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Abstract Abstract

Introduction

Summary:Information on molecular networks, such as networks of inter- JEEENETSVERE
acting proteins, comes from diverse sources that contain remarkab|qEIISUISEII.
differences in distribution and quantity of errors. Here, we introduce a [EEEUSI AU
probabilistic model useful for predicting protein interactions from het- RREESEIEEESESE
erogeneous data sources. The model describes stochastic generation ARSI
protein—protein interaction networks with real-world properties, as well il

as generation of two heterogeneous sources of protein-interaction infor
mation: research results automatically extracted from the literature and
yeast two-hybrid experiments. Based on the domain composition of prg
teins, we use the model to predict protein interactions for pairs of proteing
for which no experimental data are available. We further explore the
prediction limits, given experimental data that cover only part of the
underlying protein networks. This approach can be extended naturall
to include other types of biological data sources.
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The past five decades of molecular biology have brought an incrediblg
wealth of high-quality information about the molecular machinery of liv-
ing cells. Although the driving force behind this knowledge acquisition [Eru—_—T_.
has been the satisfaction of individual research questions, an underu e ——-"-
lized product is a mass of data that could be used to generate testal R
predictions in much the same way as is done in physics. However, by anjeSSaes
large, these data are locked within the literature, and extracting them is
challenging process that introduces noise associated with misinterpret
tion of results by text-mining algorithms or by data curators. In addition
to the vast biological literature, recent developments in genomics hav
resulted in another type of data that comprise hundreds or thousands
measurements of gene function, such as gene-expression levels or prote
protein interactions, under a given set of experimental conditions. Thes
functional genomic datasets tend to be consolidated and therefore eas
accessible to analysis, but they also tend to have a high level of nois
associated with spurious or irrelevant measurements.
The amount of molecular data from these two sources is immense a
is growing rapidly. A critical mass of these data should allow generatio
of testable models of molecular networks as the combined evidence hely
to separate the relevant biological signals from the underlying noisy datg
Current progress toward automated generation of molecular networks
limited by the rate of information processing and interpretation rather tha



by the rate of accumulation of new information; hence, development ORSES:
predictive mathematical models appears especially important. Introduction

There are many types of molecular interactions that are routinelyjaelelSIgeE]
reported in the literature or are analyzed using high-throughput method SAEAEEESLES
To test our methods for extracting these data and building molecular ne (HkSEEELIE
works, we have chosen to focus on interactions between proteins. In th ekl
paper, we consider the problem of predicting interactions between pairs (it
novel proteins with known sequences, given a set of experimentally dete
mined interactions. Previous studies have introduced a framework fo
predicting protein—protein interactionsiércotteet al, 1999 Sprinzak
and Margalit 200L Gomezet al,, 2001 Bock and Gough2001; Gomez
and Rzhetsky2002 Denget al., 2002 Tonget al,, 2002 Goldberg and
Roth, 2003 but have only led to only moderate success, in part becaus
they focused on a single type of experimental data. Here, we overcom
this limitation by assuming that the available experimental data are heterd
geneous, arising from more than one source and exhibiting different errg
patterns. Furthermore, we present a method for integrating diverse da
types. We consider here data arising from large-scale yeast two-hybri
experiments and from automated analysis of numerous research articl
by information extraction systems such as GeneWays, developed by o
group Koike and Rzhetsky200Q Rzhetskyet al., 200Q Friedmaret al.,
2001 Hatzivassiloglotet al., 2001, Krauthammeeet al., 2002 Fig. 1).
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Fig. 1. Main model diagram.

We present a mathematical framework for prediction of protein—protei
interactions in the real world from published statements about suc
interactions in the research literature and from observed interactions i
yeast two-hybrid experiments. Our framework allows heterogeneous dat
production processes and different types of error during each proces
Domain composition of proteins is used as a common point of refer
ence for the different data types. Using prior observations, automaticall
extracted from the literature and derived from yeast two-hybrid data, ou
model allows estimation of the confidence in a given set of predicted




