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Organization of the Presentation

• Performance issues for unstructured grid 
solvers

• Background of FUN3D and PETSc
• Parallelization philosophy
• Summary of serial and parallel performance



Solving Unstructured Mesh 
Problems in Serial

• Loss of regularity in unstructured mesh 
solvers
– makes them more memory intensive
– reduces the locality in data reference patterns 

(which is required for good cache performance)
– requires very high memory bandwidth since 

cache lines might be loaded multiple times
– requires many integer operations that make 

these solvers more susceptible to operation 
issue limitations



Solving Unstructured Grid 
Problems in Parallel

• SPMD parallelization of unstructured grid 
solvers is complicated by the fact that no 
two interprocessor data dependency patterns 
are alike

• The user-provided global ordering may be 
incompatible with the subdomain-
contiguous ordering required for high 
performance and convenient SPMD coding



Description of PETSc-FUN3D
(http://www.mcs.anl.gov/petsc-fun3d)

• PETSc-FUN3D is the result of porting FUN3D (developed by W. K. 
Anderson, NASA Langley) to PETSc toolkit

• Tetrahedral vertex-centered unstructured grid code for incompressible 
and compressible Euler and Navier-Stokes equations

• 1st- or 2nd-order Roe for convection and Galerkin for diffusion, and 
false time stepping with backward Euler for nonlinear continuation 
towards steady state

• Newton-Krylov-Schwarz (fully implicit, matrix free) solver; the 
timestep is advanced towards infinity by the switched 
evolution/relaxation (SER) of  Van Leer and Mulder

• The preconditioner (incomplete LU with zero fill) in each domain is 
derived from from 1st-order accurate jacobian 



Overview of PETSc
(http://www.mcs.anl.gov/petsc)

• Gives relatively high-level expression to 
preconditioned iterative linear solvers, and 
Newton iterative methods

• Ports wherever MPI ports; committed to 
progressive MPI tuning

• Permits great flexibility (through object-
oriented philosophy) for algorithmic 
innovation

• Callable from FORTRAN77, C, and C++



Parallelization Philosophy

• Follow the ``owner computes'' rule under the dual 
constraints of minimizing the number of messages  and 
overlapping communication with computation

• Each processor ``ghosts'' its stencil dependences in its 
neighbors

• Ghost nodes ordered after contiguous owned nodes
• Domain mapped from (user) global ordering into local 

orderings
• Scatter/gather operations created between local sequential

vectors and global distributed vectors, based on runtime 
connectivity patterns

• Newton-Krylov-Schwarz operations translated into local 
tasks and communication tasks (nonblocking for overlap 
where hardware supports



Pseudo-Transient Newton-Krylov-Schwarz Algorithm
(after Cai, Gropp, Keyes, and Tidriri (1994))

for (l = 0; l < n_time; l++) {
SELECT TIME-STEP
for (k = 0; k < n_Newton; k++) {
compute nonlinear residual and Jacobian
for (j = 0; j < n_Krylov; j++) {
forall (i = 0; i < n_Precon ; i++) {

solve subdomain problems concurrently
} // End of loop over subdomains 
perform Jacobian-vector product
ENFORCE KRYLOV BASIS CONDITIONS
update optimal coefficients 
CHECK LINEAR CONVERGENCE

} // End of linear solver
perform DAXPY update 
CHECK NONLINEAR CONVERGENCE

} // End of nonlinear loop
} // End of time-step loop



Performance Tuning - Three Fronts

• Algorithmic Tuning
– Choose ``optimal'' compromise of large number 

of nonorthogonal parameters

• Data Layouts
– Stay in harmony with the memory hierarchy

• Compiler Transformations
– Free the compiler to do what it does the best 



Algorithmic Tuning for NKS Solver

• Continuation parameters: discretization order, initial
timestep, timestep evolution

• Newton parameters: convergence tolerance, globalization 
strategy, Jacobian refresh frequency

• Krylov parameters: convergence tolerance, subspace 
dimension, restart number, orthogonalization mechanism

• Schwarz parameters: subdomain number, subdomain
solver, subdomain overlap, coarse grid usage

• Subproblem parameters: fill level, number of sweeps



Algorithmic Tuning -
Continuation Parameters

• SER heuristic

• Parameters of Interest
– Initial CFL number
– Exponent in the Power Law

• = 1 normally
• > 1 for first-order discretization (1.5)
• < 1 at outset of second-order discretization (0.75)

• Switch over Ratio between FO and SO
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Effect of Initial CFL Number



Algorithmic Tuning - Krylov Parameters

• Relative Convergence tolerance
– Moderate values (0.01-0.001) works well for 

most of the cases run
• Subspace dimension

– Depends on the problem size
– Typical values range from 10 (for smallest 

problem) to 60 for the largest problem
• Restart number

– Dependent on the available memory
– Typical values are 15 to 30



Data Layouts - Enhancing Locality

• Choose data layouts that enhance locality at every level of memory 
hierarchy

• Storage/use patterns should follow memory hierarchy
– Blocks for registers

• Block storage  format for multicomponent systems - saves CPU cycles
– Interlaced data structures for cache

