An Integer Programming Approach to Optimal
Derivative Accumulation

Jieqiu Chen, Paul Hovland, Todd Munson, and Jean Utke

Abstract In automatic differentiation, vertex elimination is onetb& many meth-
ods for Jacobian accumulation. However, finding the optivediex elimination se-
quence of a computational graph is a hard combinatoriahopéition problem. In
this paper, we propose an integer programming (IP) teclenigquackle this prob-
lem, and we develop an IP formulation for it. This enablesaisige a standard
integer optimization solver to find an optimal vertex eliation strategy. We hope
to use the optimization formulation to evaluate the effestess of heuristics and
find an optimal strategy for certain key computational kerni@ addition, we have
developed several lower bound and symmetry-breaking @nt to strengthen
the basic IP formulation. We demonstrate the effectivenésisese enhancements
through computational experiments. We also consider thecyg of a graph in the
context of vertex elimination. A basic IP formulation foretscarcity problem and
some preliminary computational results are presented.

Key words. Vertex-elimination, scarcity, integer programming

Jieqiu Chen
Mathematics and Computer Science Division, Argonne Natioasbkatory, Argonne, IL 60439,
USA.j i eqchen@rts. anl . gov

Paul Hovland
Mathematics and Computer Science Division, Argonne Natioaabkatory, Argonne, IL 60439,
USA. hovl and@rcs. anl . gov

Todd Munson
Mathematics and Computer Science Division, Argonne Natioaabkatory, Argonne, IL 60439,
USA.t munson@rcs. anl . gov

Jean Utke
Mathematics and Computer Science Division, Argonne Natioasbkatory, Argonne, IL 60439,
USA. ut ke@mcs. anl . gov

2 Jieqiu Chen, Paul Hovland, Todd Munson, and Jean Utke

1 Introduction

Automatic differentiation (AD) is a family of methods for @tining the derivatives
of functions computed by a program [4]. AD couples rule-lbadiéferentiation of
language intrinsics with derivative accumulation acaogdio the chain rule. The
associativity of the chain rule leads to many possible “nsdad combining par-
tial derivatives, such as the forward mode and reverse nioxf@onentially many
hybrid, or cross-country modes are possible, and findinggtenal Jacobian ac-
cumulation strategy is NP-hard [8]. Therefore, all AD toelaploy some sort of
heuristic strategy. The most popular heuristics are pureda mode, pure reverse
mode, and a hierarchical strategy using the forward modeativ®it “preaccumu-
lating” the derivatives of small program units (often staéats or basic blocks).

Algorithms for automatic differentiation are often exmed in terms of the com-
putational graph. If the edges of the computational graptaasigned weights equal
to partial derivatives, then the optimal Jacobian accutiorgroblem is reduced to
finding an optimal order in which to combine edge weights. iydified version
of this problem is to find an optimal vertex elimination sé@, where a vertex
is eliminated by combining all in-edges with all out-edgesjuiring |in| x |out
multiplications; see Sect. 2.1 for more details. The optida@obian accumulation
problem requires eliminating all intermediate verticeshef computational graph.
A closely related problem is to find theearcity of a computational graph, which
arises when Jacobian-vector multiplication is needed andifg the full Jacobian
matrix is not desired; see page 227 of [6] for a formal definitiWe consider the
scarcity problem in the context of vertex elimination. lhetwords, we aim to find
the graph with the smallest number of edges by removing aesutbshe interme-
diate vertices. Although vertex elimination greatly reesithe number of ways to
combine edge weights and seems to be an “easier” problenthikasriginal one,
it is still combinatorial and is speculated to be NP-congldthe scarcity problem
seems to be a problem at least as hard as the vertex-elinongiroblem.

In this paper, we propose to use integer programming (IPacklé the vertex
elimination problem and the scarcity problem. The motmatodf using IP is that
it is a powerful optimization technique and has been sutagspplied to solve
many hard combinatorial optimization problems, for examphe traveling sales-
man problem [2]. Specifically, IP deals with problems of miiging a function of
many variables subject to (1) linear inequality and equalinstraints and (2) inte-
grality restrictions on the variables [11]. IP is usuallgted as

min{c'x: Ax<b,xe 2"}, 1)

whereZ! is the set of nonnegative integratliimensional vectors and= (Xy, ..., Xn)
are thevariables. The generality of (1) allows it to model a wide variety of com
binatorial optimization problems, for example, the travglsalesman problem [7],
the minimum-weight spanning tree problem, and the settjmaritng problem [11].