or experimentally determined interactions. Additionally, confidence esti-JBEiEs
mates can be calculated for protein interactions that have no availablguiciiEiey
experimental data. Probabilistic Model
We offer evidence for the power and utility of this approach by first EEGELTESEIE S
constructing a plausible, simulated model of real-world protein—protein il uLIS
interactions proteome-wide. These real-world networks are composed (il
potential interactions that can occur between proteins. We generate the ittt
real-world networks stochastically from well-described distributions of
domain compositions of real proteomes and protein—protein interactio
networks. We then use this model as the basis for simulating experime
tal results from yeast two-hybrid data and results extracted from journa
articles. Simulating the real-world protein—protein interactions and theg
processes that generate observable evidence allows perfect measure
of whether our predictions are correct by matching the predictions to thé
simulated real-world network. Further, as research articles and yeast tw(
hybrid data are usually incomplete and cover only partially overlapping
sets of interactions between proteins, we are interested in exploring t
prediction limits, given these fractional data. Using simulated data, we
can study the influence of incomplete datasets by changing the coverag
of the observable experimental results.
In addition to predicting protein—protein interactions from multiple data
sources, our model also generates valuable information on the qualit
of the observed datasets. It does so by making a joint assignment (
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labels ‘true’ and ‘false’ to interactions observed in two-hybrid experi- JESEs:

ments and of labels ‘correctly extracted, true,’ ‘correctly extracted, false’fLicEisEiy

and ‘incorrectly extracted’ to actions derived by text-mining systems (SucCHEaSEERIEUEEE

as GeneWays) from research articles. Therefore, our model is useful fRSAAILEEIEIES

filtering noise from the observed data. Three parts of the ...
This paper describes the model in its entirety, but we emphasize th

model’s ability to generate novel protein—protein interaction predictionsg

and explore its prediction limits, given fractional or incomplete datasets.

Results and Discussion
Acknowledgements
References
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Introduction

Our model includes three major stochastic components: proteoin c——— — .
robabilistic Model

wide simulation of potential protein—protein interactions, simulation of EEGE—GE—_—_—_-—
statements published in the research literature and simulation of yea [ GGSIIGGETG_—_.

tWO'hybrld data. Results and Discussion
Acknowledgements
Protein—protein interaction reality References

Following an established view in structural biology, we consider each pro
tein as a collection of protein domains; the linear order of such domains
within a protein is not important for the purpose of this study, and so
each protein is treated as a collection of unordered domains. A domain
defined as a portion of a polypeptide chain that is identified and describe
by a human expert, or by a computer program based on expert annot
tion. Domains often correspond to spatially compact structures; the sa
domain (although with variation at the amino-acid level) may occur in
multiple proteins within the same organism.

Relatively recently, it became apparent that the domain compositions g
real proteomes and real protein—protein interaction networks have highl
non-random properties. In the context of our model, the following five
distributions appear important:

(A) The proportion of proteins having exaclkiynteractions with other
proteins (including self-interactions).



(B) The proportion of domain types per proteome having exactly [EESES

Copies. Introduction
(C) The proportion of proteins having exactydomain copies (of any  |REEEles s
Network inference ...
type). iy
. . . ] ree parts of the ...
(D) The proportion of proteins having exackydomain types (regard- |-
less of the number of copies of each domain type). Acknowledgements

(E) The proportion of domain types having exadtlynteractions with References
other (or the same) domain types.

It appearsBarabasi and Albertt999 Albert and Barabask00Q Jeong

et al, 2000 Albertet al, 2000 Jeonget al,, 2001, Rzhetsky and Gomez
200% Bader and Hogue2002 Koonin et al, 2002 Parket al,, 200])
that distributions A, B, C and E are Zeta-distributions [the Zeta- or Zipf—
Estoup distributionis a discrete counterpart of Pareto distribudiam{son
and Kotz 1969], whereas distribution D is an exponential distribution.
The choice of distributions A, B, C and E but not D significantly affects
the outcome of modeling. Therefore, in our simulations of reality, we
generated protein networks with Zeta-distributions for distributions A—E
(details of the simulation are given in the following section).

In our model, we assume that domain interactions specify protein inter,
actions in a deterministic way: every pair of domains either is interacting
or is not interacting (nothing in between); if two proteins contain at least
one pair of interacting domains that belong to different proteins, the twg




proteins also interacDenget al., 2002. However, because of omissions, [EESES
incorrect statements and errors in data analysis, the interacting proteirEssisisy

may appear as non-interacting in two-hybrid experiments and in scientifi QaEEIEEEL
publications. We have also developed a probabilistic model for relatin REAEEEISLIES

domain—domain interactions with protein—protein interacticBsniez Three parts of the ...

et al, 2001, Gomez and Rzhetsk0032. Results and Discussion
Acknowledgements

Generating the simulated reality References

We first generated protein—protein interaction networks by creating protei
domain families that consist of all copies in the genome for each domai
type. We then simulated interactions between domains and combine
domains into multidomain proteins.

