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Abstract

Summary:Information on molecular networks, such as networks of inter-
acting proteins, comes from diverse sources that contain remarkable
differences in distribution and quantity of errors. Here, we introduce a
probabilistic model useful for predicting protein interactions from het-
erogeneous data sources. The model describes stochastic generation of
protein–protein interaction networks with real-world properties, as well
as generation of two heterogeneous sources of protein-interaction infor-
mation: research results automatically extracted from the literature and
yeast two-hybrid experiments. Based on the domain composition of pro-
teins, we use the model to predict protein interactions for pairs of proteins
for which no experimental data are available. We further explore the
prediction limits, given experimental data that cover only part of the
underlying protein networks. This approach can be extended naturally
to include other types of biological data sources.

Contact: iossifov@dbmi.columbia.edu
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Introduction
The past five decades of molecular biology have brought an incredible
wealth of high-quality information about the molecular machinery of liv-
ing cells. Although the driving force behind this knowledge acquisition
has been the satisfaction of individual research questions, an underuti-
lized product is a mass of data that could be used to generate testable
predictions in much the same way as is done in physics. However, by and
large, these data are locked within the literature, and extracting them is a
challenging process that introduces noise associated with misinterpreta-
tion of results by text-mining algorithms or by data curators. In addition
to the vast biological literature, recent developments in genomics have
resulted in another type of data that comprise hundreds or thousands of
measurements of gene function, such as gene-expression levels or protein–
protein interactions, under a given set of experimental conditions. These
functional genomic datasets tend to be consolidated and therefore easily
accessible to analysis, but they also tend to have a high level of noise
associated with spurious or irrelevant measurements.

The amount of molecular data from these two sources is immense and
is growing rapidly. A critical mass of these data should allow generation
of testable models of molecular networks as the combined evidence helps
to separate the relevant biological signals from the underlying noisy data.
Current progress toward automated generation of molecular networks is
limited by the rate of information processing and interpretation rather than
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by the rate of accumulation of new information; hence, development of
predictive mathematical models appears especially important.

There are many types of molecular interactions that are routinely
reported in the literature or are analyzed using high-throughput methods.
To test our methods for extracting these data and building molecular net-
works, we have chosen to focus on interactions between proteins. In this
paper, we consider the problem of predicting interactions between pairs of
novel proteins with known sequences, given a set of experimentally deter-
mined interactions. Previous studies have introduced a framework for
predicting protein–protein interactions (Marcotteet al., 1999; Sprinzak
and Margalit, 2001; Gomezet al., 2001; Bock and Gough, 2001; Gomez
and Rzhetsky, 2002; Denget al., 2002; Tonget al., 2002; Goldberg and
Roth, 2003) but have only led to only moderate success, in part because
they focused on a single type of experimental data. Here, we overcome
this limitation by assuming that the available experimental data are hetero-
geneous, arising from more than one source and exhibiting different error
patterns. Furthermore, we present a method for integrating diverse data
types. We consider here data arising from large-scale yeast two-hybrid
experiments and from automated analysis of numerous research articles
by information extraction systems such as GeneWays, developed by our
group (Koike and Rzhetsky, 2000; Rzhetskyet al., 2000; Friedmanet al.,
2001; Hatzivassiloglouet al., 2001; Krauthammeret al., 2002; Fig. 1).



Abstract

Introduction

Probabilistic Model

Network inference …

Three parts of the …

Results and Discussion

Acknowledgements

References

Fig. 1. Main model diagram.

We present a mathematical framework for prediction of protein–protein
interactions in the real world from published statements about such
interactions in the research literature and from observed interactions in
yeast two-hybrid experiments. Our framework allows heterogeneous data-
production processes and different types of error during each process.
Domain composition of proteins is used as a common point of refer-
ence for the different data types. Using prior observations, automatically
extracted from the literature and derived from yeast two-hybrid data, our
model allows estimation of the confidence in a given set of predicted
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or experimentally determined interactions. Additionally, confidence esti-
mates can be calculated for protein interactions that have no available
experimental data.

