Errata for ‘Using MPI-2’

July 10, 2005

P 25 This is not an errata but is a clarification. The question is about the choice
of bufsize as filesize/numprocs+1 rather than filesize/numprocs.
The clarification is:

The reason for using bufsize = filesize/numprocs + 1
is for the case where filesize < numprocs. If the "+1” is left
out, then all processes read zero elements. This way, the whole
file will be read. The cost is that if filesize is evenly divided
by numprocs, a less than optimal number of elements is read by
each process.

Thanks to Chieh-Sen Huang <huangcs@math.nsysu.edu.tw>.
p 27 The line

theFile.Read(buf, bufsize, MPI_INT, &status);

should read
theFile.Read(buf, bufsize, MPI_INT, status);

p 31 The first sentence after the pair of MPI_Win_create calls reads
over the communicator specified in its last argument
but should read
over the communicator specified in its second-to-last argument

since the MPI Window object is returned in the last argument.
Thanks to Brad Penoff.

Thanks to Jeff Squyres <squyres@cse.nd.edu>.
p 52,64,66,76,156 The figures on these pages are missing shading within some

of the rectangles. Only Figure 3.4 on page 62 must be replaced to be
understood.

p 62 Figure 3.4 is missing the “shaded portion” that is mentioned in the
preceeding paragraph. Postscript for this figure is available at http:
//www.mcs.anl.gov/mpi/usingmpi2/view.eps.

Thanks to Takao Hatazaki.

p 73 In Figure 3.11, MPI_File_open uses MPI_COMM_WORLD, but it should use
the communicator that was returned from MPI_Cart_create.
Thanks to Takao Hatazaki.

p 76 In Figure 3.12, the ghost cell area should be shaded.
Thanks to Takao Hatazaki.

p 77 In Figure 3.13, MPI_File_open uses MPI_COMM_WORLD, but it should use
the communicator that was returned from MPI_Cart_create.
Thanks to Takao Hatazaki.

p 117 In Figure 3.34, MPI_Dims_create(nprocs,...) should be called after
calling MPT_Comm_size(. .. ,&nprocs), not before.
Thanks to Takao Hatazaki.

p 127 On the 3rd line from the bottom, “We are tempted to say that the sum
of the values of j printed by the two processes ...” should say “threads”

instead of “processes”. Processes isn’t wrong, but the rest of the text is
talking about threads.

Thanks to Takao Hatazaki.

p 128,129,131 In the figure 4.14, 4.16, and 4.17, print should be replaced
with printf.

Thanks to Takao Hatazaki.

p 129 In Figure 4.16, add at the top

volatile int i;

to indicate that i must also be declared volatile.

Thanks to Brian Toonen <toonen@mcs.anl.gov>.

p 131 Replace Figure 4.17 with

volatile int i = O;

int j = 0;
while (i < 10) {
lock();
if (14 < 10) {
i=1+1;

j=3+ 1
3
unlock() ;

}

printf("j = %d\n", j);

The reason for the second test is that two thread could both test i < 10
when i is 9, and the (in the original code), both would increment i. The
revised code performs a quick test outside of the lock; if the test is true,
the thread acquires the lock and performs the test again. If the test is
now false, the thread releases the lock without incrementing i; if the test
is still true, then the thread increments i.

Thanks to Brian Toonen <toonen@mcs.anl.gov>.

p 138 and p 203 The call to MPI_Win_create in Figure 5.2 and in Figure
6.10 passes NULL as the buffer pointer for the case where the buffer size
is zero. This is correct, but Fortran users will need to use MPI_BOTTOM
instead. To make the example clear to both C and Fortran programmers,
consider using MPI_BOTTOM instead of NULL when no buffer is be provided
to MPI_Win_create (buffer size is zero).

Thanks to Takao Hatazaki <Takao.HatazakiQJP.COMPAQ.com>.

p 141 In Table 5.3, Aint, Info, and Intracomm are missing the MPI:: prefix.
Thanks to Takao Hatazaki.

p 145 In Table 5.6, Aint and Datatype are missing MPI:: in the binding for
MPI: :Win: :Put.

Thanks to Takao Hatazaki.

p 151 The comment starting “We need a fence between...” should be placed
before the second to the last MPI_Win_fence call to more clearly indicate
the the reason for that MPI_Win_fence call.

Thanks to Takao Hatazaki.

p154—-156 All occurences of “right” should be replaced with “top” and all
occurences of “left” should be replaced with “bottom”. The Figures have
the correct description of the decomposition and the code.