Denoting the size of the domain-type universe Wik, and the param-
eter of a Zeta-distribution witi'p, we draw Np samples from the
Zeta-distribution, which gives us the set of numbers of copiedNigr
domain-type families. Next, to generate interactions between domain pai
and to combine domains into multidomain proteins, we used variationg
of the stochastic model introduced Bgarabaskt al. (2000. We began
by selecting a random pair of domain types, and then we formed an inte
action between them. Next, we continued sampling random (previousl
unused) domain types, each time connecting them to existing domai
types such that the probability of attaching a new domain type to an olc
domain type withk interactions is proportional tkf, wherer is a pos-
itive parameter. Further, once domain-type interactions were completel



defined, we generated multidomain proteins from domain families. In thiJEGEEiEs
case, we started with two randomly selected domain copies that repres eIy
two single-domain proteins. We then continued by randomly selecting quaciatlEiavEEt]
pair of unused domain copies of either the same domain type or of distin QRSLTEEEIE
domain types (either interacting or not). We used one copy of the pair t(RikEEEIELIE
create a new one-domain protein, while we concatenated the second co [iialeits
to one of the existing proteins such that the probability of adding a nevii ettt
domain to a protein witk domain copies (of any type) was proportional to
k9, whereq is a positive parameter. The process stopped once all domai
copies were used.
Analysis of simulated data showed that the statistical properties of
protein—protein interaction network generated in this manner are indee
close to the expected properties.

References

Generating statements in the literature

We use the simulated real-world network described in the previous sectio
to generate simulated research results on protein interactions published
scientific articles. In our model, each published result on a particula
protein—protein interaction is defined as a ‘statement’. We assume tw
types of statements: ‘true’ statements—statements that agree with the rej
world network—and ‘false’ statements that disagree with the real-world
network. Further, each statement is either ‘positive’ (‘protein A activates
protein B’) or ‘negative’ (‘protein A does not activate protein B’).
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Fig. 2. Stochastic model of the generation and propagation of statements about molecular interactio
through journal articles.

We began the stochastic generation of literature statements by sampli
interactions from the simulated real-world network of protein interactions
(Fig. 2) by a noisy truth generator. Each scientific journal in our model has
an associated parametey, that represents the rate of a Poisson process
per time unit that supplies theth journal with unique statements (state-
ments not published previously) about interactions or non-interactions o
proteins. The total number of unique statements published by all journal
during time intervall' is a random number sampled from a Poisson distri-
bution with parameteA T, whereA is the sum of the; s over all journals.
After the total number of unique statements is determined, the statemen
are distributed among journals—each statement has a probadility,
of being published in the-th journal. After the total number of unique



statements per journal has been decided, the noisy truth generator classifjaEsiest
each statementinto one of four categories: false positive, true positive, trUSQliE Iy
negative or false negative, with probabiliti@g1 — i), (1 — 8i) (1 — ni), Probabilistic Model

(1 — Bi)ni andpin;, respectively [Eig. 2). For each statement, the noisy [EAELLEEEIE S
truth generator samples an appropriate unknown interaction from the sin | HkSEELIE
ulated real-world protein-interaction network. For example, if the require ol
statement is to be false positive, the noisy truth generator picks a rando st
unknown negative interaction, converts the latter into a positive interactio
(hence, the statement becomes false) and supplies the interaction to t
i-th journal. Parametes; represents the expected proportion of unique
statements that are false in théh journal; parameter; represents the
expected proportion of unique statements that are negative in-tthe
journal. Both parameters can vary from journal to journal, representing
differences in journal quality (lows;) and bias toward positive findings
(low 7).

After each unique statement is published for the first time, it become;s
subject to amplification (re-publishing of the original statement by fellow
researchers), whichis a separate Poisson process whose rate is different
each of the four types of unique statements: these rateg &rg,"", ™
andyi':'\', for false-positive, true-positive, true-negative and false-negative
unique statements, respectively, published ini thiejournal.