• Choose
u1,v1,w1,p1,u2,v2,w2,p2,…

In place of 
u1,u2,…,v1,v2,…,w1,w2,…,p1,p2,…

– Subdomains for distributed memory
• “Chunky” domain decomposition for optimal surface-to-volume 

(communication-to-computation) ratio
– This hierarchy is concerned with different issues than the algorithmic 

efficiency issues associated with the hierarchies of grids



Data Layouts - Reorderings

• Edge reordering
– Sort the nodes at either ends of the edges
– Effectively transforms an edge based loop into a node 

based loop
– Enhances temporal locality

• Node reordering
– Bandwidth reducing orderings reduce the TLB and 

cache misses by referring to data items that are close in 
memory.

– Our experience is with RCM and Sloan



Locality Enhancing Strategies in
PETSc-FUN3D

• Flow over M6 wing with a grid of 22,677 vertices 
(90,708 DOFs incompressible; 113,385 
compressible)

• Turn on each optimization one by one to isolate 
the effect of each

• Employed the best optimization flags
• Five Architectures considered: Cray T3E, IBM 

SP, Origin 2000, Intel Pentium, and Sun Ultra
• Impact of these techniques vary on different 

architectures - improvement ranges from 2.5 on 
Pentium to 7.5 on SP



Sequential Performance- Time/iter (sec)
SP: IBM P2SC (“thin”), 120 MHz, cache: 128 KB data and 32 KB instr
Origin: MIPS R10000, 250 MHz, cache 32 KB data/32KB instr/4MB L2

Pentium: Intel Pentium II, 400 MHz, cache: 16KBdata/16KB instr/512 KB L2
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TLB Misses: 
Measured Values on Origin

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

Base NOER Interlacing NOER Blocking NOER
Base Interlacing BlockingLog scale!



Primary Cache Misses:
Measured Values on Origin

1.00E+08

2.00E+08

3.00E+08

4.00E+08

5.00E+08

6.00E+08

7.00E+08

Base NOER Interlacing NOER Blocking NOER
Base Interlacing Blocking



Secondary Cache Misses:
Measured Values on Origin
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Effect of Data Partitioning Strategies

• pmetis attempts to 
balance the number of 
nodes and edges on 
each partition

• kmetis tries to reduce 
the number of non-
contiguous
subdomains and 
connectivity of the
subdomains

• kmetis gives slightly 
better scalability



ASM Preconditioner with Different 
Overlap Sizes

Fixed Size Problem with 1.2 million unknowns on T3E-900
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Parallel Performance on ASCI Red
ONERA M6 Wing Test Case, Tetrahedral grid of 2.8 million vertices 

(about 11 million unknowns) on up to 3072 ASCI Red Nodes (each with 
dual Pentium Pro 333 MHz processors)



Parallel Performance on SGI/Cray T3E
ONERA M6 Wing Test Case,  Tetrahedral grid of 2.8 million vertices 

(about 11 million unknowns) on up to 1024 Cray T3E 600 MHz 
processors



Summary

• The per-processor performance is crucial to get good 
parallel performance

• Data structure transformations (like blocking, interlacing, 
and edge reordering), that enhance the temporal and spatial 
locality in the memory reference patterns, have improved 
the performance by a large factor (2.5 on Pentium and 7.5 
on SP2)

• ? NKS solver shows excellent scalability on ASCI Red 
(128 to 3072 processors) and T3E (128 to 1024 
processors).



Sequential Performance of PETSc-FUN3D
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Per Processor Performance on T3E
Euler flow over an ONERA M6 Wing, on a tetrahedral grid of 2.8 M

vertices, run up to 1024 processors of a 600 MHz T3E
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Three Fundamental Limiting 
Factors to Peak Performance

• Memory Bandwidth
– Processor does not get data at the rate it requires

• Instruction Issue Rate
– If the loops are load/store bound, we will not be able to 

do a floating point operation in every cycle even if the 
operands are available in primary cache

– Several constraints (like primary cache latency, latency 
of floating point units etc.) are to be observed while 
coming up with an optimal schedule

• Fraction of Floating Point Operations
– Every instruction is not floating point instruction



Analyzing A Simple Kernel:
Sparse Matrix Vector Product

• Sparse matrix vector product is important 
part of many iterative solvers

• Its performance modeling is easy 
• We present simple analysis to predict better 

performance bounds (based on the three 
architectural limits) than the “marketing” 
peak of a processor 



Performance Issues for Sparse Matrix 
Vector Product

• Little data reuse
• High ratio of load/store to 

instructions/floating-point ops
• Stalling of multiple load/store functional 

units on the same cache line
• Low available memory bandwidth



Sparse Matrix Vector Algorithm: 
A General Form

for every row, i {
fetch ia(i+1)
for j = ia(i) to ia(i + 1)  {    // loop over the non-zeros of the row

fetch ja(j), a(j), x1(ja(j)), ..…xN(ja(j))
do N fmadd (floating multiply add)

}
Store y1(i) ..…yN(i)

