = 0; extent = 6 * sizeof(int);
MPI_Type_create_resized(contig, lb, extent, &filetype);
MPI_Type_commit(&filetype);
disp = 5 * sizeof(int); etype = MPI_INT;

MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile",
MPI_MODE_CREATE | MPI_MODE_RDWR, MPI_INFO_NULL, &fh);

MPI_File_set_view(fh, disp, etype, filetype, "native",
MPI_INFO_NULL);

MPI_File_write(fh, buf, 1000, MPI_INT, MPI_STATUS_IGNORE);

112

Noncontiguous File View Code (C++)

MPI::Aint lb, extent;
MPI::Datatype etype, filetype, contig;
MPI::Offset disp;

contig = MPI::Type::Contiguous(2, MPI::INT);
lb = 0; extent = 6 * sizeof(int);
filetype = MPI::Type::Create_resized(contig, lb, extent);
filetype.Commit();
disp = 5 * sizeof(int); etype = MPI::INT;

fh = MPI::File::Open(MPI::COMM_WORLD, "/pfs/datafile",
MPI::MODE_CREATE | MPI::MODE_RDWR, MPI::INFO_NULL);

fh.Set_view(disp, etype, filetype, "native",
MPI::INFO_NULL);

fh.Write(buf, 1000, MPI::INT);

113

Noncontiguous File View Code (Fortran)

integer (kind=MPI_ADDRESS_KIND) lb, extent;
integer etype, filetype, contig;
integer (kind=MPI_OFFSET_KIND) disp;

call MPI_Type_contiguous(2, MPI_INTEGER, contig, ierr)
call MPI_Type_size(MPI_INTEGER, sizeofint, ierr)
lb = 0
extent = 6 * sizeofint
call MPI_Type_create_resized(contig, lb, extent, filetype, ierr)
call MPI_Type_commit(filetype, ierr);
disp = 5 * sizeof(int); etype = MPI_INTEGER

call MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile", &
MPI_MODE_CREATE | MPI_MODE_RDWR, MPI_INFO_NULL, fh, ierr)

call MPI_File_set_view(fh, disp, etype, filetype, "native", &
MPI_INFO_NULL, ierr)

call MPI_File_write(fh, buf, 1000, MPI_INTEGER, MPI_STATUS_IGNORE)

114

MPI-IO CSRIO Code Walkthrough

• Points to observe
– Independent I/O when reading or writing the header
– Use of file views when reading or writing data

See csrio-mpiio.c pp. 1-2 for code example.

115

Reading Sparse Matrix Header

• Steps:
– Process 0 reads the title, n, and nz independently (i.e., using

independent I/O)
• Collective open times can be very large

– MPI_Bcast values to everyone
• MPI_Type_struct used to combine data into a single broadcast

title n nz ia[0..n]

File Layout

ja[0..nz-1] a[0..nz-1]

See csrio-mpiio.c pp. 3-5 for code example.

116

Reading Sparse Matrix Data

• Steps:
– Everyone reads the portion of ia[] for their rows
– MPI_Allreduce to verify that everyone successfully allocated

memory
• Avoids potential deadlocks if one process were to return an

error
– Collectively read data
– Convert ia[] to refer to local matrix

title n nz ia[0..n]

File Layout

ja[0..nz-1] a[0..nz-1]

See csrio-mpiio.c pp. 6-9 for code example.

117

Writing Sparse Matrices

• Steps:
– MPI_Scan to get count of nonzeros from all previous processes

• gives starting offset in ja[] and a[] arrays and value to add to
ia[] elements

– MPI_Allreduce to get total count of nonzeros (nz) – gives size of
ja[] and a[] arrays

– Process zero writes header (title, n, nz)
– Copy ia[] and adjust to refer to global matrix locations
– All processes write ia, ja, a collectively

title n nz ia[0..n]

File Layout

ja[0..nz-1] a[0..nz-1]

See csrio-mpiio.c pp. 10-13 for code example.

118

pNeo - Modeling the Human Brain

119

Science Driver

• Goal: Understand conditions, causes, and possible
corrections for epilepsy

• Approach: Study the onset and progression of
epileptiform activity in the neocortex

• Technique: Create a model of neurons and their
interconnection network, based on models combining
wet lab measurements of resected tissue samples and
in vivo studies

• Computation: Develop a simulation program that can
be used for detailed parameter studies

120

Model Neurons

IS

Soma

Na K

Spike

Ex

Inh

IS

Soma

Na K

Spike

Ex

Inh
Soma

Na K

Spike
Ex

Neurons in the focal neocortex Compartmental neural models

Excitatory and inhibitory
signal wiring between neurons

121

Modeling Approach

• Individual neurons are modeled using electrical
analogs to parameters measured in the
laboratory

• Differential equations describe evolution of the
neuron state variables

• Neuron spiking output is wired to thousands of
cells in a neighborhood

• Wiring diagram is based on wiring patterns
observed in neocortex tissue samples

• Computation is divided among available
processors Schematic of a two dimensional

patch of neurons showing
communication neighborhood for
one of the cells in the simulation
and partitioning of the patch
among processors.