We offer evidence for the power and utility of this approach by first
constructing a plausible, simulated model of real-world protein–protein
interactions proteome-wide. These real-world networks are composed of
potential interactions that can occur between proteins. We generate these
real-world networks stochastically from well-described distributions of
domain compositions of real proteomes and protein–protein interaction
networks. We then use this model as the basis for simulating experimen-
tal results from yeast two-hybrid data and results extracted from journal
articles. Simulating the real-world protein–protein interactions and the
processes that generate observable evidence allows perfect measurement
of whether our predictions are correct by matching the predictions to the
simulated real-world network. Further, as research articles and yeast two-
hybrid data are usually incomplete and cover only partially overlapping
sets of interactions between proteins, we are interested in exploring the
prediction limits, given these fractional data. Using simulated data, we
can study the influence of incomplete datasets by changing the coverage
of the observable experimental results.

In addition to predicting protein–protein interactions from multiple data
sources, our model also generates valuable information on the quality
of the observed datasets. It does so by making a joint assignment of
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labels ‘true’ and ‘false’ to interactions observed in two-hybrid experi-
ments and of labels ‘correctly extracted, true,’ ‘correctly extracted, false’
and ‘incorrectly extracted’ to actions derived by text-mining systems (such
as GeneWays) from research articles. Therefore, our model is useful for
filtering noise from the observed data.

This paper describes the model in its entirety, but we emphasize the
model’s ability to generate novel protein–protein interaction predictions
and explore its prediction limits, given fractional or incomplete datasets.
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Probabilistic Model
Our model includes three major stochastic components: proteome-
wide simulation of potential protein–protein interactions, simulation of
statements published in the research literature and simulation of yeast
two-hybrid data.

Protein–protein interaction reality

Following an established view in structural biology, we consider each pro-
tein as a collection of protein domains; the linear order of such domains
within a protein is not important for the purpose of this study, and so
each protein is treated as a collection of unordered domains. A domain is
defined as a portion of a polypeptide chain that is identified and described
by a human expert, or by a computer program based on expert annota-
tion. Domains often correspond to spatially compact structures; the same
domain (although with variation at the amino-acid level) may occur in
multiple proteins within the same organism.

Relatively recently, it became apparent that the domain compositions of
real proteomes and real protein–protein interaction networks have highly
non-random properties. In the context of our model, the following five
distributions appear important:

(A) The proportion of proteins having exactlyk interactions with other
proteins (including self-interactions).
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(B) The proportion of domain types per proteome having exactlyk
copies.

(C) The proportion of proteins having exactlyk domain copies (of any
type).

(D) The proportion of proteins having exactlyk domain types (regard-
less of the number of copies of each domain type).

(E) The proportion of domain types having exactlyk interactions with
other (or the same) domain types.

It appears (Barabasi and Albert, 1999; Albert and Barabasi, 2000; Jeong
et al., 2000; Albert et al., 2000; Jeonget al., 2001; Rzhetsky and Gomez,
2001; Bader and Hogue, 2002; Koonin et al., 2002; Parket al., 2001)
that distributions A, B, C and E are Zeta-distributions [the Zeta- or Zipf–
Estoup distribution is a discrete counterpart of Pareto distribution (Johnson
and Kotz, 1969)], whereas distribution D is an exponential distribution.
The choice of distributions A, B, C and E but not D significantly affects
the outcome of modeling. Therefore, in our simulations of reality, we
generated protein networks with Zeta-distributions for distributions A–E
(details of the simulation are given in the following section).

In our model, we assume that domain interactions specify protein inter-
actions in a deterministic way: every pair of domains either is interacting
or is not interacting (nothing in between); if two proteins contain at least
one pair of interacting domains that belong to different proteins, the two
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proteins also interact (Denget al., 2002). However, because of omissions,
incorrect statements and errors in data analysis, the interacting proteins
may appear as non-interacting in two-hybrid experiments and in scientific
publications. We have also developed a probabilistic model for relating
domain–domain interactions with protein–protein interactions (Gomez
et al., 2001; Gomez and Rzhetsky, 2002).