If one drops the the integrality restriction gnthen the resulting problem becomes a
linear programming (LP) relaxation of (1). Modern LP solvers can solve largaksc

An IP Approach to AD 3

LPs quickly and reliably. Although integer programming iB4Hard, the advanced
technology of solving LPs allows one to solve (1) throughsteymatic branch-and-
bound method in conjunction with solving LP relaxation (tatain lower bounds)
at each node of the branch-and-bound tree.

We develop integer programming formulations of the optiweaitex elimination
problem and the scarcity problem. These IP formulationdlenas to use existing
IP solvers to find an optimal vertex elimination strategy lee scarcity of a com-
putational graph. Our objective is not to replace the elation heuristics used in
AD tools, since finding the optimal elimination strategy & basic blocks would
be prohibitively expensive. Rather, we aim to use the og@tion formulation to
evaluate the effectiveness of heuristics and find an optatnategy for certain key
computational kernels. In particular, the optimal compatel cost of the vertex
elimination can be used to measure whether the heuristitignlis close enough
to the optimal one; and knowing the optimal scarcity of a keyputational kernels
might reduce computational efforts significantly. For tlegtex elimination prob-
lem, we additionally develop several computational teghas to enhance the basic
IP formulation.

The paper is organized as follows. Section 2 present therfRuiations for the
vertex elimination and the scarcity problem. In particu@ect. 2.1 introduces vertex
elimination; Sect. 2.2 models the vertex elimination penblas an integer program;
Sect. 2.2.1 discusses several enhancements to the basren#dtion of the vertex
elimination problem; and Sect. 2.3 introduces the scafgithblem and presents
one IP formulation of it. Section 3 presents computatioraults of solving the IP
formulations of several small problems. Section 4 sumnearaur work and briefly
describes future areas for research.

2 Integer Programming Formulations

In this section, we first briefly introduce vertex eliminatidNext, we describe how
we model vertex elimination as an integer program. Then vesvstow to trans-
form several known lower-bound results of vertex elimioatinto linear constraints
that strengthen the IP formulation; in addition, we prop®gametry-breaking con-
straints that eliminate many equivalent solutions. Lastly present a basic IP for-
mulation for the scarcity problem in the context of vertarn@hation.

2.1 Introduction to vertex elimination

We assume the readers have a basic knowledge of AD and in wimtext the com-
putational graph arises; the readers can refer to [6] anfibf9hore background in-
formation. Consider the computational gradhk- (V, E) induced by a computer pro-
gram that implements : 0" — 0O™. The vertex se¢ = {1—n,..., p+m} and can

4 Jieqiu Chen, Paul Hovland, Todd Munson, and Jean Utke

be partitioned into = {1—n,...,0}, Z={1,...,p}, andY = {p+1,...,p+m},
representing the set of independent variableg intermediate variables, and
dependent variables of the computer progfamespectivelyE encodes the depen-
dence relationship among the variables. In particulahefjth variable is defined
as a elementary function of tli variable (and possibly other variablesFinthen
(i,]) € E. The partial derivative of th¢th variable with respect to théh variable is
usually assigned as an edge weight(ioi), ¥(i, j) € E.

It is well known that the Jacobian matriX’ = F/(x) € O™" can be accu-
mulated by some elimination techniques that transf@nmmto a bipartite graph
G = ({X,0,Y},E’). Vertex elimination is one such technique; see [5]. For amgiv
intermediate vertek, let B, and S denote the set of predecessors and successors
of k, respectively. Then eliminating vertéxinvolves (1)Vi € R, j € S, multiply
the edge weight ofi, k) with that of (k, j); (2) add a new edgé, j) to the graph
and assign the multiplied weight ta j) (if (i, j) already exists, add the multiplied
edge weight to the original edge weight @fj)); and (3) remove vertek and its
incident edges from the graph. Eliminating vertethus requiresk| x |S| num-
ber of floating-point multiplications. After eliminatindl antermediate vertices, the
edge weights of the resulting bipartite graph are exactyethtries of~’. The total
number of multiplications in vertex elimination is an apgroation of the compu-
tational cost of accumulating the Jacobian matrix.

Naturally, one wishes to minimize the total number of miitigtions required
to eliminate all the intermediate vertices. Note that défe elimination sequences
might result in different numbers of multiplications. Find the best elimination
sequence among thg possible ones is a combinatorial problem.