}



Estimating the Memory 
Bandwidth Limitation

Assumptions

• Perfect Cache (only  compulsory misses; no overhead)
• No memory latency
• Unlimited number of loads and stores 

Data Volume (AIJ Format)

m*sizeof(int) + N*(m+n)*sizeof(double))
// ia, N input (size n) and output (size m) vectors

+ nz* (sizeof(int) + sizeof(double)) 
// ja, and a arrays 

=  4*(m+nz)  +  8*(N*(m+n)+ nz)



• Number of Floating-Point Multiply Add  (fmadd) Ops = N*nz
• For square matrices,

(Since nz >> n, Bytes transferred / fmadd  ~12/N)

• Similarly, for Block AIJ (BAIJ) format 

Estimating the Memory 
Bandwidth Limitation (Contd.)
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Performance Summary on 250 
MHz R10000

• Matrix size, n = 90,708;  number of nonzero entries, nz = 5,047,120
• Number of Vectors, N = 1, and  4

(*here the vectors are multiplied with the matrix one by one i.e. matrix has been streamed 
4 times. Also note that the observed MFlops for N =1 and this case are the same, as they 

should be).

Bandwidth MFlopsFormat Number
of

Vectors

Bytes /
fmadd Required Achieved Ideal Achieved

AIJ 1 12.36 3090 276 58 45
AIJ 4* 45
AIJ 4 3.31 827 221 216 120

BAIJ 1 9.31 2327 84 55
BAIJ 4* 55
BAIJ 4 2.54 635 229 305 175



Prefetching - Fully Use the 
Available Memory Bandwidth

• Many programs are not able to use the available 
memory bandwidth for various reasons

• Ideally a memory operation should be scheduled 
in each cycle since each cycle is a lost opportunity

• Compilers do not do enough prefetching
• Implementing and estimating the right amount of 

prefetching is hard



Estimating the Operation Issue Limitation
AT:address transln; Br: branch; Iop: integer op; Fop: floating 

point op; Of: offset calculation; Ld: load; St: store

for (i = 0, i < m; i++) {
jrow = ia(i+1) // 1Of, AT, Ld
ncol =  ia(i+1) -ia(i) // 1 Iop
Initialize, sum1 …..sumN //  N Ld
for (j = 0; j < ncol; j++) { // 1 Ld

fetch ja(jrow), a(jrow), x1(ja(jrow)), ..…xN(ja(jrow)) 
// 1 Of, N+2 AT, and  Ld

do N fmadd (floating multiply add) // 2N Fop
} // 1 Iop, 1 Br
Store sum1…..sumN in y1(i) ..…yN(i) // 1 Of, N AT, and St

} // 1 Iop, 1 Br



Estimating the Operation Issue 
Limitation (Contd.)

• Assumptions:
– Data items are in cache
– Each operation takes only one cycle to complete but multiple 

operation can graduate in one cycle
• If only one load or store can be issued in one cycle (as is the case on 

R10000 and many other processors), the best we can hope for is 

• Other restrictions (like primary cache latency, latency of floating point 
units etc.) need to be taken into account while creating the best 
schedule (especially on those processors where software pipelining is 
important) 

MFlops/sPeak *
Stores and Loads ofNumber 

nsinstructiopoint  floating ofNumber 



Estimating the Fraction of Floating Point 
Operations

• Assumptions: 
– infinite number of functional units
– data items are in primary cache

• Estimated number of floating point operations out of the 
total instructions:

• For N=1, If = 0.18 and N = 4, If = 0.34.
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Realistic Measures of  Peak Performance
Sparse Matrix Vector Product

one vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120
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Experimental Performance
Sparse Matrix Vector Product

one vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120
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T3E Performance - A Closer 
Look
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Implications

• Reducing memory use is critical
– Reuse data items
– Reuse items in cache
– Other memory effects also important (see TLB, 

ahead)

• Reducing the number of non-floating-point 
instructions is also important
– Reuse items in registers (reduce loads, address 

computation)



Graduated Loads and Stores Per 
Floating Point Instruction
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Conclusions

• The per-processor performance is crucial to get good parallel 
performance

• Our models predict the performance of sparse matrix-vector operations 
on a variety of platforms, including the effects of memory bandwidth, 
and instruction issue rates

• The achievable "peak performance" for these operations is a small 
fraction of the stated peak, independent of code quality

– compiler improvements can help  a little but will not solve the problem

• Intelligent prefetching is required to fully utilize the available memory 
bandwidth 

• Data structure transformations (like blocking, interlacing, and edge 
reordering), that enhance the temporal and spatial locality in the 
memory reference patterns, have improved the performance by a large 
factor (2.5 on Pentium and 7.5 on SP2) .



Future Directions

• Design better data structures and implementation strategies 
for sparse matrix vector and related operations

• Integrate our understanding of the performance issues with
developments in block-structured algorithms to produce 
linear and nonlinear solvers that achieve a higher fraction 
of peak performance on a per-node basis

• Look at important special cases in hierarchical algorithms 
where our performance model recommends alternate data 
structures and library methods
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