Generating the simulated reality

We first generated protein–protein interaction networks by creating protein
domain families that consist of all copies in the genome for each domain
type. We then simulated interactions between domains and combined
domains into multidomain proteins.

Denoting the size of the domain-type universe withND, and the param-
eter of a Zeta-distribution with0D, we draw ND samples from the
Zeta-distribution, which gives us the set of numbers of copies forND-
domain-type families. Next, to generate interactions between domain pairs
and to combine domains into multidomain proteins, we used variations
of the stochastic model introduced byBarabasiet al. (2000). We began
by selecting a random pair of domain types, and then we formed an inter-
action between them. Next, we continued sampling random (previously
unused) domain types, each time connecting them to existing domain
types such that the probability of attaching a new domain type to an old
domain type withk interactions is proportional tokr , wherer is a pos-
itive parameter. Further, once domain-type interactions were completely
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defined, we generated multidomain proteins from domain families. In this
case, we started with two randomly selected domain copies that represent
two single-domain proteins. We then continued by randomly selecting a
pair of unused domain copies of either the same domain type or of distinct
domain types (either interacting or not). We used one copy of the pair to
create a new one-domain protein, while we concatenated the second copy
to one of the existing proteins such that the probability of adding a new
domain to a protein withk domain copies (of any type) was proportional to
kq, whereq is a positive parameter. The process stopped once all domain
copies were used.

Analysis of simulated data showed that the statistical properties of a
protein–protein interaction network generated in this manner are indeed
close to the expected properties.

Generating statements in the literature

We use the simulated real-world network described in the previous section
to generate simulated research results on protein interactions published in
scientific articles. In our model, each published result on a particular
protein–protein interaction is defined as a ‘statement’. We assume two
types of statements: ‘true’ statements—statements that agree with the real-
world network—and ‘false’ statements that disagree with the real-world
network. Further, each statement is either ‘positive’ (‘protein A activates
protein B’) or ‘negative’ (‘protein A does not activate protein B’).
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Fig. 2. Stochastic model of the generation and propagation of statements about molecular interactions
through journal articles.

We began the stochastic generation of literature statements by sampling
interactions from the simulated real-world network of protein interactions
(Fig. 2) by a noisy truth generator. Each scientific journal in our model has
an associated parameter,αi , that represents the rate of a Poisson process
per time unit that supplies thei -th journal with unique statements (state-
ments not published previously) about interactions or non-interactions of
proteins. The total number of unique statements published by all journals
during time intervalT is a random number sampled from a Poisson distri-
bution with parameter3T , where3 is the sum of theαi s over all journals.
After the total number of unique statements is determined, the statements
are distributed among journals—each statement has a probability,αi /3,
of being published in thei -th journal. After the total number of unique
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statements per journal has been decided, the noisy truth generator classifies
each statement into one of four categories: false positive, true positive, true
negative or false negative, with probabilitiesβi (1− ηi ), (1− βi )(1− ηi ),
(1 − βi )ηi andβi ηi , respectively (Fig. 2). For each statement, the noisy
truth generator samples an appropriate unknown interaction from the sim-
ulated real-world protein-interaction network. For example, if the required
statement is to be false positive, the noisy truth generator picks a random
unknown negative interaction, converts the latter into a positive interaction
(hence, the statement becomes false) and supplies the interaction to the
i -th journal. Parameterβi represents the expected proportion of unique
statements that are false in thei -th journal; parameterηi represents the
expected proportion of unique statements that are negative in thei -th
journal. Both parameters can vary from journal to journal, representing
differences in journal quality (lowβi ) and bias toward positive findings
(low ηi ).

After each unique statement is published for the first time, it becomes
subject to amplification (re-publishing of the original statement by fellow
researchers), which is a separate Poisson process whose rate is different for
each of the four types of unique statements: these rates areγ FP

i , γ TP
i , γ TN

i
andγ FN

i , for false-positive, true-positive, true-negative and false-negative
unique statements, respectively, published in thei -th journal.