2.2 |P formulation

DefineT ={1,..., p} to be atime set. For artyc T, we useG(t) = (V(t),E(t)) to
represent the computational graph after eliminatimgermediate vertices. Denote
G(0) = (V(0),E(0)) = G. Note thatE(t) is undetermined unless a vertex elimina-
tion sequence is provided. We lEt= UP ,E(t) denote the set of edges that could
exist in the vertex elimination process. To model the faat @(t) is undetermined,
we use variable to represent the edges at titne

C”t:{l, i (i) € E(t) 2

0, otherwise

Similarly, let variabled denote the edge deleted, and variabldenote the edge
generated, where we say an edde j) is generated ifi, j) is formed by combining
an in edge and an out edge of an eliminated vertex; wa tsmodel the elimination
sequence:

An IP Approach to AD 5

4 — 1, if (i,]) € E(t — 1) and is deleted after removing a vertex 3)
1t 0, otherwise

fo_ 1,if (i,]) € E(t) is generated after removing a vertex (@)
=9 0, otherwise
~ | 1, if eliminate vertex at timet (5)
Xt =1 0, otherwise ‘

We represent the initial graph with the parameter

Y if (i,j) € E(O)
1079 0, otherwise -

With these notation, the vertex elimination problem is fatated as (MinFlops).

minimize F = Z z fijt (MinFlops)
teT (i,j)cE
subject to Xt=1 VteT (6)
i€
xt=1 Viez (7
&
Xt=0 VieXUY,VteT (8)

dijt > Xit +Cij(t—l) -1
dijt > Xjt +Cijr-1) — 1

V(i,))eE, VteT 9
dijt < Xit + Xjt (i.1) ©)
dijt < Cij-1)
fijt > dic+ ke —1 V(i,j) €E,VkeZ VteT (10)
Gijt > fijt
Gijt <1—dijt

i,j)€E vteT (11
Gijt < Giji—1) + (fijt +dijt) V(i,j)€E, Vte (11)

Gijt > Cij—1) — (fije +dijt)
Xt € {0,1} Vi eV,VteT (12)
Gijt, dijt, fijr €{0,1} V(i,j)€E, VteT (13)

The objective function of (MinFlops) is the sum of the numbiedges generated
in all time periods, which is equal to the total number of nplitations. Constraints
(6) ensure that at any time period we eliminate exactly omexeand constraints (7)
ensure that every intermediate vertex is eliminated at domeeperiod. Constraints
(8) enforce that independent or dependent vertices camnelirninated.

Constraints (9) define the edges to be eliminated at eachpémed. In partic-
ular, the first (second) inequality means if verief§) is eliminated at time& and
(i,]) exists at time — 1, then(i, j) is a deleted edge at timie The third inequality
ensures that the edgg j) can only be an deleted edge at titnéeither vertexi or
j is eliminated at time, indicated by the values of; andx;;. The fourth inequality

6 Jieqiu Chen, Paul Hovland, Todd Munson, and Jean Utke

means that only edges existing in the previous time periatheseliminated. Con-
straints (10) ensure that if both ed@ek) and(k, j) are eliminated edges, thén j)
must be generated by combinifigk) and(k, j).

Constraints (11) enforce the proper relationship betw@ggn- 1) andG(t). In
particular, if the edgéi, j) is generated at timg then(i, j) € E(t), which is en-
forced through the first inequality of (11). Similarly, (if, j) is an deleted edge at
timet, thenc;j; < 1—dij; forces(i, j) ¢ E(t). The last two inequalities of (11) en-
sure that all the other edges that are not incident to theiredited vertex at time
t —1 also exist in time&. Constraints (12) and (13) restrict all variables to be bjina
Overall, constraints (6)—(13) model the vertex eliminatwocess. Any optimal so-
lution (x*,d*, f*,c*) to (MinFlops) specifies a vertex elimination sequence with t
minimum multiplications required to mak& bipartite.

