Achieving High Sustained Performance
In an Unstructured CFD Application

Dinesh K. Kaushik
CS Dept., Old Dominion University & Argonne
William D. Gropp
MCS Division, Argonne National Laboratory
David E. Keyes
Math & Stat Dept., Old Dominion University & ICASE
Barry F. Smith
MCS Division, Argonne National Laboratory

http://ww. nts. anl . gov/ pet sc-fun3d

& Organization of the Presentation

|

 Performance issues for unstructured grid

solvers
e Background of FUN3D and PETSc
 Parallelization philosophy
o Summary of serial and parallel performance

a Solving Unstructured Mesn
Problemsin Serial

|

 Loss of regularity In unstructured mesh

solvers

— makes them more memory intensive
— reduces the locality In data reference patterns

(which isrequired

— requires very hig
cache lines might

—requires many Iin

for good cache performance)

N memory bandwidth since
ne |loaded multiple times

teger operations that make

these solvers more susceptible to operation

Issue [Imitations

Solving Unstructured Grid
Problems in Parallel

|

« SPMD paralléelization of unstructured grid
solvers Is complicated by the fact that no

two interprocessor data dependency patterns
are alike

 The user-provided global ordering may be
incompatible with the subdomain-
contiguous ordering required for high
performance and convenient SPM D coding

a

Description of PETSc-FUN3D

(http://www.mcs.anl.gov/petsc-fun3d)

fi

|«

PETSc-FUNS3D is the result of porting FUN3D (developed by W. K.
Anderson, NASA Langley) to PET Sc toolkit

Tetrahedral vertex-centered unstructured grid code for incompressible
and compressible Euler and Navier-Stokes equations

1st- or 2nd-order Roe for convection and Gaerkin for diffusion, and

false time stepping with backward Euler for nonlinear continuation
towards steady state

Newton-Krylov-Schwarz (fully implicit, matrix free) solver; the
timestep Is advanced towards infinity by the switched
evolution/relaxation (SER) of Van Leer and Mulder

The preconditioner (incomplete LU with zero fill) in each domain is
derived from from 1st-order accurate jacobian

o =
L o
¥ =

Overview of PETSC
(http://www.mcs.anl .gov/petsc)

|

Gives relatively high-level expression to
preconditioned iterative linear solvers, and
Newton iterative methods

Ports wherever MPI ports, committed to
progressive MPI tuning

Permits great flexibility (through object-
oriented philosophy) for agorithmic
INnnovation

Cdlable from FORTRANTY7, C, and C++

a

Parallelization Philosophy

|

Follow the “—owner computes’ rule under the dua
constraints of minimizing the number of messages and
overlapping communication with computation

Each processor ghosts' its stencil dependences in its
neighbors

Ghost nodes ordered after contiguous owned nodes
Domain mapped from (user) global ordering into local
orderings

Scatter/gather operations created between local sequential
vectors and global distributed vectors, based on runtime
connectivity patterns

Newton-Krylov-Schwarz operations translated into local
tasks and communication tasks (nonblocking for overlap
where hardware supports

& Pseudo-Transent Newton-Krylov-Schwar z Algorithm
(after Cai, Gropp, Keyes, and Tidriri (1994))

&

L

for (I =0; 1 <n_time; [++) {
SELECT TIME-STEP
for (k = 0; k < n_Newton; k++) {
compute nonlinear residual and Jacobian
for (j =0;] <n Krylov; j++) {
forall (i =0; 1 <n_Precon; i++){
solve subdomain problems concurrently
} I/ End of loop over subdomains
perform Jacobian-vector product

ENFORCE KRYLOV BASIS CONDITIONS
update optimal coefficients

CHECK LINEAR CONVERGENCE
} /[End of linear solver
perform DAXPY update
CHECK NONLINEAR CONVERGENCE
} I/ End of nonlinear loop
} [/ End of time-step loop

& Performance Tuning - Three Fronts

|

e Algorithmic Tuning

— Choose optimal" compromise of large number
of nonorthogonal parameters

e Data L ayouts

— Stay In harmony with the memory hierarchy
o Compiler Transformations

— Free the compiler to do what it does the best

& Algorithmic Tuning for NKS Solver

|

e Continuation parameters. discretization order, initia
timestep, timestep evolution

