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Organization of the Presentation

• Case for hybrid MPI/OpenMP model
• Memory performance as a tool
• Performance issues for MPI and OpenMP
• Conclusions and future directions



Our View of the Hybrid Model

• MPI Extreme
– the user manages the memory updates

• OpenMP Extreme
– the system manages the memory updates

• Hybrid MPI/OpenMP
– Some memory updates are managed by the user 

and the rest by the system



Motivation for Hybrid Model

• Given
– a scalable MPI based code

• Goal
– use hybrid model to achieve better performance than MPI alone

• Methodology: 
– assign one subdomain to one MPI process
– use OpenMP with in a subdomain that gets mapped to a node (with 

2 or more processors) 

• Advantage
– take advantage of shared memory programming within a 

subdomain
– results in bigger subdomains as more than one thread can work on

a subdomain as compared to pure MPI case



Description of PETSc-FUN3D

• PETSc-FUN3D is the result of porting FUN3D (developed by W. K. 
Anderson, NASA Langley) to PETSc toolkit

• Tetrahedral vertex-centered unstructured grid code for incompressible 
and compressible Euler and Navier-Stokes equations

• 1st- or 2nd-order Roe for convection and Galerkin for diffusion, and 
false time stepping with backward Euler for nonlinear continuation 
towards steady state

• Newton-Krylov-Schwarz (fully implicit, matrix free) solver; the 
timestep is advanced towards infinity by the switched 
evolution/relaxation (SER) of  Van Leer and Mulder

• The preconditioner (incomplete LU with zero and one level fill) in 
each domain is derived from from 1st-order accurate jacobian 



Parallel Scaling Results on ASCI Red
ONERA M6 Wing Test Case, Tetrahedral grid of 2.8 million vertices (about 11 million 

unknowns) on up to 3072 ASCI Red Nodes (each with dual Pentium Pro 333 MHz 
processors)



Observations on ASCI Red 
Scalability

• Sequential performance on many machines is a low 
percentage of peak

• Per-processor performance on ASCI Red stays fairly 
constant while going from 128 to 3024 nodes

• The programmer can do a good job in expressing the 
coarse-grained concurrency but getting good cache locality 
is a big challenge (especially for unstructured PDE solvers)

• Getting good per processor (or per node in SMP case) 
performance is the key to achieving good parallel 
performance



Memory Performance - A Limitation

• Memory performance improvement rate (7% per year) is 
far behind the CPU performance growth (about 55% per 
year)

• The performance of many scientific computing codes is 
limited by the available memory bandwidth

• In shared memory programming, when the processors 
compete for the memory bandwidth, there is added 
motivation to reduce the number of memory transactions 
(necessary or artificial).

• Memory performance models can be very helpful in 
understanding the observed performance of a code



Sequential Performance of PETSc-FUN3D
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Sparse Matrix Vector Algorithm: 
A General Form

for every row, i {
fetch ia(i+1)
for j = ia(i) to ia(i + 1)  {    // loop over the non-zeros of the row

fetch ja(j), a(j), x1(ja(j)), ..…xN(ja(j))
do N fmadd (floating multiply add)

}
Store y1(i) ..…yN(i)

}



• Number of Floating-Point Multiply Add  (fmadd) Ops = N*nz
• For square matrices,

(Since nz >> n, Bytes transferred / fmadd  ~12/N)

• Similarly, for Block AIJ (BAIJ) format 

Estimating the Memory Bandwidth 
Limitation for Matrix-Vector Kernel
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Performance Summary of 
MatMultVec on 250 MHz R10000

• Matrix size, n = 90,708;  number of nonzero entries, nz = 5,047,120
• Number of Vectors, N = 1, and  4

(*here the vectors are multiplied with the matrix one by one i.e. matrix has been streamed 
4 times. Also note that the observed MFlops for N =1 and this case are the same, as they 

should be).