122

Abstract pNeo for Tutorial Example

• “Simulate the simulation” of the evolution of neuron
state instead of solving the differential equations

• Focus on how to code the interactions between cells in
MPI

• Assume one cell per process for simplicity
– Real code multiplexes many individual neurons onto

one MPI process

123

What Happens In Real Life

• Each cell has a fixed number of connections to some
other cells

• Cell “state” evolves continuously
• From time to time “spikes” arrive from connected cells.
• Spikes influence the evolution of cell state
• From time to time the cell state causes spikes to be sent

to other connected cells

124

What Happens In Existing pNeo Code

• In pNeo, each cell is connected to about 1000 cells
– Large runs have 73,000 cells
– Brain has ~100 billion cells

• Connections are derived from neuro-anatomical data
• There is a global clock marking time steps
• The state evolves according to a set of differential equations
• About 10 or more time steps between spikes

– I.e., communication is unpredictable and sparse
• Possible MPI-1 solutions

– Redundant communication of communication pattern before
communication itself, to tell each process how many receives
to do

– Redundant “no spikes this time step” messages
• MPI-2 solution: straightforward use of Put, Fence

125

What Happens in Tutorial Example

• There is a global clock marking time steps
• At the beginning of a time step, a cell notes spikes from

connected cells (put by them in a previous time step).
• A dummy evolution algorithm is used in place of the

differential equation solver.
• This evolution computes which new spikes are to be

sent to connected cells.
• Those spikes are sent (put), and the time step ends.
• We show both a Fence and a Post/Start/Complete/Wait

version.

126

Two Examples Using RMA

• Global synchronization
– Global synchronization of all processes at each step
– Illustrates Put, Get, Fence

• Local synchronization
– Synchronization across connected cells, for

improved scalability (synchronization is local)
– Illustrates Start, Complete, Post, Wait

127

pNeo Code Walkthrough

• Points to observe
– Data structures can be the same for multiple

synchronization approaches
• Code is simple compared to what a send/receive

version would look like
– Processes do no need to know which other

processes will send them spikes at each step

See pneo_fence.c and pneo_pscw.c for code examples.

128

Passive Target RMA

129

Active vs. Passive Target RMA

• Active target RMA requires participation from the target
process in the form of synchronization calls (fence or
P/S/C/W)

• In passive target RMA, target process makes no
synchronization call

130

Passive Target RMA

• We need to indicate the beginning and ending of RMA
calls by the process performing the RMA
– This process is called the origin process
– The process being accessed is the target process

• For passive target, the begin/end calls are
– MPI_Win_lock, MPI_Win_unlock

131

Synchronization for Passive Target
RMA

• MPI_Win_lock(locktype, rank, assert, win)
– Locktype is

• MPI_LOCK_EXCLUSIVE
– One process at a time may access
– Use when modifying the window

• MPI_LOCK_SHARED
– Multiple processes (as long as none hold

MPI_LOCK_EXCLUSIVE)
– Consider using when using MPI_Get (only) on the

window
– Assert is either 0 or MPI_MODE_NOCHECK

• MPI_Win_unlock(rank, win)
• Lock is not a real lock but means begin-RMA; unlock is end-

RMA, not real unlock

132

Put with Lock

if (rank == 0) {

MPI_Win_lock(MPI_LOCK_EXCLUSIVE, 1,
0, win);

MPI_Put(outbuf, n, MPI_INT, 1,
0, n, MPI_INT, win);

MPI_Win_unlock(1, win);
}

• Only process performing MPI_Put makes MPI RMA calls
– Process with memory need not make any MPI calls; it

is “passive”
• Similarly for MPI_Get, MPI_Accumulate

133

Put with Lock (C++)

if (rank == 0) {
win.Lock(MPI::LOCK_EXCLUSIVE, 1,

0);
win.Put(outbuf, n, MPI::INT, 1,

0, n, MPI::INT);
win.Unlock(1);

}
• Only process performing MPI_Put makes MPI RMA calls

– Process with memory need not make any MPI calls; it is
“passive”

• Similarly for MPI_Get, MPI_Accumulate

134

Put with Lock (Fortran)

if (rank .eq. 0) then

call MPI_Win_lock(MPI_LOCK_EXCLUSIVE,&
1, 0, win, ierr)

call MPI_Put(outbuf, n, MPI_INTEGER, &
1, 0, n, MPI_INTEGER, win, ierr)

call MPI_Win_unlock(1, win, ierr)

endif

• Only process performing MPI_Put makes MPI RMA calls
– Process with memory need not make any MPI calls; it is

“passive”
• Similarly for MPI_Get, MPI_Accumulate

135

Global Arrays

• Lets look at updating a single array, distributed
across a group of processes

136

A Global Distributed Array
• Problem: Application needs a single, 1-dimensional array

that any process can update or read
• Solution: Create a window object describing local parts of

the array, and use MPI_Put and MPI_Get to access

• Each process has alocal[n]
• We must provide access to a[pn]
• We cannot use MPI_Win_fence; we must use

MPI_Win_lock and MPI_Win_unlock

n

pn

137

Creating the Global Array

double *locala;
...