Unlike our previous stochastic model of research literature (Krautham-
meret al., 2002), the new model does not assume that the supply of true
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and false statements is infinite. Additionally, in the present model, the real
world has a finite size in terms of the number of proteins and interactions
between them. We also allow the past history of published statements to
affect the pattern of sampling of statements in the present. Moreover, in
the current version of the model, we assume that the sampling is uniform
over all unknown interacting protein pairs (positive interactions) and over
all unknown non-interacting protein pairs (negative interactions), but the
probability of sampling a positive interaction is generally greater than
the probability of sampling a negative interaction. The latter assumption
is based on the observation that it is much harder to publish a negative
interaction (‘protein A does not interact with protein B’) than to publish
a positive one. A key assumption of this model is that the publication
patterns for true and false statements are different. In other words, we can
derive the trustworthiness of actions by studying how a particular action
has been published over time.

Yeast two-hybrid data

Stochastic generation of yeast two-hybrid data (Davy et al., 2001; Bader
and Hogue, 2002; Gietz and Woods, 2002) was accomplished by sam-
pling from the simulated real-world interactions and then by performing
simulated experiments for the sampled interactions. We implemented two
versions of the sampling from the simulated real-world interactions: the
simplest version used a random selection of unknown interactions one
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by one, regardless of the type of the sampled interaction. A more com-
plex version allowed random selection of a set of proteins and testing of
all interactions between them, and it included the possibility of multiple
experiments describing each interaction.

Our stochastic model of simulated yeast two-hybrid experiments had
just two parameters,ρN andρP, which represented the probability of
error, given either negative or positive interactions sampled from the real-
world network simulation. For each interaction sampled, we generated
experimental data, drawing from binomial distributions with parameter
ρN for negative interactions, and parameterρP for positive interactions.
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Network inference and parameter estimation
With the generative stochastic model defined, we computed the proba-
bility of data, given the model and model parameters (the likelihood).
Our data were represented by three components: redundant statements
about protein–protein interactions automatically extracted from the lit-
erature, sets of positive and negative protein interactions generated by
the yeast two-hybrid experiments, and sequences of all proteins from
the species under analysis. In this study, we chose not to estimate the
parameters of generating the real-world protein–protein network, instead
treating these parameter values as known. Therefore, the joint likelihood
(L) in our application is a product of four components: the probability of
label assignment (‘correctly extracted, true’, ‘correctly extracted, false’
and ‘incorrectly extracted’) in the text-derived data given the current net-
work (LLiterature), the probability of label assignment (‘false’ and ‘true’)
in the yeast two-hybrid data given the current network (LY2H), the proba-
bility of the current network given protein domain composition (either
zero or one under the current model) and domain interaction matrix,
and the probability of the protein–protein interaction network topology
(L9), i.e.

L = LLiterature× LY2H × L9 .
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The probability of label assignment in the text-derived data, given the
current network (LLiterature), is calculated as follows:

LLiterature=

∏
i

fPoiss

(
munique

i |αi T
unique
i

)
× b

(
nF

i |nF
i + nT

i ,βi

)
× b

(
nnegative

i |nnegative
i + npositive

i ,ηi

)
× fPoiss

(
nFP

i |γ FP
i TFP

i

)
× fPoiss

(
nTP

i |γ TP
i TTP

i

)
× fPoiss

(
nTN

i |γ TN
i TTN

i

)
× fPoiss

(
nFN

i |γ FN
i TFN

i

)
,

where subscripti refers to thei -th journal;munique
i andTunique

i are the total
numbers of unique statements and the time during which these statements
were accumulated;nF

i andnT
i correspond to the observed numbers of false

and true unique statements;nnegative
i andnpositive

i are the observed numbers
of positive and negative unique statements; pair (nFP

i , TFP
i ) represents the

observed number of amplified false-positive statements and corresponding
amplification time, and pairs (nTP

i , TTP
i ), (nTN

i , TTN
i ) and (nFN

i , TFN
i )

represent analogous quantities for true positive, true negative and false
negative amplified statements, respectively; andb(x|n, p) =

(n
x

)
px(1 −

p)n−x is the probability density function of the binomial distribution and
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fPoiss(x|λ) = (λx/x!)e−λ is the probability density function of the Poisson
distribution.