Thanks to Takao Hatazaki.

p156 The sample code in Figure 5.12 uses an apparently unsafe combination
of MPI_Send and MPI_Recv. This is acceptable for this code because only
a single integer is being sent and no MPI implementation is so restrictive
that MPI_Send will block with a single integer. However, it would not
be incorrect, and deadlock detection tools might flag this usage. In any
case, an MPI_Sendrecv is a better way to implement this step. (The code
is only “apparently” unsafe because the domain is not periodic, and, as

explained in Using MPI, the code only serializes, it does not deadlock.
However, using MPI_Sendrecv is a better solution.)

p 158, line 2 The code fragment

newtype = MPI::Datatype::Match_size(MPI::TYPECLASS_INTEGER,
sizeof (MPI::Aint)

should be

newtype = MPI::Datatype::Match_size(MPI::TYPECLASS_INTEGER,
sizeof (MPI::Aint));

p 159 The example code in the figure is incorrect. The corrected code is given
below.

subroutine exchngl(a, nx, s, e, win, &
bottom_nbr, top_nbr)

use mpi

integer nx, s, e

double precision a(0:nx+1,s-1:e+1)

integer win, bottom_nbr, top_nbr

integer ierr

call MPI_WIN_FENCE(O, win, ierr)
! Put top edge into top neighbor’s ghost cells
call MPI_PUT(a(l,e), nx, MPI_DOUBLE_PRECISION, &
top_nbr, 1, nx, MPI_DOUBLE_PRECISION, win, ierr)
! Get top edge from top neighbor’s first column
call MPI_GET(a(l,e+1), nx, MPI_DOUBLE_PRECISION, &
top_nbr, nx + 3, nx, MPI_DOUBLE_PRECISION, win, ierr)
call MPI_WIN_FENCE(O, win, ierr)

return
end

Thanks to Bo-Wen Shen <bwshen@hera.gsfc.nasa.gov> and Takao Hatazaki.
p 159 Change

Instead of putting data into ghost cells only on remote processes,
we can put data into the ghost cells of the process on the top,
starting at a displacement of one, and we can get the ghost cells
for our part of the grid on the bottom edge by getting grid data
from the first column of the process on the bottom.

to

Instead of putting data into ghost cells only on remote processes,
we can put data into the ghost cells of the process on the top,
starting at a displacement of one, and we can get the ghost cells
for our part of the grid on the top edge by getting grid data
from the first column of the process on the top.

Thanks to Takao Hatazaki.
p 159 Change “left” to “bottom” and “right” to “top” in

Also note that there is no explicit reference to the left_nbr in
the above code: the “get from right neighbor” replaces the “put
to left neighbor.”

p 160 Add a closing parenthesis at the end of

(e.g., we must send nx+1 values starting from a(0,m) rather
than nx values starting from a(1,m)).

Thanks to Takao Hatazaki.

p 160 double precision a(sx-1:ex+1,sy-1:sy+1)
should be

double precision a(sx-1:ex+l,sy-1l:ey+1)

Thanks to Takao Hatazaki.

p 161 The same comment holds for the use of MPI_Send and MPI_Recv here as
for page 156: this code should also use MPI_Sendrecv instead of MPI_Send
and MPI_Recv.

Thanks to Takao Hatazaki.

p 164 do i=1,ny
buf(i) = a(l,i-sy+1)
enddo
call MPI_WIN_FENCE(O, winbuf, ierr)
call MPI_PUT(buf, ny, MPI_DOUBLE_PRECISION, top_nbr, &
0, ny, MPI_DOUBLE_PRECISION, winbuf, ierr)
. similar code for the bottom edge

should be

do i=1,ny
buf (i) = a(l,sy+i-1)
enddo
call MPI_WIN_FENCE(O, winbuf, ierr)
call MPI_PUT(buf, ny, MPI_DOUBLE_PRECISION, left_nbr, &
0, ny, MPI_DOUBLE_PRECISION, winbuf, ierr)
. similar code for the right edge

Thanks to Takao Hatazaki.

p 164-165 The example in Figure 5.18 assumes that nx and ny are the same
on all processes.

Thanks to Takao Hatazaki.
p 166 Change

It would be better to move the data in t and immediately add
it to s to form w.

to

It would be better to move the data in t and immediately add
it to the t for rank zero to form w on rank zero.

Thanks to Takao Hatazaki.

p 167 In Table 5.16, Aint, Datatype, and Op should have the MPI:: prefix.
Thanks to Takao Hatazaki.

p 167 and p 168 In the code fragment, Win_create should be Win: :Create.
Thanks to Takao Hatazaki.

p 171 There is a closing parenthesis missing in
...(e.g., A = 0 for an array A in Fortran)

Thanks to Takao Hatazaki.

p 171 The word “that” should be “than” in the first sentence in the last para-
graph:

... less restrictive than writing to memory ...
Thanks to Brad Penoff.

p 186 In Table 6.6, Aint and Info are missing MPI:: in the binding for
MPI::Win::Alloc_mem.
Thanks to Takao Hatazaki.

p 191 The binding for the C++4 version of MPI: :Win: :Get_attr should not in-
clude the Window as a parameter. This was an error in the MPI standard
that has been corrected in the MPI-2 errata.

p196 On line 4 from the bottom, MPI_Win_lock should be replaced with MPI_Win_unlock.
Thanks to Takao Hatazaki.

p 202 Replace MPE_Counter_delete with MPE_Counter_free.
Thanks to Takao Hatazaki.