« Newton parameters. convergence tolerance, globalization
strategy, Jacobian refresh frequency

 Krylov parameters. convergence tolerance, subspace
dimension, restart number, orthogonalization mechanism

« Schwarz parameters. subdoman number, subdomain
solver, subdomain overlap, coarse grid usage

o Subproblem parameters: fill level, number of sweeps

2 Algorithmic Tuning -
Continuation Parameters

|

e SER heuristic

2 10| ¢f
Nl = N &rL éf(uul)%

e Parameters of Interest
— Initital CFL number

— Exponent in the Power Law
e =1 normally

o > 1 for first-order discretization (1.5)
o <] at outset of second-order discretization (0.75)

e Switch over Ratio between FO and SO

Effect of Initital CFL Number

I

|«

107 |-

10 |-

Residual Norm
= o
| |

-
'
—_
=1

I

-
'
—
M
|

107 L

Effect of Initial CFL
(OGrid on 128 T3E Processors)

Initial CFL. = L0
— — — — lnitial CFL = 50

50 100
Pseudo-time Iterations

& Algorithmic Tuning - Krylov Parameters

|

* Relative Convergence tolerance

— Moderate values (0.01-0.001) works well for
most of the cases run

o Subspace dimension
— Depends on the problem size

— Typical values range from 10 (for smallest
problem) to 60 for the largest problem

e Restart number

— Dependent on the available memory
— Typical values are 15 to 30

& DatalLayouts - Enhancing Locality

&

L

Choose data layouts that enhance locality at every level of memory
hierarchy

» Storage/use patterns should follow memory hierarchy
— Blocksfor registers

» Block storage format for multicomponent systems - saves CPU cycles
— Interlaced data structuresfor cache
» Choose

ul,viwil,pl,u2,v2,w2,p2,...
In place of
ul,u2,...,viv2,.. . wilw2,...,pl,p2,...
— Subdomainsfor distributed memory

e “Chunky” domain decomposition for
(communi cation-to-computation) ratio

— This hierarchy is concerned with different issues than the algorithmic
efficiency issues associated with the hierarchies of grids

optimal surface-to-volume

a

Data L ayouts - Reorderings

|

» Edgereordering

— Sort the nodes at either ends of the edges

— Effectively transforms an edge based loop into a node
based loop

— Enhances temporal locality
* Node reordering

— Bandwidth reducing orderings reduce the TLB and

cache misses by referring to data items that are close in
memory.

— Our experience iswith RCM and Sloan

a

Locality Enhancing Strategiesin

PETSc-FUNSD

|

Flow over M6 wing with a grid of 22,677 vertices
(90,708 DOFs incompressible; 113,385
compressible)

Turn on each optimization one by one to isolate
the effect of each

Employed the best optimization flags

Five Architectures considered: Cray T3E, IBM
SP, Origin 2000, Intel Pentium, and Sun Ultra

Impact of these techniques vary on different
architectures - improvement ranges from 2.5 on
Pentium to 7.5 on SP

Seguential Performance- Time/iter (sec)

A SP: IBM P2SC (“thin™), 120 MHz, cache: 128 KB dataand 32 KB ingtr
Origin: MIPS R10000, 250 MHz, cache 32 KB data/32KB instr/4AMB L2
Pentium: Intel Pentium 11, 400 MHz, cache: 16K Bdata/16KB instr/512 KB L2

Y o
oy o B

0 Base NOER Interlacing NOER Blocking NOER
Base O Interlacing Blocking

180-
16011
1401 |
12011
1001 |
8017
607 |
40171

SP Origin Pentium

&

L

A TLB Misses. =
"~ Measured Vaueson Origin =~ ©
ogede | MO BlRGER"OT HBRg N
1.00E+09-
1.00E+08+
1.00E+07+
1.00E+06+
1.00E+05+
1.00E+04-