Unlike our previous stochastic model of research literatratham-
meret al, 2002, the new model does not assume that the supply of trug

References



and false statements is infinite. Additionally, in the present model, the re GEiEs

world has a finite size in terms of the number of proteins and interaction iy
between them. We also allow the past history of published statements fgie :IEETEEL
affect the pattern of sampling of statements in the present. Moreover, | IEECAIUSEIEIE
the current version of the model, we assume that the sampling is unifor | HkSEELIEE
over all unknown interacting protein pairs (positive interactions) and ove [l
all unknown non-interacting protein pairs (negative interactions), but theliiiasiatiati
probability of sampling a positive interaction is generally greater than
the probability of sampling a negative interaction. The latter assumptio
is based on the observation that it is much harder to publish a negati
interaction (‘protein A does not interact with protein B’) than to publish
a positive one. A key assumption of this model is that the publication
patterns for true and false statements are different. In other words, we ca
derive the trustworthiness of actions by studying how a particular actio
has been published over time.

References

Yeast two-hybrid data

Stochastic generation of yeast two-hybrid dd&a\y et al., 2001, Bader
and Hogue 2002 Gietz and Woods2002 was accomplished by sam-
pling from the simulated real-world interactions and then by performing
simulated experiments for the sampled interactions. We implemented tw|
versions of the sampling from the simulated real-world interactions: thg
simplest version used a random selection of unknown interactions on



by one, regardless of the type of the sampled interaction. A more coOmESIEs:
plex version allowed random selection of a set of proteins and testing O
all interactions between them, and it included the possibility of multiple aEEElETavEEE
experiments describing each interaction. Network inference ...

Our stochastic model of simulated yeast two-hybrid experiments ha (iSRS
just two parameterspn and pp, which represented the probability of [EEadl
error, given either negative or positive interactions sampled from the rea/|iasiatinti
world network simulation. For each interaction sampled, we generate (it
experimental data, drawing from binomial distributions with parameter
pN for negative interactions, and paramegerfor positive interactions.



Network inference and parameter estimation Abstract
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With the generative stochastic model defined, we computed the prob
bility of data, given the model and model parameters (the likelihood).
Our data were represented by three components: redundant stateme [ ———————_—
about protein—protein interactions automatically extracted from the |it-jfsur
erature, sets of positive and negative protein interactions generated (e
the yeast two-hybrid experiments, and sequences of all proteins frorEE el

the species under analysis. In this study, we chose not to estimate t
parameters of generating the real-world protein—protein network, instea
treating these parameter values as known. Therefore, the joint likelihoo
(L) in our application is a product of four components: the probability of
label assignment (‘correctly extracted, true’, ‘correctly extracted, false’
and ‘incorrectly extracted’) in the text-derived data given the current net
work (L iterature), the probability of label assignment (‘false’ and ‘true’)
in the yeast two-hybrid data given the current netwdrkAy), the proba-
bility of the current network given protein domain composition (either
zero or one under the current model) and domain interaction matrix
and the probability of the protein—protein interaction network topology
(Ly),i.e.

L = Liiterature X Ly2n X L.



The probability of label assignment in the text-derived data, given theBEigt:

current network I _iterature), IS calculated as follows: Introduction
. . Probabilistic Model
. . unique  —unique
L Literature = 1_[ mess(mi E105|Ti ) Network inference ...

Three parts of the ...
Results and Discussion

X b(ni':|ni': + niT,,Bi>

< b(ninegative]\ninegative + npositive’ i) References

Acknowledgements
i
% frois S(n|=P| FPTiFP) % fP0|ss(nTP| iTP-I-iTP>
X fPoiss( |V|TNTTN> X fPoiss<niFN|)/iFNTiFN),

where subscrigitrefers to the-th journal;m ™" ®andT."""*are the total
numbers of unique statements and the tlme during WhICh these stateme
were accumulateai” andn! correspond to the observed numbers of false

and true unique statement§=9%"andnf°*"**are the observed numbers
of positive and negative unique statements; pdif(T,FF) represents the
observed number of amplified false-positive statements and correspondi
amplification time, and pairsnf®, T."P), (0™, T™) and @M, TV
represent analogous quantities for true positive, true negative and falg
negative amplified statements, respectively; Bedn, p) = ()r(') p*(1 —
p)"~* is the probability density function of the binomial distribution and



fpoisd X|A) = (AX/x!)e~* isthe probability density function of the Poisson [RESIEE:
distribution. Introduction
The likelihood of label assignments in the yeast two-hybrid data, give il

the current networkl(y2H), was calculated as follows: NEED SEEEE
Three parts of the ...