MPI_Alloc_mem(n * sizeof(double), MPI_INFO_NULL,
&locala);

MPI_Win_create(locala, n * sizeof(double),
sizeof(double),

MPI_INFO_NULL, comm, &win);

138

Creating the Global Array (C++)

Volatile double *locala;
...

locala = MPI::Alloc_mem(n * sizeof(double),
MPI::INFO_NULL);

win = MPI::Win::Create(locala, n * sizeof(double),
sizeof(double),

MPI::INFO_NULL,
comm);

139

Comments

• MPI-2 allows “global” to be relative to a communicator,
enabling hierarchical algorithms
– i.e., “global” does not have to refer to

MPI_COMM_WORLD
• MPI_Alloc_mem is required for greatest portability

– Some MPI implementations may allow memory not
allocated with MPI_Alloc_mem in passive target RMA
operations

140

Accessing the Global Array From a
Remote Process
• To update:
rank = i / n;
offset = i % n;
MPI_Win_lock(MPI_LOCK_EXCLUSIVE, rank, 0, win);
MPI_Put(&value, 1, MPI_DOUBLE,

rank, offset, 1,MPI_DOUBLE, win);
MPI_Win_unlock(rank, win);

• To read:
rank = i / n;
offset = i % n;
MPI_Win_lock(MPI_LOCK_SHARED, rank, 0, win);
MPI_Get(&value, 1, MPI_DOUBLE,

rank, offset, 1, MPI_DOUBLE, win);
MPI_Win_unlock(rank, win);

141

Accessing the Global Array From a
Remote Process (C++)
• To update:
rank = i / n;
offset = i % n;
win.Lock(MPI_LOCK_EXCLUSIVE, rank, 0);
win.Put(&value, 1, MPI::DOUBLE,

rank, offset, 1, MPI::DOUBLE);
win.Unlock(rank);

• To read:
rank = i / n;
offset = i % n;
win.Lock(MPI::LOCK_SHARED, rank, 0);
win.Get(&value, 1, MPI_DOUBLE,

rank, offset, 1, MPI_DOUBLE);
win.Unlock(rank);

142

Accessing the Global Array From a Remote
Process (Fortran)

• To update:
rank = i / n
offset = mod(i,n)
call MPI_Win_lock(MPI_LOCK_EXCLUSIVE, rank, 0, &

win, ierr)
call MPI_Put(value, 1, MPI_DOUBLE_PRECISION, &

rank, offset, 1, MPI_DOUBLE_PRECISION, &
win, ierr)

call MPI_Win_unlock(rank, win, ierr)

• To read:
rank = i / n
offset = mod(i,n)
call MPI_Win_lock(MPI_LOCK_SHARED, rank, 0, &

win, ierr)
call MPI_Get(value, 1, MPI_DOUBLE_PRECISION, &

rank, offset, 1, MPI_DOUBLE_PRECISION, &
win, ierr)

call MPI_Win_unlock(rank, win, ierr)

143

Accessing the Global Array From a
Local Process
• The issues

– Cache coherence (if no hardware)
– Data in register

• To read:
volatile double *locala;
rank = i / n;
offset = i % n;
MPI_Win_lock(MPI_LOCK_SHARED, rank, 0, win);
if (rank == myrank) {

value = locala[offset];
}
else {

MPI_Get(&value, 1, MPI_DOUBLE,
rank, offset, 1, MPI_DOUBLE, win);

}
MPI_Win_unlock(rank, win);

144

Accessing the Global Array From a
Local Process (C++)
• The issues

– Cache coherence (if no hardware)
– Data in register

• To read:
volatile double *locala;
rank = i / n;
offset = i % n;
win.Lock(MPI::LOCK_SHARED, rank, 0);
if (rank == myrank) {

value = locala[offset];
}
else {

win.Get(&value, 1, MPI::DOUBLE,
rank, offset, 1, MPI::DOUBLE);

}
win.Unlock(rank);

145

Accessing the Global Array From a
Local Process (Fortran)
• The issues

– Cache coherence (if no hardware)
– Data in register
– (We’ll come back to this case)

• To read:
double precision locala(0:mysize-1)
rank = i / n;
offset = mod(i,n)
call MPI_Win_lock(MPI_LOCK_SHARED, rank, 0, win, ierr)
if (rank .eq. myrank) then

value = locala(offset);
else

call MPI_Get(&value, 1, MPI_DOUBLE_PRECISION, &
rank, offset, 1, MPI_DOUBLE_PRECISION, &
win, ierr)

endif
call MPI_Win_unlock(rank, win, ierr)

146

Memory for Passive Target RMA
• Passive target operations are harder to implement

– Hardware support helps
• MPI allows (but does not require) an implementation to

require that windows objects used for passive target RMA
use local windows allocated with MPI_Alloc_mem

147

Allocating Memory

• MPI_Alloc_mem, MPI_Free_mem
• Special Issue: Checking for no memory available:

– e.g., the Alloc_mem equivalent of a null return from
malloc

– Default error behavior of MPI is to abort
• Solution:

– Change the error handler on MPI_COMM_WORLD to
MPI_ERRORS_RETURN, using
MPI_COMM_SET_ERRHANDLER (in MPI-1,
MPI_ERRHANDLER_SET)

– Check error class with MPI_ERROR_CLASS
• Error codes are not error classes

148

Using MPI_Alloc_mem from Fortran

• No general solution, but some Fortran extensions allow the following:
double precision u

pointer (p, u(0:50,0:20))

integer (kind=MPI_ADDRESS_KIND) size

integer sizeofdouble, ierror

! careful with size (must be MPI_ADDRESS_KIND)

call MPI_SIZEOF(u, sizeofdouble, ierror)

size = 51 * 21 * sizeofdouble

call MPI_ALLOC_MEM(size, MPI_INFO_NULL, p, ierror)

...

