
Using Memory Performance To Understand
the Mixed MPI/OpenMP Model

Dinesh K. Kaushik
MCS Division, Argonne National Laboratory &

CS Department, Old Dominion University

David E. Keyes
Math. & Stat. Department, Old Dominion University &

ISCR, Lawrence Livermore National Laboratory

William D. Gropp
Barry F. Smith

MCS Division, Argonne National Laboratory

Acknowledgments

• Research participants were supported by
– U.S. Department of Energy
– U.S. Department of Education GAANN

Fellowships Program
– U.S. National Science Foundation

• Computer access was provided by
– U.S. Department of Energy, NERSC, and ASCI

centers
– U.S. National Science Foundation NCSA center

Organization of the Presentation

• Case for hybrid MPI/OpenMP model
• Memory performance as a tool
• Performance issues for MPI and OpenMP
• Conclusions and future directions

Our View of the Hybrid Model

• MPI Extreme
– the user manages the memory updates

• OpenMP Extreme
– the system manages the memory updates

• Hybrid MPI/OpenMP
– Some memory updates are managed by the user

and the rest by the system

Motivation for Hybrid Model

• Given
– a scalable MPI based code

• Goal
– use hybrid model to achieve better performance than MPI alone

• Methodology:
– assign one subdomain to one MPI process
– use OpenMP with in a subdomain that gets mapped to a node (with

2 or more processors)

• Advantage
– take advantage of shared memory programming within a

subdomain
– results in bigger subdomains as more than one thread can work on

a subdomain as compared to pure MPI case

Description of PETSc-FUN3D

• PETSc-FUN3D is the result of porting FUN3D (developed by W. K.
Anderson, NASA Langley) to PETSc toolkit

• Tetrahedral vertex-centered unstructured grid code for incompressible
and compressible Euler and Navier-Stokes equations

• 1st- or 2nd-order Roe for convection and Galerkin for diffusion, and
false time stepping with backward Euler for nonlinear continuation
towards steady state

• Newton-Krylov-Schwarz (fully implicit, matrix free) solver; the
timestep is advanced towards infinity by the switched
evolution/relaxation (SER) of Van Leer and Mulder

• The preconditioner (incomplete LU with zero and one level fill) in
each domain is derived from from 1st-order accurate jacobian

Parallel Scaling Results on ASCI Red
ONERA M6 Wing Test Case, Tetrahedral grid of 2.8 million vertices (about 11 million

unknowns) on up to 3072 ASCI Red Nodes (each with dual Pentium Pro 333 MHz
processors)

Observations on ASCI Red
Scalability

• Sequential performance on many machines is a low
percentage of peak

• Per-processor performance on ASCI Red stays fairly
constant while going from 128 to 3024 nodes

• The programmer can do a good job in expressing the
coarse-grained concurrency but getting good cache locality
is a big challenge (especially for unstructured PDE solvers)

• Getting good per processor (or per node in SMP case)
performance is the key to achieving good parallel
performance

Memory Performance - A Limitation

• Memory performance improvement rate (7% per year) is
far behind the CPU performance growth (about 55% per
year)

• The performance of many scientific computing codes is
limited by the available memory bandwidth

• In shared memory programming, when the processors
compete for the memory bandwidth, there is added
motivation to reduce the number of memory transactions
(necessary or artificial).

• Memory performance models can be very helpful in
understanding the observed performance of a code

Sequential Performance of PETSc-FUN3D

0
100
200
300
400
500
600
700
800
900

SP2 Origin T3E

Peak Mflops/s Stream Triad Mflops/s Observed Mflops/s

Sparse Matrix Vector Algorithm:
A General Form

for every row, i {
fetch ia(i+1)
for j = ia(i) to ia(i + 1) { // loop over the non-zeros of the row

fetch ja(j), a(j), x1(ja(j)), ..…xN(ja(j))
do N fmadd (floating multiply add)

}
Store y1(i) ..…yN(i)

}

• Number of Floating-Point Multiply Add (fmadd) Ops = N*nz
• For square matrices,

(Since nz >> n, Bytes transferred / fmadd ~12/N)

• Similarly, for Block AIJ (BAIJ) format

Estimating the Memory Bandwidth
Limitation for Matrix-Vector Kernel

N

nz
n

)*
N

 (
124

16 ed/fmadd transferrBytes ++=

)
8

*
4

(*
*
4

16 ed/fmadd transferrBytes
NbN

nz
n

)
bN

(+++=

Performance Summary of
MatMultVec on 250 MHz R10000

• Matrix size, n = 90,708; number of nonzero entries, nz = 5,047,120
• Number of Vectors, N = 1, and 4

(*here the vectors are multiplied with the matrix one by one i.e. matrix has been streamed
4 times. Also note that the observed MFlops for N =1 and this case are the same, as they

should be).