Primary Cache Misses,
Measured Values on Origin

£ X
o;:.‘ .~ f-(‘:

|

0 Base NOER M Interlacing NOER ® Blocking NOER
Base O Interlacing Blocking

7.00E+08-

6.00E+08+

5.00E+08-

4.00E+08-

3.00E+08-

2.00E+08+

1.00E+08-

Secondary Cache Misses;
Measured Values on Origin

% .
oy o B

[0 Base NOER Interlacing NOER Blocking NOER
l Base @ Interlacing Blocking

7.00E+07-

6.00E+07+

5.00E+07+

4.00E+Q7-

3.00E+07

2.00E+07+

1.00E+Q7-

|

|

& Effect of Data Partitioning Strategies

e pmetis attempts to
balance the number of |
nodes and edges on 55 e A
each partition 3 =

6

g
B EEEEREEE
]

e Kmetistriestoreduce g
the number of non- & ¢
contiguous <t :
subdomains and £
connectivity of the I
subdomains 1 .

e kmetisgivesdightly e ol e e o g o
better scalability T s

a

ASM Preconditioner with Different
Overlap Sizes

Fixed Size Problem with 1.2 million unknowns on T3E-900

|

Overlap=0 Overlap=1 Overlap=2
X time |Linearits| time | Linear its | time | Linear Iits
16 |1068.5| 965 |981.8 849 1026.3| 845
32 | 555.7 968 [498.3 850 498.1 791
64 | 293.0| 1033 |284.9 912 285.5 906
128| 160.4 | 1094 |1715| 1028 173.8 908

Parallel Performance on ASCI Red

A ONERA M6 Wing Test Case, Tetrahedral grid of 2.8 million vertices
7 (a@bout 11 million unknowns) on up to 3072 ASCI Red Nodes (each with
dual Pentium Pro 333 MHz processors)

I

|«

13000

Avg. Vertices per Node Executmn T|me (sec) Implementatlun EﬁICiEnC‘y’

Loy i)

£000

Y
206 §12 TR 150 2048 2060 T

50

Nnnllnear teraturi| ‘ ‘

| Mfldpﬁs pér Node Aggfegaté Gﬂdpfs |

]
&0 150
il

LR 104 153§ it 2560 72

2 512

na)
n] =] o =
] {1

5
=
= = &5 8 &

ar

o 256 512 12 533 .‘: || | I | | |

Parallel Performance on SGI/Cray T3E

ﬁ ONERA M6 Wing Test Case, Tetrahedral grid of 2.8 million vertices
(about 11 million unknowns) on up to 1024 Cray T3E 600 MHz

lé

!

L

Processors

25K1W

Avg. Vertices per Proc.

1 28256384 512640768 8961024

Nonlinear lterations

128 256 384512640 7688961024

2500

Execution Time (s) Implementation Efficiency

2000
1500

1000

1 28256 384 5126407688961024 1 282563845126407688961024

Mflapr’s per Prnc Aggregate Gflo pfs

128 256 384512640 7688961024 1 28256384512640768 3961024

Summary

|

 The per-processor performance is crucia to get good
parallel performance

e Data structure transformations (like blocking, interlacing,
and edge reordering), that enhance the temporal and spatial
locality in the memory reference patterns, have improved

the performance by a large factor (2.5 on Pentium and 7.5
on SP2)

« ?NKS solver shows excellent scalability on ASCI Red

(128 to 3072 processors) and T3E (128 to 1024
PrOCESSOor's).

& Sequential Performance of PETSc-FUN3D

|

0 Peak Mflops/s Stream Triad Mflops/s Observed Mflops/s

900

800-

700-

600-

500+

4001

300-

200

100+

SP2 Origin T3E

Per Processor Performance on T3E

A Euler flow over an ONERA M6 Wing, on atetrahedral grid of 2.8 M
vertices, run up to 1024 processors of a 600 MHz T3E

[Mflop/s per Processor

1007
907
807111
70771
60-
50717
407
3077

107

128 256 384 512 640 768 896 1024

&

L

o =
L o
¥ =

Three Fundamental Limiting
Factors to Peak Performance

|

 Memory Bandwidth

— Processor does not get data at the rate it requires
* Instruction Issue Rate

— If the loops are |oad/store bound, we will not be able to

do afloating point operation in every cycle even if the
operands are available in primary cache