The likelihood of label assignments in the yeast two-hybrid data, given
the current network (LY2H), was calculated as follows:

LY2H = b(mFN|mFN + mTP,ρP)

× b(mFP|mFP + mTN,ρN),

wheremFN, mTP, mFP andmTN are the observed numbers of yeast two-
hybrid data points that are negative and labeled ‘false’, positive and
labeled ‘true’, positive and labeled ‘false’ and negative and labeled ‘true’,
respectively.

Finally, the likelihood of the protein–protein interaction network topol-
ogy (L9) is

L9 =

(
NP

k0 k1 · · · kNP+1

) NP+1∏
i =0

z0(i |0P, p0)
ki ,

whereNP is the number of proteins in the network;kx is the number of
proteins with degreex (the maximum degree of a protein isNP + 1; it is
achieved when the protein interacts with itself and all the other proteins);
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and z0(n|γ , p0) is the probability density function of a modified Zeta-
distribution with added probability for 0 equal top0 and slope0P—i.e.

zo(x|0P, p0) =

{
po if x = 0
cx−γ if x = 1, 2,. . .

c =
1 − p0∑
∞

i =1 x−γ
.

We assumed an uninformative prior distribution over parameter values
and interaction assignment, and we inferred the posterior distribution of
parameter values and network topologies (i.e. the probability of network
and parameter values, given the data).
Inferring the posterior distribution

For the statistical inference, we used a version of the Markov chain Monte
Carlo (MCMC) technique (Gilks et al., 1996). The essence of the MCMC
in our case was a random walk through the discrete space of all possible
protein–protein interaction networks and through the continuous space of
admissible values of model parameter. We continued the walk for a large
number (millions) of cycles of full update for all model parameters and for
the network topology. After each full update cycle, we recorded the current
values of parameters and current network topology. We estimated the
posterior distributions of network edges and parameters directly from the
frequencies of visiting corresponding states in the recorded MCMC run.
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The MCMC random walk started with a randomly chosen set of param-
eter values and an arbitrary network (together we will refer to them as a
state of the system,X). Next, a potential change for the state (the pro-
posal state,Y) was generated and accepted with probabilityA, which was
calculated in the following way (Hastings, 1970; Metropoliset al., 1953):

A(X, Y) = min

[
1,

L(Y)q(X|Y)

L(X)q(Y|X)

]
,

whereL(X) andL(Y) are likelihood values for statesX andY, respec-
tively, andq(X|Y) andq(Y|X) are conditional probabilities of proposing
stateX being in stateY and vice versa, respectively; distributionsq(X|Y)

andq(Y|X) are referred to as proposal distributions. In our application,
we updated the parameters and network topology in a stepwise fashion,
such thatX differed fromY either by the value of a single parameter or by
a single-edge change in the protein–protein interaction network topology.
Since the update order does not affect the outcome, all the parameters
and the network topology were updated in alphabetical order of the cor-
responding symbols. Further, an analysis of the model showed that every
given set of domain interactions completely determined the protein inter-
action network, which in turn determined the set of labels for the observed
data points (both literature and yeast two-hybrid); given a fixed set of data
labels, however, all parameter values were independent. We analytically
derived full conditional distributions for each parameter, given fixed labels
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of the data points. Parameter values were updated by directly sampling
from the corresponding conditional distribution, always accepting the pro-
posed parameter value [Gibbs sampling, seeGilks et al. (1996)]. Indeed,
for the i -th journal, we have

αi ∼ Gamma

(
munique

i + 1,
1

Tunique
i

)
,

βi ∼ Beta
(
nF

i + 1,nT
i + 1

)
,

ηi ∼ Beta
(
nnegative

i + 1,npositive
i + 1

)
,

γ FP
i ∼ Gamma

(
nFP

i + 1,
1

TFP
i

)
,

γ TP
i ∼ Gamma

(
nTP

i + 1,
1

TTP
i

)
,

γ TN
i ∼ Gamma

(
nTN

i + 1,
1

TTN
i

)
,

γ FN
i ∼ Gamma

(
nFN

i + 1,
1

TFN
i

)
,
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where∼ stands for ‘follows distribution’, and the notations Beta(x, y),
and Gamma(z,w) represent the probability density functions of the uni-
variate beta and gamma distributions with parameters(x, y) and(z,w),
respectively (Johnson and Kotz, 1970).