... program may now refer to u, including passing it

... to MPI_WIN_CREATE

...

call MPI_FREE_MEM(u, ierror) ! not p!

149

Mutex with Passive Target RMA

• MPI_Win_lock/unlock DO NOT define a critical section
• One has to implement a distributed locking algorithm

using passive target RMA operations in order to
achieve the equivalent of a mutex

• Example follows

150

Implementing Mutex

• Create “waitwin” window object
– One process has N-byte array (byte per process)

• One access epoch to try to lock
– Put “1” into corresponding byte
– Get copy of all other values

• If all other values are zero, obtained lock
• Otherwise must wait

…
waitwin[N]

Process 0 Process 1 Process N-1

… waitwin window
object

151

11

Attempting to lock

• Processes use one access epoch to attempt to obtain the lock
• Process 1 succeeds, but process 3 must wait

0 0 0 0

waitwin[4]

Process 0 Process 1 Process 3
Lock
Put(1 at byte 1)
Get(other 3 bytes)
Unlock

Lock
Put(1 at byte 3)
Get(other 3 bytes)
Unlock

0 0 0

0 1 0

No other 1s, so
lock was obtained

1 in rank 1 position,
so process must wait

152

Waiting for the lock
• Naïve approach: simply MPI_Get the other bytes over and over

– Lots of extra remote memory access
– Better approach is to somehow notify waiting processes
– Using RMA, set up a second window object with a byte on

each process, spin-wait on local memory
• This approach is like MCS locks
• Lots of wasted CPU cycles spinning

• Better approach: Using MPI-1 point-to-point, send a zero-byte
message to the waiting process to notify it that it has the lock

• Let MPI implementation handle checking for message
arrival

153

1

Releasing the Lock

• Process 1 uses one access epoch to release the lock
• Because process 3 is waiting, process 1 must send a message to

notify process 3 that it now owns the lock

100 0

waitwin[4]

Process 0 Process 1 Process 3
Lock
Put(0 at byte 1)
Get(other 3 bytes)
Unlock

MPI_Recv(ANY_SRC)

0 0 1
1 in rank 3 position,

must notify of release

MPI_Recv completes,
Process 3 has lock

MPI_Send(rank 3)

154

Mutex Code Walkthrough

• mpimutex_t type, for reference:
typedef struct mpimutex {

int nprocs, myrank, homerank;
MPI_Comm comm;
MPI_Win waitlistwin;
MPI_Datatype waitlisttype;
unsigned char *waitlist;

} *mpimutex_t;

See mpimutex.c for code example.

…
waitlist[N]

Process “homerank” Process nprocs - 1Process 0

… waitlistwin
object

• Code allows any process to be the “home” of the array:

155

Comments on Local Access

• Volatile:
– Tells compiler that some other agent (such as another

thread or process) may change the value
– In practice, rarely necessary for arrays but usually

necessary for scalars
– Volatile is not just for MPI-2. Any shared-memory

program needs to worry about this (even for cache-
coherent shared-memory systems)

• Fortran users don’t have volatile (yet):
– But they can use the following evil trick …

156

Simulating Volatile for Fortran

• Replace MPI_Win_unlock with
subroutine My_Win_unlock(rank, win, var,
ierr)
integer rank, win, ierr
double precision var
call MPI_Win_unlock(rank, win)
return

• When used in Fortran code, the compiler only sees
call My_Win_unlock(rank, win, var, ierr)
and assumes that var might be changed, causing the
compiler to reload var from memory rather than using a
value in register

157

Improving Performance

• MPI provides ways to tune for performance
• I/O

– Using the right functions the right way
– Providing Hints

• RMA
– Asserts and info

158

Tuning MPI-IO

159

General Guidelines for Achieving High I/O
Performance

• Buy sufficient I/O hardware for the machine
• Use fast file systems, not NFS-mounted home

directories
• Do not perform I/O from one process only
• Make large requests wherever possible
• For noncontiguous requests, use derived datatypes

and a single collective I/O call

160

Using the Right MPI-IO Function
• Any application as a particular “I/O access pattern” based

on its I/O needs
• The same access pattern can be presented to the I/O

system in different ways depending on what I/O functions
are used and how

• In our SC98 paper, we classify the different ways of
expressing I/O access patterns in MPI-IO into four levels:
level 0 – level 3

• We demonstrate how the user’s choice of level affects
performance

161

Example: Distributed Array Access

P0

P12

P4

P8

P2

P14

P6

P10

P1

P13

P5

P9

P3

P15

P7

P11

P0 P1 P2 P3 P0 P1 P2

P4 P5 P6 P7 P4 P5 P6

P8 P9 P8 P9

Large array
distributed
among 16
processes

Access Pattern in the file

Each square represents
a subarray in the memory
of a single process

P10 P11 P10

P15P13P12 P12 P13 P14P14

162

Level-0 Access

• Each process makes one independent read request for
each row in the local array (as in Unix)