— Several constraints (like primary cache latency, latency

of floating point units etc.) are to be observed while
coming up with an optimal schedule

Fraction of Floating Point Operations
— Every instruction is not floating point instruction

o =
L o
¥ =

Analyzing A Simple Kerndl:
Sparse Matrix Vector Product

|

Sparse matrix vector product Is important
part of many Iiterative solvers

o |ts performance modeling is easy

We present simple analysis to predict better
performance bounds (based on the three

architectural limits) than the “marketing”
peak of aprocessor

Performance |ssues for Sparse Matrix
Vector Product

|

Little data reuse

High ratio of load/store to
Instructions/floating-point ops

Stalling of multiple load/store functional
units on the same cache line

L ow available memory bandwidth

Sparse Matrix Vector Algorithm:
A General Form

‘Ei!!!illﬂl

for every row, i {
fetchia(i+1)
forj=ia(i)toiai +1) {
fetchja()), a(), x,0a()), -----xy0ag))

do N fmadd (floating multiply add)
}

Store Vy(i)yn (i)
}

// loop over the non-zeros of the row

Estimating the Memory
Bandwidth Limitation

|

Assumptions

Perfect Cache (only compulsory misses; no overhead)
No memory latency

e Unlimited number of loads and stores

Data Volume (AlJ Format)

m* sizeof (int) + N* (m+n)* sizeof(double))

// 1a, N input (size n) and output (Size m) vectors
+ nz* (sizeof(int) + sizeof(double))

Il ja, and aarrays
= 4*(m+nz) + 8*(N*(m+n)+ nz)

Estimating the Memory
Bandwidth Limitation (Contd.)

|

Number of Floating-Point Multiply Add (fmadd) Ops = N*nz
For square matrices,

nz N
(Since nz >> n, Bytestransferred / fmadd ~12/N)

Bytestransfered/fmadd =(16 + %)*1 + 12

Similarly, for Block AlJ (BAIJ) format

Bytestransferred/fmadd = (16 + ——)* L + (—— + 3
N*b’ nz N*b N

Performance Summary on 250
MHz R10000

lé

!

L

Matrix size, n = 90,708; number of nonzero entries, nz = 5,047,120
Number of Vectors N=1, and 4

Format | Number | Bytes/ Bandwidth MFlops
of fmadd | Required | Achieved | Idea | Achieved
Vectors

AlJ 1 12.36 3090 276 58 45

AlJ 4* 45

AlJ 4 3.31 827 221 216 120
BAIJ 1 9.31 2327 84 55
BAIJ 4* 55
BAIJ 4 2.54 635 229 305 175

(* here the vectors are multiplied with the matrix one by one i.e. matrix has been streamed
4 times. Also note that the observed MFlops for N =1 and this case are the same, as they

should be).

Prefetching - Fully Use the
Available Memory Bandwidth

|

Many programs are not able to use the available
memory bandwidth for various reasons

|deally a memory operation should be scheduled
In each cycle since each cycle isalost opportunity

Compilers do not do enough prefetching

Implementing and estimating the right amount of
prefetching is hard

A AT :address trandln; Br: branch; 1op: integer op; Fop: floating

Estimating the Operation Issue Limitation

|

point op; Of: offset calculation; Ld: load; St: store

for(1I=0,1<m;i++){

jrow =ia(i+1) /I 10f, AT, Ld
ncol = ia(i+1) -ia(l) I/ 11op
Initialize, sum;,sumy /I N Ld
for (j =0;] <ncal; j++) { //1Ld

fetch ja(jrow), a(jrow), x,(ja(jrow)), Xy(ja(row))
/[1 Of, N+2 AT, and Ld

do N fmadd (floating multiply add) I/ 2N Fop
} // 11op, 1 Br
Store sum,.....sumy iny,(i)yy(1) [/ 1 Of, N AT, and St

} /I 11op, 1 Br

a

Estimating the Operation Issue
Limitation (Contd.)