Results and Discussion
LyoHn = b(mFN|mFN + mtp, IOP) Acknowledgements

X b(Mep|MEp + MTN, ON), References

wheremgyn, Mmtp, Mgp andmry are the observed numbers of yeast two-
hybrid data points that are negative and labeled ‘false’, positive ang
labeled ‘true’, positive and labeled ‘false’ and negative and labeled ‘true’,
respectively.

Finally, the likelihood of the protein—protein interaction network topol-

ogy (Lv)is

Np+1

NP ) . ki
Ly = i[Tp, po)*,
v (ko . ]1 20(i |Tp, Po)

.‘kNP—f—l

whereNp is the number of proteins in the netwoil; is the number of
proteins with degre& (the maximum degree of a proteinNy + 1; it is
achieved when the protein interacts with itself and all the other proteins)



and zo(n|y, po) is the probability density function of a modified Zeta- [EEEES

distribution with added probability for O equal fi and slopd p—i.e. Introduction
. Probabilistic Model
Po ifx=0 Network inference ...

Zy(X|I'p, po) = {

cx 7V ifx= 1,2,... Three parts of the ...
Results and Discussion

1- Po Acknowledgements

C= ———.
o0 — References
dim X7

We assumed an uninformative prior distribution over parameter value
and interaction assignment, and we inferred the posterior distribution o
parameter values and network topologies (i.e. the probability of networ
and parameter values, given the data).

Inferring the posterior distribution

For the statistical inference, we used a version of the Markov chain Montg
Carlo (MCMC) techniqueGilks et al., 1996. The essence of the MCMC
in our case was a random walk through the discrete space of all possib
protein—protein interaction networks and through the continuous space (¢
admissible values of model parameter. We continued the walk for a larg
number (millions) of cycles of full update for all model parameters and for
the network topology. After each full update cycle, we recorded the curren
values of parameters and current network topology. We estimated th
posterior distributions of network edges and parameters directly from th¢
frequencies of visiting corresponding states in the recorded MCMC run.



The MCMC random walk started with a randomly chosen set of param JEEEEs:
eter values and an arbitrary network (together we will refer to them as sty
state of the systemX). Next, a potential change for the state (the pro- LIS

posal StateY) was generated and accepted with pFObabmtyvhmh was Network inference ...
calculated in the following wayHastings 1970 Metropoliset al., 1953 Three parts of the .
Results and Discussion
LY XY Acknowled t
ACGY) = min [1’ Lgxigiv:x;] ’ retoronces

whereL (X) andL(Y) are likelihood values for states andY, respec-
tively, andq(X|Y) andq(Y|X) are conditional probabilities of proposing
stateX being in statey and vice versa, respectively; distributiansxX|Y)
andq(Y|X) are referred to as proposal distributions. In our application,
we updated the parameters and network topology in a stepwise fashio
such thaiX differed fromY either by the value of a single parameter or by
a single-edge change in the protein—protein interaction network topolog
Since the update order does not affect the outcome, all the paramete
and the network topology were updated in alphabetical order of the co
responding symbols. Further, an analysis of the model showed that eve
given set of domain interactions completely determined the protein inter
action network, which in turn determined the set of labels for the observe(
data points (both literature and yeast two-hybrid); given a fixed set of dat;
labels, however, all parameter values were independent. We analytical
derived full conditional distributions for each parameter, given fixed labelg



of the data points. Parameter values were updated by directly samplinglESige:
from the corresponding conditional distribution, always accepting the pro JiEser
posed parameter value [Gibbs sampling, Gdks et al. (1996)]. Indeed, Probabilistic Model
for thei-th journal, we have Network inference ...

|~ Gamm{ m'"e g,

Three parts of the ...
1 ) Results and Discussion
)
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where~ stands for ‘follows distribution’, and the notations Bgtay), Abstract

and Gammeéz, w) represent the probability density functions of the uni- [EissIvEy

variate beta and gamma distributions with parameterg) and (z, w), Probabilistic Model

respectively Johnson and Kot2970. Network inference ...
In the case of multiple scientific journals in the model, the update cycle JkEEEEEIIE

ran through all journals and for every parameter of every journal. Results and Discussion
Similarly, parameters related to yeast two-hybrid data were sample (it

from the following full conditional distributions:

References

pp ~ Betamen + 1, mrp + 1)
pN ~ Betamep+ 1,mrN + 1).