 
Bandwidth MFlops Format Number 

of 
Vectors 

Bytes / 
fmadd Required Achieved Ideal Achieved 

AIJ 1 12.36 3090 276 58 45 
AIJ 4*     45 
AIJ 4 3.31 827 221 216 120 

BAIJ 1 9.31 2327  84 55 
BAIJ 4*     55 
BAIJ 4 2.54 635 229 305 175 

 
 



Lower Precision Storage:
A Way to Reduce the Required Memory Bandwidth
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Computational Phase
Number of 
Processors

Execution times  on a 250MHz Origin 2000 for 358K-vertex case 
with single or double precision versions of the preconditioner 
matrix.



OpenMP Programming Model

• Natural for SMPs
• Simpler to program
• Allows incremental parallelization
• Possibility of lower latency communication
• Portable code



Performance Issues for OpenMP

• Overhead of thread management
• Redundant storage and work
• Sequential reduction phase, which tend to 

be memory bandwidth bound
• Simplicity goes away when user takes care 

of memory updates (similar to MPI model)



Overhead of Managing the Threads

• Depends on 
– the number of times parallel regions are entered
– the number and size of private data structures
– the cost of the synchronization mechanism 

• Some implementations are not able to handle the 
single threaded case well:
– For example, on Origin 2000 (250 MHz R10000) 

sample program Jacobi (from OpenMP web site) takes 
• 81 seconds when run on single OpenMP thread 
• 62 seconds when compiled without OpenMP
• scales w.r.t. the former 



Competing for the Available 
Memory Bandwidth

• The processors on a node compete for the 
available memory bandwidth

• The computational phases that are memory 
bandwidth limited will not scale
– may even run slower because of the extra 

synchronizations 



Stream Benchmark on ASCI Red
MB/s for the Triad Operation
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Redundant Storage and Work

• To manage memory updates efficiently, we 
might need to create extra private work 
arrays

• These work arrays need to be copied into a 
shared array at the end of the parallel region
– A memory bandwidth limited sequential phase

• A vector reduce operation is needed in the 
OpenMP standard



Flux Evaluation in PETSc-FUN3D



Example of Redundant Work

!$omp parallel firstprivate(res) shared(resvec)
! Compute private residual updates
! Combine the private residual updates
!$omp critical (residual_update)
#if defined(_OPENMP)

do n = 1,nnodes
resvec(1,n)=resvec(1,n)+res(1,n)
resvec(2,n)=resvec(2,n)+res(2,n)
resvec(3,n)=resvec(3,n)+res(3,n)
resvec(4,n)=resvec(4,n)+res(4,n)

enddo
flops = flops + 4*nnodes

#endif
!$omp end critical (residual_update)
!$omp end parallel



Apply the “Owner Compute” 
Rule for OpenMP

• Create the disjoint working sets to eliminate the 
redundant private arrays (e.g. by coloring the 
edges and nodes)

• Alternatively, use OpenMP over subdomains
– each MPI process will repartition its domain
– each thread will work on its assigned subdomain

• Brings in the complexity of programming as the 
user is taking care of the memory updates



MPI/OpenMP in PETSc-FUN3D

• Only in the flux evaluation phase as it is not memory 
bandwidth bound

• Gives the best execution time as the number of nodes  
increases because the subdomains are chunkier as 
compared to pure MPI case 
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Conclusions

• Memory performance is crucial to achieve good per 
processor performance

• The hybrid MPI/OpenMP achieves good overall 
performance but should be used only in the phases that are 
not memory bandwidth limited

• Even for the OpenMP case, memory updates need to be 
managed by user (following the “owner computes” rule)

• There is a need for the vector reduce operation in the 
OpenMP standard



Future Directions

• Tolerate the load imbalance by using 
OpenMP over subdomains and assigning 
the work dynamically to threads

• Study the implementation level techniques 
like loop structure, array layout, array 
padding (to avoid false sharing) etc. for the 
hybrid model



Relevant URLs

• PETSc-FUN3D Project at Argonne
http://www.mcs.anl.gov/petsc-fun3d

• PETSc
http://www.mcs.anl.gov/petsc

• ODU NSF and ASCI projects
http://www.math.odu.edu/~keyes/nsf
http://www.math.odu.edu/~keyes/asci