&

L

Assumptions:
— Dataitems are in cache

— Each operation takes only one cycle to complete but multiple
operation can graduate in one cycle

If only one load or store can be issued in one cycle (as is the case on
R10000 and many other processors), the best we can hopefor is

Number of floating point instructions
Number of Loadsand Stores

* Peak MFlops/s

Other restrictions (like primary cache latency, latency of floating point
units etc.) need to be taken into account while creating the best

schedule (especialy on those processors where software pipelining is
Important)

A Estimating the Fraction of Floating Point
Operations

|

e Assumptions:
— Infinite number of functional units
— dataitems are in primary cache

o Estimated number of floating point operations out of the
total instructions:

Total number of instructions completed (I) =m* (3* N+8) + nz* (4* N +9)
Fraction spent on floating point work (I+) = 2" N”nz
m* (3* N+8) +nz*(4* N +9)
 For N=1,1,=0.18and N =4, |, = 0.34.

Realistic Measures of Peak Performance

SP Orign T3E Pentium Ultrall

a8 Sparse Matrix Vector Product =
o one vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120 -

800 B Mem BW Peak

700 B Oper. | ssue Peak

600- O Observed

5001

4001]]

30011

20017]

10017]

0-

Experimental Performance

A Sparse Matrix Vector Product
" one vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120

|

300 B Mem BW Pea
Bl Oper. I ssue Peak
2207 @ Observed

200

1501

1001

507

O_

SP Origin T3E Pentium Ultrall

2 T3E Performance - A Closer
o L ook

10071 Memory BW Peak
90 [Observed

80-
701"
60-

50-
401"
301"
20-

10

Stream On Stream Off

L

lmplications

|

* Reducing memory useiscritical
— Reuse data items

— Reuse items in cache

— Other memory effects also important (see TLB,
ahead)

* Reducing the number of non-floating-point
Instructions is also iImportant

— Reuse items in registers (reduce loads, address
computation)

Graduated L oads and Stores Per

1.00-

g . . . ﬁ

Floating Point Instruction

2.00

1.90-

1.80-

1.70- 1 Base NOER

1.60- Interlacing NOER

1.50- Elocklng NOER

- [] Inetirelacing

ey Blocking

1.20-

1.10-

Conclusions

fi

|«

The per-processor performance is crucia to get good parale
performance

Our models predict the performance of sparse matrix-vector operations

on a variety of platforms, including the effects of memory bandwidth,
and instruction issue rates

The achievable "peak performance" for these operations is a small
fraction of the stated peak, independent of code quality

— compiler improvements can help alittle but will not solve the problem

Intelligent prefetching is required to fully utilize the available memory
bandwidth

Data structure transformations (like blocking, interlacing, and edge
reordering), that enhance the temporal and spatial locality in the

memory reference patterns, have improved the performance by a large
factor (2.5 on Pentium and 7.5 on SP2) .

Future Directions

|

e Design better data structures and implementation strategies
for sparse matrix vector and related operations

* Integrate our understanding of the performance issues with
developments in block-structured algorithms to produce
linear and nonlinear solvers that achieve a higher fraction
of peak performance on a per-node basis

o Look at important special cases in hierarchical algorithms
where our performance model recommends alternate data
structures and library methods

References

fi

|«

On the interaction of Architecture and Algorithm in the Domain-Based
Parallelization of an Unstructured Grid Incompressible Flow Code
(Kaushik, Keyes, and Smith), 1998, in “Proc. Of the 10th Intl. Conf.
On Domain Decomposition Methods’, J. Mandel et al., eds., AMS, pp.
311-319.

— Cache-awarefocus

Newton-Krylov-Schwarz Methods for Aerodynamic Problems:
Compressible and Incompressible Flows on Unstructured Grids
(Kaushik, Keyes, and Smith), 1998, submitted to “Proc. of the 11th
Intl. Conf. On Domain Decomposition Methods’, C.-H Lai et al., eds.
— Multi-platform focus

Download from ht t p: / / ww. nts. anl . gov/ pet sc-f un3d