MPI_File_open(..., file, ..., &fh)
for (i=0; i<n_local_rows; i++) {

MPI_File_seek(fh, ...);
MPI_File_read(fh, &(A[i][0]), ...);

}
MPI_File_close(&fh);

163

Level-1 Access

• Similar to level 0, but each process uses collective I/O functions

MPI_File_open(MPI_COMM_WORLD, file, ..., &fh);
for (i=0; i<n_local_rows; i++) {

MPI_File_seek(fh, ...);
MPI_File_read_all(fh, &(A[i][0]), ...);

}
MPI_File_close(&fh);

164

Level-2 Access

• Each process creates a derived datatype to describe the
noncontiguous access pattern, defines a file view, and calls
independent I/O functions

MPI_Type_create_subarray(..., &subarray, ...);
MPI_Type_commit(&subarray);
MPI_File_open(..., file, ..., &fh);
MPI_File_set_view(fh, ..., subarray, ...);
MPI_File_read(fh, A, ...);
MPI_File_close(&fh);

165

Level-3 Access

• Similar to level 2, except that each process uses collective I/O
functions

MPI_Type_create_subarray(..., &subarray, ...);
MPI_Type_commit(&subarray);
MPI_File_open(MPI_COMM_WORLD, file,..., &fh);
MPI_File_set_view(fh, ..., subarray, ...);
MPI_File_read_all(fh, A, ...);
MPI_File_close(&fh);

166

Level-0 Access (C++)

• Each process makes one independent read request for
each row in the local array (as in Unix)

fh = MPI::File::Open(..., file, ...)
for (i=0; i<n_local_rows; i++) {

fh.Seek(...);
fh.Read(&(A[i][0]), ...);

}
fh.Close();

167

Level-1 Access (C++)

• Similar to level 0, but each process uses collective I/O functions

fh = MPI::File::Open(MPI::COMM_WORLD,
file, ...);

for (i=0; i<n_local_rows; i++) {
fh.Seek(...);
fh.Read_all(&(A[i][0]), ...);

}
fh.Close();

168

Level-2 Access (C++)

• Each process creates a derived datatype to describe the
noncontiguous access pattern, defines a file view, and calls
independent I/O functions

subarray = MPI::Type_create_subarray(...);
subarray.Commit();
fh = MPI::File::Open(..., file, ...);
fh.Set_view(..., subarray, ...);
fh.Read(A, ...);
fh.Close();

169

Level-3 Access (C++)

• Similar to level 2, except that each process uses collective I/O
functions

subarray = MPI::Type::Create_subarray(...);
subarray.Commit();
fh = MPI::File::Open(MPI::COMM_WORLD,

file, ...);
fh.Set_view(..., subarray,...);
fh.Read_all(A, ...);
fh.Close();

170

Level-0 Access (Fortran)

• Each process makes one independent read request for
each row in the local array (as in Unix)

call MPI_File_open(..., file, ...,fh,ierr)
do i=1, n_local_rows

call MPI_File_seek(fh, ..., ierr)
call MPI_File_read(fh, a(i,0),...,ierr)

enddo
call MPI_File_close(fh, ierr)

171

Level-1 Access (Fortran)

• Similar to level 0, but each process uses collective I/O functions

call MPI_File_open(MPI_COMM_WORLD, file,&
..., fh, ierr)

do i=1,n_local_rows
call MPI_File_seek(fh, ..., ierr)
call MPI_File_read_all(fh, a(i,0), ...,&

ierr)
enddo
call MPI_File_close(fh,ierr)

172

Level-2 Access (Fortran)

• Each process creates a derived datatype to describe the
noncontiguous access pattern, defines a file view, and calls
independent I/O functions

call MPI_Type_create_subarray(..., &
subarray, ..., ierr)

call MPI_Type_commit(subarray, ierr)
call MPI_File_open(..., file,..., fh, ierr)
call MPI_File_set_view(fh, ..., subarray,&

..., ierr)
call MPI_File_read(fh, A, ..., ierr)
call MPI_File_close(fh, ierr)

173

Level-3 Access (Fortran)

• Similar to level 2, except that each process uses collective I/O
functions

call MPI_Type_create_subarray(..., &
subarray, ierr)

call MPI_Type_commit(subarray, ierr)
call MPI_File_open(MPI_COMM_WORLD, file,&

..., fh, ierr)
call MPI_File_set_view(fh, ..., subarray,&

..., ierr)
call MPI_File_read_all(fh, A, ..., ierr)
call MPI_File_close(fh,ierr)

174

The Four Levels of Access
Fi

le
 S

pa
ce

Processes3210

Level 0

Level 1

Level 2

Level 3

175

Optimizations

• Given complete access information, an implementation
can perform optimizations such as:
– Data Sieving: Read large chunks and extract what

is really needed
– Collective I/O: Merge requests of different

processes into larger requests
– Improved prefetching and caching

176

Performance Results

• Distributed array access
• Unstructured code from Sandia
• On five different parallel machines:

– HP Exemplar
– IBM SP
– Intel Paragon
– NEC SX-4
– SGI Origin2000

177

Distributed Array Access: Read Bandwidth

0

100

200

300

400

500

600

M
by

te
s/

se
c

HP
Exemplar

IBM SP Intel
Paragon

NEC SX4 SGI
Origin2000

Level 0/1
Level 2
Level 3

64 procs 64 procs 8 procs 32 procs256 procs

Array size: 512 x 512 x 512

178

Distributed Array Access: Write Bandwidth

64 procs 64 procs 8 procs 32 procs256 procs

0

50

100

150

200

250

300

350

400

450

M
by

te
s/

se
c

HP
Exemplar

IBM SP Intel
Paragon

NEC SX4 SGI
Origin2000

Level 0/1
Level 2
Level 3

Array size: 512 x 512 x 512

179

Unstructured Code: Read Bandwidth

64 procs 64 procs 8 procs 32 procs256 procs

0

20

40

60

80

100

120

140

160

M
by

te
s/

se
c

HP
Exemplar

IBM SP Intel
Paragon

NEC SX4 SGI
Origin2000

Level 2
Level 3

180

Unstructured Code: Write Bandwidth

64 procs 64 procs 8 procs 32 procs256 procs

0

10

20

30

40
50

60

70

80

90

100

M
by

te
s/

se
c

HP
Exemplar

IBM SP Intel
Paragon

NEC SX4 SGI
Origin2000

Level 2
Level 3

181

Independent Writes

• On Paragon
• Lots of seeks and small

writes
• Time shown = 130 sec.

182

Collective Write

• On Paragon
• Computation and

communication precede
seek and write

• Time shown = 2.75 sec.

183

Independent Writes with Data Sieving

• On Paragon
• Access data in large

“blocks” and extract
needed data

• Requires lock, read,
modify, write, unlock for
writes

• 4 MB blocks
• Time = 16 sec.

184

Changing the Block Size

• Smaller blocks mean
less contention,
therefore more
parallelism

• 512 KB blocks
• Time = 10.2 sec.

185

Data Sieving with Small Blocks

• If the block size is too
small, however, the
increased parallelism
doesn’t make up for the
many small writes

• 64 KB blocks
• Time = 21.5 sec.

186

Passing Hints

• MPI-2 defines a new object, MPI_Info
• Provides an extensible list of key=value pairs
• Used in I/O, One-sided, and Dynamic to package

variable, optional types of arguments that may not be
standard

187

Passing Hints to MPI-IO

MPI_Info info;

MPI_Info_create(&info);

/* no. of I/O devices to be used for file striping */
MPI_Info_set(info, "striping_factor", "4");

/* the striping unit in bytes */
MPI_Info_set(info, "striping_unit", "65536");

MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile",
MPI_MODE_CREATE | MPI_MODE_RDWR, info, &fh);

MPI_Info_free(&info);

188

Passing Hints to MPI-IO (C++)

MPI::Info info;

info = MPI::Info_create();

// no. of I/O devices to be used for file striping
info.Set("striping_factor", "4");

// the striping unit in bytes
info.Set("striping_unit", "65536");

fh = MPI::File::Open(MPI::COMM_WORLD, "/pfs/datafile",
MPI::MODE_CREATE | MPI::MODE_RDWR, info);

info.Free();

189

Passing Hints to MPI-IO (Fortran)

integer info

call MPI_Info_create(info, ierr)

! no. of I/O devices to be used for file striping
call MPI_Info_set(info, "striping_factor", "4”, ierr)

! the striping unit in bytes
call MPI_Info_set(info, "striping_unit", "65536”, ierr)

call MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile", &
MPI_MODE_CREATE + MPI_MODE_RDWR, info, &
fh, ierr)

call MPI_Info_free(info, ierr)

190

Examples of Hints (used in ROMIO)

•striping_unit
•striping_factor
•cb_buffer_size
•cb_nodes
•ind_rd_buffer_size
•ind_wr_buffer_size
•start_iodevice
•pfs_svr_buf
•direct_read
•direct_write

MPI-2 predefined hints

New Algorithm
Parameters

Platform-specific hints

191

ROMIO Hints and PVFS

• Controlling PVFS
striping_factor - size of “strips” on I/O servers
striping_unit - number of I/O servers to stripe across
start_iodevice - which I/O server to start with

• Controlling aggregation
cb_config_list - list of aggregators
cb_nodes - number of aggregators (upper bound)

• Tuning ROMIO optimizations
romio_cb_read, romio_cb_write - aggregation on/off
romio_ds_read, romio_ds_write - data sieving on/off

192

Aggregation Example

• Cluster of SMPs
• One SMP box has fast connection to disks
• Data is aggregated to processes on single box
• Processes on that box perform I/O on behalf of the

others

193

Summary of I/O Tuning

• MPI I/O has many features that can help users achieve
high performance

• The most important of these features are the ability to
specify noncontiguous accesses, the collective I/O
functions, and the ability to pass hints to the
implementation

• Users must use the above features!
• In particular, when accesses are noncontiguous, users

must create derived datatypes, define file views, and
use the collective I/O functions

194

Common Errors in Using MPI-IO
• Not defining file offsets as MPI_Offset in C and
integer (kind=MPI_OFFSET_KIND) in Fortran (or
perhaps integer*8 in Fortran 77)