Bandwidth MFlops Format Number

of
Vectors

Bytes /
fmadd Required Achieved Ideal Achieved

AIJ 1 12.36 3090 276 58 45
AIJ 4* 45
AIJ 4 3.31 827 221 216 120

BAIJ 1 9.31 2327 84 55
BAIJ 4* 55
BAIJ 4 2.54 635 229 305 175

Lower Precision Storage:
A Way to Reduce the Required Memory Bandwidth

106s122s16s31s120
181s205s34s60s64
331s373s67s117s32
657s746s136s223s16

SingleDoubleSingleDouble
OverallLinear Solve

Computational Phase
Number of
Processors

Execution times on a 250MHz Origin 2000 for 358K-vertex case
with single or double precision versions of the preconditioner
matrix.

OpenMP Programming Model

• Natural for SMPs
• Simpler to program
• Allows incremental parallelization
• Possibility of lower latency communication
• Portable code

Performance Issues for OpenMP

• Overhead of thread management
• Redundant storage and work
• Sequential reduction phase, which tend to

be memory bandwidth bound
• Simplicity goes away when user takes care

of memory updates (similar to MPI model)

Overhead of Managing the Threads

• Depends on
– the number of times parallel regions are entered
– the number and size of private data structures
– the cost of the synchronization mechanism

• Some implementations are not able to handle the
single threaded case well:
– For example, on Origin 2000 (250 MHz R10000)

sample program Jacobi (from OpenMP web site) takes
• 81 seconds when run on single OpenMP thread
• 62 seconds when compiled without OpenMP
• scales w.r.t. the former

Competing for the Available
Memory Bandwidth

• The processors on a node compete for the
available memory bandwidth

• The computational phases that are memory
bandwidth limited will not scale
– may even run slower because of the extra

synchronizations

Stream Benchmark on ASCI Red
MB/s for the Triad Operation

1521571E07

1411451E06

1441401E05

2381375E04

12966661E04

2 Threads1 ThreadVector Size

Redundant Storage and Work

• To manage memory updates efficiently, we
might need to create extra private work
arrays

• These work arrays need to be copied into a
shared array at the end of the parallel region
– A memory bandwidth limited sequential phase

• A vector reduce operation is needed in the
OpenMP standard

Flux Evaluation in PETSc-FUN3D

Example of Redundant Work

!$omp parallel firstprivate(res) shared(resvec)
! Compute private residual updates
! Combine the private residual updates
!$omp critical (residual_update)
#if defined(_OPENMP)

do n = 1,nnodes
resvec(1,n)=resvec(1,n)+res(1,n)
resvec(2,n)=resvec(2,n)+res(2,n)
resvec(3,n)=resvec(3,n)+res(3,n)
resvec(4,n)=resvec(4,n)+res(4,n)

enddo
flops = flops + 4*nnodes

#endif
!$omp end critical (residual_update)
!$omp end parallel

Apply the “Owner Compute”
Rule for OpenMP

• Create the disjoint working sets to eliminate the
redundant private arrays (e.g. by coloring the
edges and nodes)

• Alternatively, use OpenMP over subdomains
– each MPI process will repartition its domain
– each thread will work on its assigned subdomain

• Brings in the complexity of programming as the
user is taking care of the memory updates

MPI/OpenMP in PETSc-FUN3D

• Only in the flux evaluation phase as it is not memory
bandwidth bound

• Gives the best execution time as the number of nodes
increases because the subdomains are chunkier as
compared to pure MPI case

45s72s39s76s2560
40s62s33s66s3072

258s456s261s483s256
2 Proc1 Proc2 Thr1 Thr

MPIMPI/OpenMP
Nodes

Conclusions

• Memory performance is crucial to achieve good per
processor performance

• The hybrid MPI/OpenMP achieves good overall
performance but should be used only in the phases that are
not memory bandwidth limited

• Even for the OpenMP case, memory updates need to be
managed by user (following the “owner computes” rule)

• There is a need for the vector reduce operation in the
OpenMP standard

Future Directions

• Tolerate the load imbalance by using
OpenMP over subdomains and assigning
the work dynamically to threads

• Study the implementation level techniques
like loop structure, array layout, array
padding (to avoid false sharing) etc. for the
hybrid model

Relevant URLs

• PETSc-FUN3D Project at Argonne
http://www.mcs.anl.gov/petsc-fun3d

• PETSc
http://www.mcs.anl.gov/petsc

• ODU NSF and ASCI projects
http://www.math.odu.edu/~keyes/nsf
http://www.math.odu.edu/~keyes/asci