In the case of multiple scientific journals in the model, the update cycles
ran through all journals and for every parameter of every journal.

Similarly, parameters related to yeast two-hybrid data were sampled
from the following full conditional distributions:

ρP ∼ Beta(mFN + 1,mTP + 1)

ρN ∼ Beta(mFP + 1,mTN + 1).

Therefore, the full MCMC and the computation of the Metropolis–
Hastings acceptance probability in our case was required only for updating
the network topology in the model. We found that network updating was
the most difficult component of the MCMC implementation. When imple-
mented in the simplest fashion, where a random pair of domains was
selected and the sign of the interaction between them was reversed, it led
to abysmally slow convergence of the MCMC simulation. We therefore
implemented an alternative strategy for updating domain type interactions.
First, by sampling from a trinomial distribution, we determined whether an
existing edge should be moved or deleted or whether a new edge should
be added. In the case of interaction addition or deletion, we selected
and reversed a random negative or positive interaction. In cases where a
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translocation of a positive interaction (which is synonymous to moving an
edge) was required, we started by selecting a random domain type in the
network. If this domain type had no interactions, the network-update iter-
ation ended. If the selected domain type did have interactions, we selected
and removed a random interaction, while we randomly reconnected the
original domain type to a new domain type such that the probability of
reconnecting to a domain type with exactlyk interactions was proportional
to kx, wherex is a positive parameter. (We also allowed for reconnecting
to domain types with zero connectivity, with a small positive probability.)
The protein-interaction network was obtained deterministically from the
domain-type interaction network. This version of network updating led to
surprisingly fast convergence of the MCMC process. This faster MCMC
convergence seems to be due to the tendency of the proposed network-
update method to generate random networks that have Zeta-distributed
connectivity of proteins.
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Three parts of the protein-interaction space
We can decompose the whole space of protein–protein interactions into
three disjoint portions (Fig. 1): observable subspace [i.e. interactions that
are directly observable (with errors)], subspace of predictable or deducible
interactions and a subspace of interactions that are unpredictable under
our model (in the absence of additional data). It is clear what the first sub-
space is, but the second and third subspaces require explanation. Under
our model, we can correctly predict an interaction between a pair of pro-
teins, given a domain-type interaction matrix deduced without errors from
the observed data, in the two following cases: the first case is when two
proteins under consideration have at least one pair of domain types present
in different proteins that are known to interact (then we predict a positive
interaction). Another predictable case is when two proteins contain only
domain types that are known to lack interaction (then we predict a neg-
ative interaction). If two proteins contain no known interacting domain
types and we lack information for at least one domain-type pair for domain
types in distinct proteins, interaction cannot be predicted under our model.
In reality, the domain-type interaction matrix is estimated statistically
rather than observed directly, and so only a portion of interactions in the
predictable subspace will be predicted correctly. Every domain-type inter-
action matrix with values 1 (positive interaction between domain types),
−1 (negative interaction between domain types), and 0 (no information
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about the interaction) unambiguously partitions protein–protein interac-
tions into three subspaces, according to predictive rules just discussed for
a set of proteins with known domain composition.

Figure 3shows the dynamics of the absolute and relative size of the
predictable area as a function of the number of visible interactions com-
puted for a repeatedly simulated protein universe of 83 proteins. As we
would expect, the absolute size of the predictable area is small when the
observed data are few; it peaks at the point when about one-third of all
interactions is known and then decreases again as the absolute size of the
unobserved area (predictable plus unpredictable areas) decreases to zero.
The proportion of the unobserved area that is predictable grows steadily
with the growth of the visible area, almost to the point that nearly all
interactions are known (Fig. 3).