• In Fortran, passing the offset or displacement directly
as a constant (e.g., 0) in the absence of function
prototypes (F90 mpi module)

• Using darray datatype for a block distribution other
than the one defined in darray (e.g., floor division)

• filetype defined using offsets that are not monotonically
nondecreasing, e.g., 0, 3, 8, 4, 6.
(can occur in irregular applications)

195

Tuning RMA

196

Performance Tuning RMA

• MPI provides generality and correctness
• Special cases may allow performance optimizations

– MPI provides two ways to identify special cases:
• Assertion flags for MPI_Win_fence, etc.
• Info values for MPI_Win_create and
MPI_Alloc_mem

197

Tuning Fence

• Asserts for fence
– Note that these rely on understanding the

“global/collective” use of the RMA calls in the code.

198

MPI_Win_fence Assert Values

• MPI_MODE_NOSTORE
– No update to the local window was made by the local process

(using assignments, e.g., stores) since the last call to
MPI_Win_fence

• MPI_MODE_NOPUT
– There will be no RMA (Put or Accumulate) to the local window

before the next MPI_Win_fence
• MPI_MODE_NOPRECEDE

– This MPI_Win_fence will not complete any RMA calls made by
this process (no preceding RMA calls)

• MPI_MODE_NOSUCCEED
– No RMA calls will be made on this window before the next

MPI_Win_fence call (no succeeding (as in coming after) RMA
calls)

199

Assert Values in Life Exchange

MPI_Win_fence(MPI_MODE_NOPRECEDE, win);

MPI_Put(&matrix[myrows][0], cols+2, MPI_INT,
exch_next, 0, cols+2, MPI_INT, win);

MPI_Put(&matrix[1][0], cols+2, MPI_INT, exch_prev,
(nrows_prev+1)*(cols+2), cols+2, MPI_INT, win);

MPI_Win_fence(MPI_MODE_NOSTORE | MPI_MODE_NOPUT |
MPI_MODE_NOSUCCEED, win);

200

Assert Values in Life Exchange (C++)

win.Fence(MPI::MODE_NOPRECEDE);
win.Put(&matrix[myrows][0], cols+2, MPI::INT,

exch_next, 0, cols+2, MPI::INT);

win.Put(&matrix[1][0], cols+2, MPI::INT,
exch_prev, (nrows_prev+1)*(cols+2),
cols+2, MPI::INT);

win.Fence(MPI_MODE_NOSTORE | MPI_MODE_NOPUT |
MPI_MODE_NOSUCCEED);

201

Assert Values in Life Exchange (Fortran)

call MPI_Win_fence(MPI_MODE_NOPRECEDE, win, ierr)

call MPI_Put(matrix(myrows,0), cols+2, MPI_INTEGER, &
exch_next, 0, cols+2, MPI_INTEGER, win, &
ierr)

call MPI_Put(matrix(1,0), cols+2, MPI_INTEGER, &
exch_prev, &

(nrows_prev+1)*(cols+2), cols+2, MPI_INT, win, &
ierr)

call MPI_Win_fence(MPI_MODE_NOSTORE + &
MPI_MODE_NOPUT + MPI_MODE_NOSUCCEED, win, &
ierr)

202

Tuning P/S/C/W

• Asserts for MPI_Win_start and MPI_Win_post
• Start

– MPI_MODE_NOCHECK
• Guarantees that the matching calls to MPI_Win_post

have already been made
• Post

– MPI_MODE_NOSTORE, MPI_MODE_NOPUT
• Same meaning as for MPI_Win_fence

– MPI_MODE_NOCHECK
• Nocheck means that the matching calls to

MPI_Win_start have not yet occurred

203

MPI_Win_create

MPI_Info info;
MPI_Info_create(&info);
MPI_Info_set(info, "no_locks", "true");
MPI_Win_create(..., info, ...);
MPI_Info_free(&info);

• If only active-target RMA will be used, pass an info object to
MPI_Win_create with key “no_locks” set to “true”

204

MPI_Win_create (C++)

MPI::Info info;
info = MPI::Info::Create();
info.Set("no_locks", "true");
win = MPI::Win::Create(..., info, ...);
info.Free();

• If only active-target RMA will be used, pass an info object to
MPI_Win_create with key “no_locks” set to “true”

205

MPI_Win_create (Fortran)

Integer info;
call MPI_Info_create(info, ierr)
call MPI_Info_set(info, "no_locks", "true",
ierr)

call MPI_Win_create(..., info, ... , ierr)
call MPI_Info_free(info, ierr)

• If only active-target RMA will be used, pass an info object to
MPI_Win_create with key “no_locks” set to “true”

206

Understanding the MPI-2 Completion Model

• Very relaxed
– To give the implementer the greatest flexibility
– Describing this relaxed model precisely is difficult

• Implementer only needs to obey the rules
– But it doesn’t matter; simple rules work for most

programmers
• When does the data actually move?