Therefore, the full MCMC and the computation of the Metropolis—
Hastings acceptance probability in our case was required only for updatin
the network topology in the model. We found that network updating was
the most difficult component of the MCMC implementation. When imple-
mented in the simplest fashion, where a random pair of domains wa
selected and the sign of the interaction between them was reversed, it |4
to abysmally slow convergence of the MCMC simulation. We therefore
implemented an alternative strategy for updating domain type interactions
First, by sampling from a trinomial distribution, we determined whether an
existing edge should be moved or deleted or whether a new edge shou
be added. In the case of interaction addition or deletion, we selecte
and reversed a random negative or positive interaction. In cases where



translocation of a positive interaction (which is synonymous to moving angBsige:

edge) was required, we started by selecting a random domain type in tH eIy
network. If this domain type had no interactions, the network-update iter JelEElSIgEEE
ation ended. If the selected domain type did have interactions, we selectqgiiiCis s
and removed a random interaction, while we randomly reconnected th kRIS
original domain type to a new domain type such that the probability Of [kt
reconnecting to a domain type with exadtliinteractions was proportional [kl

to kX, wherex is a positive parameter. (We also allowed for reconnecting
to domain types with zero connectivity, with a small positive probability.)
The protein-interaction network was obtained deterministically from the
domain-type interaction network. This version of network updating led to
surprisingly fast convergence of the MCMC process. This faster MCMC
convergence seems to be due to the tendency of the proposed netwo
update method to generate random networks that have Zeta-distributg
connectivity of proteins.

References



Three parts of the protein-interaction space Abstract
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We can decompose the whole space of protein—protein interactions int
three disjoint portionsKig. 1): observable subspace [i.e. interactions that
are directly observable (with errors)], subspace of predictable or deducib B
Interactions and a subspace of interactions that are unpredictable un T
our model (in the absence of additional data). It is clear what the first Subj R o
space is, but the second and third subspaces require explanation. UnqEESaS

our model, we can correctly predict an interaction between a pair of pro
teins, given a domain-type interaction matrix deduced without errors fro
the observed data, in the two following cases: the first case is when tw
proteins under consideration have at least one pair of domain types preseg
in different proteins that are known to interact (then we predict a positive
interaction). Another predictable case is when two proteins contain onl
domain types that are known to lack interaction (then we predict a neg
ative interaction). If two proteins contain no known interacting domain
types and we lack information for at least one domain-type pair for domai
types in distinct proteins, interaction cannot be predicted under our mode
In reality, the domain-type interaction matrix is estimated statistically
rather than observed directly, and so only a portion of interactions in the
predictable subspace will be predicted correctly. Every domain-type inter
action matrix with values 1 (positive interaction between domain types)
—1 (negative interaction between domain types), and 0 (no informatio



about the interaction) unambiguously partitions protein—protein interac fEEEiEs
tions into three subspaces, according to predictive rules just discussed fgRiEIsEy
a set of proteins with known domain composition. Probabilistic Model
Figure 3shows the dynamics of the absolute and relative size of th RIS
predictable area as a function of the number of visible interactions compaitaat il
puted for a repeatedly simulated protein universe of 83 proteins. As Wkt
would expect, the absolute size of the predictable area is small when ittt
observed data are few; it peaks at the point when about one-third of a
interactions is known and then decreases again as the absolute size of
unobserved area (predictable plus unpredictable areas) decreases to z¢
The proportion of the unobserved area that is predictable grows steadil
with the growth of the visible area, almost to the point that nearly all
interactions are knowrfg. 3.
In our evaluation of the stochastic model described in the following
section, we measured, based on a simulated set of real-world prote
interactions, the efficiency of our model for the two tasks described in the
present and previous sections: cleansing noisy data of experimental errc
introduced by the two-hybrid experiments and transferred to the literaturg
and predicting interactions between proteins not directly seen to interag
in the real world, as discussed earlier in this section.