In our evaluation of the stochastic model described in the following
section, we measured, based on a simulated set of real-world protein
interactions, the efficiency of our model for the two tasks described in the
present and previous sections: cleansing noisy data of experimental errors
introduced by the two-hybrid experiments and transferred to the literature,
and predicting interactions between proteins not directly seen to interact
in the real world, as discussed earlier in this section.
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Fig. 3. Predictable area curve. (A) The curve shows how many new interactions can be predicted
after we have sampled a certain number of observable interactions. (B) The same data as in (A) are
shown but are expressed as a percentage of the number of predictable interactions out of the number of
unobservable (predictable plus unpredictable) interactions as a function of the percentage of observable
interactions out of the total number of possible interactions.
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Results and Discussion
To test the correctness of our inference approach and its implementa-
tion we used computer-generated data, following our model exactly. Our
model of a real-world network contained just 83 proteins with 100 domain
types. The scientific literature was limited to a single journal that was
‘published’ over a period of 2 years, with preference given to positive
statements about protein interactions: only 30% of published statements
were negative, and only 1% of all published statements were false. (We
currently have no information about the proportion of false statements in
the research literature, but we suspect that it is>1%.) Our simulated jour-
nal published protein-interaction information with a Poisson rate of 0.18
statements per day; true-positive, true-negative, false-positive and false-
negative statements were amplified at rates of 0.1, 0.05, 0.02 and 0.01
statements per day, respectively. Our simulated yeast two-hybrid dataset
contained errors at a rate of 15% for positive interactions and 15% for neg-
ative interactions. We chose a relatively small set of simulated proteins
and domains to reduce the time required for analysis. We ran an MCMC
simulation for five million iterations that took∼5 h of single-processor
time on an IBM Regatta computer.Figure 4shows the set of simulated
interactions among the 83 proteins of the simulated protein–protein inter-
action network, and the predicted interactions after the MCMC algorithm
was run.
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Fig. 4. Real and predicted protein interactions for 83 proteins of a simulated protein–protein interaction
network. Also shown: yeast two-hybrid and literature coverage of the same set of interactions.

After estimating the posterior probabilities of individual interactions,
we evaluated the quality of the predictions both with respect to the whole
set of interactions in our simulated real-world network and with respect
to the predictable part of that set. Recall from the previous section that
we can automatically recover more than 500 interactions not directly
observed (based on domain information) once our system has seen 1000
interactions, some of which are incorrect (Fig. 3).
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To measure the accuracy of our system’s predictions, we ranked all pre-
dicted interactions such that the most likely positive interactions were
situated at the beginning of the list, while the most certain negative inter-
actions were at the end of the list. With this ranking, we were able to set a
likelihood or rank threshold, treating the predictions above the threshold
as positive interactions and the predictions below the threshold as nega-
tive interactions. This threshold allowed us to measure the specificity and
sensitivity of our method by comparing its predictions with the known but
not directly observable simulated real-world network interactions. Sensi-
tivity (or recall) is defined as the percentage of true positives among true
positives plus false negatives; specificity is the percentage of true nega-
tives among true negatives plus false positives. Further, we varied the rank
threshold, from the very beginning of the list, where specificity is 1 and
sensitivity is 0, to the very end of the list, at which point sensitivity grows
to 1 and specificity drops to 0. By varying the threshold, we computed
the receiver-operator characteristic (ROC) curve, which plots sensitivity
against specificity at different threshold values. We calculated an ROC
score equal to 0.96 when we took into account all the interactions and
an ROC score equal to 0.99 when we used only the interactions in the
predictable area. These values indicate that our prediction method works
very well—a powerless method has an ROC score close to 0.5.