207

Data Moves Early

MPI_Win_lock
(win_lock returns)
MPI_Put

MPI_Put

MPI_Get

MPI_Win_unlock

(unlock returns)

(lock granted)

(window updated)

(window updated)
(window accessed)

(lock released)

Process 0 Process 1

208

Data Moves Late

MPI_Win_lock

MPI_Put

MPI_Put

MPI_Get

MPI_Win_unlock

(unlock returns)

(acquire lock, process
requests, release lock)

(save information)

(save information)

(save information)

(save information)

Process 0 Process 1

209

Relative Performance of Put and Get

• Put and get may not give the
same performance

• mpptest
(http://www.mcs.anl.gov/
mpi/mpptest) has
performance tests for
MPI_Put, MPI_Get, and other
RMA operations

• Earth Simulator applications
use the MPI RMA operations

Caveat: Results for SGI
implementation. Others may differ

210

Implementation Limitations

• MPI_PROC_NULL not recognized
– MPI-Forum clarified standard that MPI_PROC_NULL is

valid in Put/Get/Accumulate
– Most implementations now correct

• Some implementations require special memory for (local)
windows
– MPI standard requires that any memory can be used

with active-target RMA
• Both of these are bugs, but ones that you can work around

211

Comments on Exchange

• MPI_ADDRESS_KIND
needed for offsets in
Fortran

• Datatypes aren’t always
fast; consider using
contiguous regions

• MPI_Put can be much
faster that MPI Point-to-
point
– 4 neighbor exchange

on SGI Origin
MPI Put

MPI_Isend

212

Implementation Limitations

• Not all MPI implementations include Passive target
operations (e.g. not in LAM)
– Passive send of contiguous datatypes safest
– Passive target MPI_Accumulate and noncontiguous

datatypes hardest to implement

213

Top MPI Errors
• Fortran: missing ierr argument
• Fortran: missing MPI_STATUS_SIZE on status
• Fortran: Using integers where MPI_OFFSET_KIND or

MPI_ADDRESS_KIND integers are required (particularly in I/O)
• Fortran 90: Using array sections to nonblocking routines (e.g.,

MPI_Isend)
• All: MPI_Bcast not called collectively (e.g., sender bcasts, receivers

use MPI_Recv)
• All: Failure to wait (or test for completion) on MPI_Request
• All: Reusing buffers on nonblocking operations
• All: Using a single process for all file I/O
• All: Using MPI_Pack/Unpack instead of Datatypes
• All: Unsafe use of blocking sends/receives
• All: Using MPI_COMM_WORLD instead of comm in libraries
• All: Not understanding implementation performance settings
• All: Failing to install and use the MPI implementation according to its

documentation.

214

Conclusions

215

Designing Parallel Programs

• Common theme – think about the “global” object, then
see how MPI can help you

• Also specify the largest amount of communication or
I/O between “synchronization points”
– Collective and noncontiguous I/O
– RMA

216

Summary

• MPI-2 provides major extensions to the original message-
passing model targeted by MPI-1.

• MPI-2 can deliver to libraries and applications portability
across a diverse set of environments.

• Implementations are here now.
• Sources:

– The MPI standard documents are available at
http://www.mpi-forum.org

– 2-volume book: MPI - The Complete Reference, available
from MIT Press

– Using MPI (Gropp, Lusk, and Skjellum) and Using MPI-2
(Gropp, Lusk, and Thakur), MIT Press.
• Using MPI-2 also available in Japanese, from Pearson

Education Japan

217

Conclusions

• MPI is a proven, effective, portable parallel programming
model
– 26TF application on the Earth Simulator

• MPI has succeeded because
– features are orthogonal (complexity is the product of the

number of features, not routines)
– programmer can control memory motion (critical in high-

performance computing)
– complex programs are no harder than easy ones
– open process for defining MPI led to a solid design

218

More Information on Software

• MPICH2
– Latest version available from www.mcs.anl.gov/mpi/mpich2

• More Information on PnetCDF
– Parallel netCDF web site:

http://www.mcs.anl.gov/parallel-netcdf/
– Parallel netCDF mailing list:

Mail to majordomo@mcs.anl.gov with the body “subscribe
parallel-netcdf”

– The SDM SciDAC web site:
http://sdm.lbl.gov/sdmcenter/

• PETSc
– http://www.mcs.anl.gov/petsc

• HDF5
– http://hdf.ncsa.uiuc.edu/HDF5/

219

MPICH2

• Goals: same as MPICH
– Research project, to explore scalability and

performance, incorporate and test research results
– Software project, to encourage use of MPI-2

• Scope: all of MPI-2
– I/O
– Dynamic
– One-sided
– All the obscure parts, too
– Useful optional features recommended by the

Standard (full mpiexec, singleton-init, thread safety)
– Other useful features (debugging, profiling libraries,

tools)

220

MPICH2
• Incorporates latest research into MPI implementation

– Our own
• Collective operations
• Optimizations for one-sided ops
• Optimized datatype handling
• I/O

– Others
• Collectives, for example

• See recent EuroPVM and Cluster Proceedings
• In use by vendors

– IBM on BG/L
– Cray on Red Storm
– Coming soon from another major vendor
– Having vendors adapt MPICH2 into their products has helped

make it efficient and robust

221

The MPI Standard (1 & 2)

222

Tutorial Material on MPI, MPI-2

http://www.mcs.anl.gov/mpi/{usingmpi,usingmpi2}