References



Absolute Size of the predictalbe area (number of interactions out of 3486 interactions)
T

500 : : . : : Abstract
i Yl e | Introduction
o F// \-\‘\ .y .
saoof N . Probabilistic Model
g / . _
2 200/ ey 1 Network inference
| g
100 “\\\ : Three parts of the
00 560 10‘00 15‘00 ZC:DO 25‘00 SDIUD 3500 ReSU|tS and DISCUSSIOn
Number of visible interactions
Acknowledgements
Portion of the predictable area out of the invisible area
o ; ‘ : - ‘ . ‘ ‘ T References
a0k
. I .kﬁﬁl_h_,_/-"”“\«\ﬂ
Seor o g
g —
10 —// -

L 1 I 1 L 1 1
0 10 20 30 40 50 60 70 80 90 100
Percent of visible interactions out of the whole interaction space

Fig. 3. Predictable area curveA} The curve shows how many new interactions can be predicted
after we have sampled a certain number of observable interact®Bpn$hé same data as in (A) are

shown but are expressed as a percentage of the number of predictable interactions out of the numbe
unobservable (predictable plus unpredictable) interactions as a function of the percentage of observal
interactions out of the total number of possible interactions.




Results and Discussion Abstract

Introduction

To test the correctness of our inference approach and its implement Ju—-.,
robabilistic Model

tion we used computer-generated data, following our model exactly. Ou g E—_GGT——
model of a real-world network contained just 83 proteins with 100 domainje e,
types. The scientific literature was limited to a single journal that wasP e e
‘published’ over a period of 2 years, with preference given to poSitive [N
statements about protein interactions: only 30% of published statemenGEEaLeS
were negative, and only 1% of all published statements were false. (
currently have no information about the proportion of false statements i
the research literature, but we suspect that#196.) Our simulated jour-
nal published protein-interaction information with a Poisson rate of 0.18
statements per day; true-positive, true-negative, false-positive and fals¢
negative statements were amplified at rates of 0.1, 0.05, 0.02 and 0.(
statements per day, respectively. Our simulated yeast two-hybrid datas
contained errors at a rate of 15% for positive interactions and 15% for neg
ative interactions. We chose a relatively small set of simulated protein{
and domains to reduce the time required for analysis. We ran an MCM(
simulation for five million iterations that took'5 h of single-processor
time on an IBM Regatta computdfigure 4shows the set of simulated
interactions among the 83 proteins of the simulated protein—protein inte
action network, and the predicted interactions after the MCMC algorith
was run.
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Fig. 4. Real and predicted protein interactions for 83 proteins of a simulated protein—protein interactio
network. Also shown: yeast two-hybrid and literature coverage of the same set of interactions.

After estimating the posterior probabilities of individual interactions,
we evaluated the quality of the predictions both with respect to the wholg
set of interactions in our simulated real-world network and with respect
to the predictable part of that set. Recall from the previous section tha
we can automatically recover more than 500 interactions not directl
observed (based on domain information) once our system has seen 10
interactions, some of which are incorrektd. 3).




To measure the accuracy of our system’s predictions, we ranked all prdBsigt:
dicted interactions such that the most likely positive interactions wercguuEisily
situated at the beginning of the list, while the most certain negative interjCLLLISIIEIL
actions were at the end of the list. With this ranking, we were able t0 set JAEAITEEIEE
likelihood or rank threshold, treating the predictions above the threshol (i ik
as positive interactions and the predictions below the threshold as neg g eclee el
tive interactions. This threshold allowed us to measure the specificity an (it
sensitivity of our method by comparing its predictions with the known but
not directly observable simulated real-world network interactions. Sensi
tivity (or recall) is defined as the percentage of true positives among trug
positives plus false negatives; specificity is the percentage of true neg
tives among true negatives plus false positives. Further, we varied the ra
threshold, from the very beginning of the list, where specificity is 1 and
sensitivity is 0, to the very end of the list, at which point sensitivity grows
to 1 and specificity drops to 0. By varying the threshold, we computed
the receiver-operator characteristic (ROC) curve, which plots sensitivit
against specificity at different threshold values. We calculated an RO(
score equal to 0.96 when we took into account all the interactions an
an ROC score equal to 0.99 when we used only the interactions in th
predictable area. These values indicate that our prediction method work
very well—a powerless method has an ROC score close to 0.5.