The optimum cutoff between the positive and negative interactions is
naturally the one that gives a number of positive predictions that is close
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to the expected number of edges in a protein–protein interaction network.
Since, we assumed that the protein–protein interaction network had a
Zeta-distributed connectivity and we assumed the parameter of the Zeta-
distribution to be known, we could easily compute the optimum number
of positive predictions for a network of any given size. Using the optimum
cutoff between false positive and negative predictions gave us a sensitivity
of 0.782 and a specificity of 0.979 for the whole set of unobserved inter-
actions in our simulated real-world network, and a sensitivity of 1 with a
specificity 0.991 for the predictable part of that set.

We expect that the results would become less impressive if we intro-
duced more noise into the simulation and into the information-extraction
system; i.e., sensitivity and specificity would be expected to decrease
as we increased the error rate in the simulated yeast two-hybrid system,
raised the proportion of false statements published in the research literature
and admitted imperfect information extraction by our automated system.
Nevertheless, the volume of real data currently available is tremendous
(and continues growing), and future implementation of our method will
determine whether a large sample size will enable reliable parameter esti-
mation even if the noise level is very high. For example, we estimated that
currently there are at least one million full-text articles available on-line
that may contain information about molecular interactions.

The performance of any protein-interaction prediction method depends
to a large extent not only on the method’s own merits but also on the
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real-world properties of the networks that it is meant to simulate. For
example, we can think of a world with only a few protein domain types
occurring in proteins in roughly uniform fashion; these few domain types
are recombined to produce a large number of proteins. If protein interac-
tions are completely defined by interaction of domain types, as is assumed
in our model, protein-interaction prediction methods would be extremely
successful in this hypothetical universe. On the opposite extreme is an
unlikely world where new types of protein domains evolve every time
there is a need for new interacting proteins, which leads to an enormous
number of domain types, each with a single domain copy. Obviously,
assuming that protein interaction can be predicted only through knowl-
edge of domain types, any method designed for interaction prediction
would fail miserably in such a universe. In organisms found in nature, the
real universe appears to lie somewhere in between these two extremes:
the total number of domain types appears to be rather large (we currently
know thousands of domain types) and it is clear that a lot of additional
rare domain types are about to be described (Bertoneet al., 2001). Nev-
ertheless, the frequencies of occurrence of these types in a proteome are
extremely far from uniform, and so there are a few domain types with
thousands of domain copies per proteome and a large number of domain
types with a single copy per proteome. This simple consideration indicates
that we should be able to derive a theoretical upper bound of performance
of a ‘perfect’ interaction-prediction method.
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Application of our model to real datasets will require a significant amount
of computation which is a challenge on its own.

As a preliminary evaluation of a real dataset, we examined a yeast two-
hybrid dataset generated for a subset ofDrosophilaproteins by CuraGen,
Inc. (Giot et al., 2003). This dataset comprises more than 20 000 exper-
imental interactions among about 7000 proteins. Our current GeneWays
database contains more than 1.5 million unique interactions extracted
from 120 000 full research articles. These numerous relations between
substances represent multiple organisms and are of various types (e.g.
‘activate’, ‘phosphorylate’ and ‘bind’). Out of 1.5 million interactions,
approximately 10 000 interactions of type ‘bind’ among 2000 proteins
can be unambiguously assigned toDrosophila melanogaster. Out of
these 2000 proteins, about 1200 are common with theDrosophilayeast
two-hybrid dataset. According to the current estimate, there are approxi-
mately 18 000 proteins in theDrosophilaproteome (Adamset al., 2000).
Although the number of known (‘visible’) interactions seems small com-
pared with the total number of all possible interactions[18 000∗(18 000+
1)/2] ≈ 162 millions, we believe that the following assumption is reason-
able. (Let us call a protein visible if there is at least one interaction or a lack
of interaction reported for it.) We assume that every non-reported inter-
action between two ‘visible’ proteins is negative. The number of visible
interactions is around 25 million, which is 15% of the whole interaction
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space (162 millions). Therefore, using the predictable area curve (Fig. 3),
we estimate that we might be able to predict the existence or absence of
interactions for about 10% of the pairs of ‘invisible’ proteins—i.e. for
about 13.7 million pairs.
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