P 203 The example uses the name old_comm for the input communicator. This
parallels the MPI-1 version of this routine.

Thanks to Takao Hatazaki.

p 206 The root boxes are missing the slanted lines mentioned in the caption.
These were lost when the book was produced. Postscript for this figure is
available at http://www.mcs.anl.gov/mpi/usingmpi2/treesteps.eps.

Thanks to Takao Hatazaki.
p 206 Replace the sentance that begins “Thus, to compute the sum” with

Thus, to compute the sum, we need only add up the contri-
butions from the sibling of the node, the sibling of its parent,
the sibling of its grandparent, and the sibling of grandparent’s
parent.

The original text had confusing use of plurals.
Thanks to Takao Hatazaki.

p 208 Replace Figure 6.16 with:

/* Get the largest power of two smaller than size */
mask = 1;

while (mask < size) mask <<= 1;

mask >>= 1;

level = 0;
idx = 0;
while (mask >= 1) {
if (rank < mask) {
/* go to left for acc_idx, go to right for
get_idx. set idx=acc_idx for next iteration */

acc_idx[level] = idx + 1;
get_idx[level] = idx + mask*2;
idx = idx + 1;
}
else {
/* go to right for acc_idx, go to left for
get_idx. set idx=acc_idx for next iteration */
acc_idx[level] = idx + maskx*2;
get_idx[level] = idx + 1;
idx = idx + mask*2;
}
level++;

rank = rank % mask;
mask >>= 1;

Thanks to Rajeev Thakur.

p 210 Inline 2, note that the size mutexes are distributed across the processes,
with one fetch-and-increment tree used for each mutex. The first size
processes get one mutex (assuming the size is less than or equal to the
number of processes).

Thanks to Takao Hatazaki.

p 218 Replace \relax0 with \0.
Thanks to Takao Hatazaki.

p 221 Figure 6.24. A better design here would keep win with head, either both
as global variables, or, better, a struct containing both passed to FindElm.
Thanks to Brian Toonen <toonen@mcs.anl.gov>.

p 224 The last sentance in Section 6.9.3 is not correct. In order to use the order
of statements to keep the updates to the list correct, it is necessary, as

discussed in Section 4.3.2, to apply a write barrier before the assignment
last_ptr->next = new_ptr.

Thanks to Brian Toonen <toonen@mcs.anl.gov>.

P 224—5 Note that these routines could benefit from having a shared read,
exclusive write version of MPE_Mutex_lock.
Thanks to Brian Toonen <toonen@mcs.anl.gov>.

p 227—-8 The insertion of a new head element is not handled correctly here. The
key problem here is that the head element is not in the local window (it
is local to each process) and thus cannot be updated by a remote process.

The fix is to keep a dummy “head” on each local list that is stored in the
window and thus can be updated remotely.

Thanks to Brian Toonen <toonen@mcs.anl.gov>.

p 231 In the discussion of MPI_MODE_NOPUT, replace MPI_Win_complete with
MPI_Win_wait.
Thanks to Takao Hatazaki.

p235 In the footnote, it is more appropriate to use MPMD (Multiple Program
Multiple Data) rather than MIMD.
Thanks to Takao Hatazaki.

p267 The counter_nxtval routine in Figure 8.1 should be

/* Any process can call this to fetch and increment by value */
void counter_nxtval(MPI_Comm counter_comm, int incr, int *value)
{
MPI_Send(&incr, 1, MPI_INT, 0, O, counter_comm);
MPI_Recv(value, 1, MPI_INT, O, O, counter_comm, MPI_STATUS_IGNORE);

(the arguments to MPI_Send were wrong).
Thanks to Takao Hatazaki.

p 281-2 The example in Figures 9.2 and 9.3 does not properly terminate the
thread. The simplest fix is to add an pthread_detach in Figure 9.2 after
the pthread_create call. A better solution would save the thread id re-
turned by pthread_create in a new field in the params_struct structure,
and perform a pthread_join in free_fn (in Figure 9.3) before freeing the
structure. This approach would allow a non-trivial implementation of the
cancel function (cancel_fn in Figure 9.3).

p 302 Insert “as” into “well as the” in the first line on the page.

Thanks to Rusty Lusk <lusk@mcs.anl.gov>.