The optimum cutoff between the positive and negative interactions ig
naturally the one that gives a number of positive predictions that is clos{
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to the expected number of edges in a protein—protein interaction networ EZBETEe:
Since, we assumed that the protein—protein interaction network had JEeEivTey
Zeta-distributed connectivity and we assumed the parameter of the Zet{aELLLISIVEIE
distribution to be known, we could easily compute the optimum numbe ASEAILEEIE S
of positive predictions for a network of any given size. Using the optimum [k itk
cutoff between false positive and negative predictions gave us a sensitivileeeeles el
of 0.782 and a specificity of 0.979 for the whole set of unobserved inter it
actions in our simulated real-world network, and a sensitivity of 1 with a
specificity 0.991 for the predictable part of that set.
We expect that the results would become less impressive if we intro
duced more noise into the simulation and into the information-extractio
system; i.e., sensitivity and specificity would be expected to decreas
as we increased the error rate in the simulated yeast two-hybrid syste
raised the proportion of false statements published inthe research literatu
and admitted imperfect information extraction by our automated syste
Nevertheless, the volume of real data currently available is tremendo
(and continues growing), and future implementation of our method will
determine whether a large sample size will enable reliable parameter es
mation even if the noise level is very high. For example, we estimated tha
currently there are at least one million full-text articles available on-line
that may contain information about molecular interactions.
The performance of any protein-interaction prediction method depend
to a large extent not only on the method’s own merits but also on th
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real-world properties of the networks that it is meant to simulate. FOrEESES
example, we can think of a world with only a few protein domain types [ty
occurring in proteins in roughly uniform fashion; these few domain type SECELRISIVEEE
are recombined to produce a large number of proteins. If protein interaCREAITEEIE S
tions are completely defined by interaction of domain types, as is assum ikl askibiing
in our model, protein-interaction prediction methods would be extremelylaia s tl
successful in this hypothetical universe. On the opposite extreme is ajii it
unlikely world where new types of protein domains evolve every time
there is a need for new interacting proteins, which leads to an enormo
number of domain types, each with a single domain copy. Obviously
assuming that protein interaction can be predicted only through knowl
edge of domain types, any method designed for interaction predictio
would fail miserably in such a universe. In organisms found in nature, th
real universe appears to lie somewhere in between these two extremsg
the total number of domain types appears to be rather large (we current
know thousands of domain types) and it is clear that a lot of additiona
rare domain types are about to be descriligeltoneet al., 2001). Nev-
ertheless, the frequencies of occurrence of these types in a proteome 4
extremely far from uniform, and so there are a few domain types with
thousands of domain copies per proteome and a large number of doma
types with a single copy per proteome. This simple consideration indicate
that we should be able to derive a theoretical upper bound of performandg
of a ‘perfect’ interaction-prediction method.
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Application of our model to real datasets will require a significant amountSiEs:
of computation which is a challenge on its own. Introduction

As a preliminary evaluation of a real dataset, we examined a yeast twORsCEERISIUREE
hybrid dataset generated for a subsddaisophilaproteins by CuraGen, [RELTIEEIEI
Inc. (Giot et al., 2003. This dataset comprises more than 20 000 exper- |kl
imental interactions among about 7000 proteins. Our current Gene\Wayee e ol
database contains more than 1.5 million unique interactions extracte/iiasiatinti
from 120000 full research articles. These numerous relations betwee
substances represent multiple organisms and are of various types (e
‘activate’, ‘phosphorylate’ and ‘bind’). Out of 1.5 million interactions,
approximately 10000 interactions of type ‘bind’ among 2000 proteins
can be unambiguously assigned @wosophila melanogasterOut of
these 2000 proteins, about 1200 are common witlDiwsophilayeast
two-hybrid dataset. According to the current estimate, there are approx
mately 18 000 proteins in tHerosophilaproteome Adamset al., 2000.
Although the number of known (‘visible’) interactions seems small com-
pared with the total number of all possible interactipk000x (18 000+
1)/2] ~ 162 millions, we believe that the following assumption is reason-
able. (Letus call a protein visible if there is at least one interaction or alac
of interaction reported for it.) We assume that every non-reported inter
action between two ‘visible’ proteins is negative. The number of visible
interactions is around 25 million, which is 15% of the whole interaction
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space (162 millions). Therefore, using the predictable area chrge3d),

we estimate that we might be able to predict the existence or absence
interactions for about 10% of the pairs of ‘invisible’ proteins—i.e. for
about 13.7 million pairs.
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