-2 ® 3
-1 4
Fig. 1 Graph for example 1
and 2 0 ®5

ExAMPLE 1. We take Fig. 1 as an exampk= {—2,—-1,0},Y = {3,4,5}, and
Z=T ={1,2}. The solution of the integer program (MinFlops) is as folsow

X21=X12 =1 (remove 2 at = 1 and remove 1 dt= 2)
t=1:dip1=th31=0os1=0bs1=1
fizi="fra1="Fi51=1
€ 211=C111=C11=C231=C131=C141=C51=1
t=2:d212=d 112=do12=0d132=0142=0152,=1
foso="Fo40="F050="F132="F 140="F150="p32="Tosp="Fos2=1
C232=C242=C252=C132=C142=C 152=0Cp32=Co42=Cos52=1

where all the other entries ¢k, d, f,c) not listed above take the value of zero. The
minimum number of multiplications required is thplg jycg 1 fijt+ X j)eg =2 fijt =
3+9=12.

2.2.1 Computational consideration for solving (MinFlops)

Defineq = n+m+ p. SinceG(t) is unknown for anyt € T, the cardinality ofE

is on the order of(g?). It then follows that the number of variables defined in
(MinFlops) is on the order of’(g? p) and the number of constraints on the order
of 0(¢? p?). The size of the resulting integer program grows rapidlyhasiumber

of vertices and edges in the graph increase, making theenpgggram challenging
to solve. In this subsection, we discuss these methodspachetputationally solve

An IP Approach to AD 7

(MinFlops) with a standard IP solver: reducing the numbesafstraints, develop-
ing valid lower bounds, and developing symmetry-breakioigstraints.

Reducing the number of constraints The large size of the IP is partly due to the
fact thatG(t), vt € T is unknown without fixing a vertex elimination sequence and
thus|E| is large. By definitionfE = Uf_E(t) can be determined by enumerating all
vertex elimination sequences, which is impractical.

Proposition 1. Let G* = (V,E*) be the transitive closure of G. Then E C E*.

Proof. For any(i, j) € E, there must exist a path i@ that connects verteixand j,
and thug(i, j) € E*.

Since the transitive closure of a graph is easy to compuyebga-loyd-Warshall’s
algorithm, we use€E* instead ofE when computation is involved. The number of
constraints in (10) grows the fastest as the graph becorggsitand is equal to the
cardinality of the set

7 ={(i,j,kt): (i,j) €E* ke Z teT}. (14)

Here an implicit assumption is that any edgeEthcould exist in any time period.
But this is not true. We can reduce the number of constran{tQ) by taking into
account that some edgesHri cannot exist in certain time periods, as shown in the
following proposition.

Proposition 2. Let |j; denote the length of the shortest path that connects vertex i
and jinG,V(i,j) e E*. Iflij > 2, then (i,]) ¢ E(t),Vt < lij—1,te {O}UT.

Proof. Every time a verteX is removed, the length of the shortest path betwieen
and | can be shortened by 1kfis on the shortest path (or one of the shortest paths)
between and j. Otherwise, the length of the shortest path does not charges
forany (i, j) € E* andljj > 2, we need to remove at ledgt— 1 vertices in order to
form a direct edge betweerand j, which proves the result.

This proposition implies that we can reduce the number oftaimts by defining
F={(i,j.kt):(i,)) EE" t>lij—1 teT,vke Z},
and replacing (10) with
fijt > e +ag -1 ¥(.jkt)es. (15)

We comment that#| could be much smaller thanZ|, which allows one to solve
larger instances.

Developing valid lower bounds State-of-the-art IP solvers utilize a branch-and-
bound (B&B) approach to solve integer programs. Tight lobveunds are crucial
in reducing the solution time because the B&B approach saie lower bounds
(for minimization problem) obtained by solving the lineataxations of an IP and

8 Jieqiu Chen, Paul Hovland, Todd Munson, and Jean Utke

a global upper bound (GUB) to prune nodes in the B&B tree. df itwer bound
of a node is greater than GUB, then the node contains no Issthetion than the
current best one associated with the GUB and thus can be griiie consider
two known results about the cost of vertex elimination arfdrreulate them as
linear constraints in terms of the variabbeand f. Let [X — k] denote the set of
paths connecting the independent vertices lgrahd letk — Y be the set of paths
connecting and the dependent vertices. The first known result is asaisllo

Observation 1 For any k € Z, the cost of eliminating vertex k last, regardless of the
vertex elimination ordering of all the other intermediate vertices, is |X — k| - [k —
Y.

From now on, we usg to representX — K| - |k +— Y/|. Although we do not know
which vertex is eliminated lask allows the flexibility of choosing any verteix
as the last one to eliminate, aig.z yXxp represents the cost of eliminating the
last vertex. The following valid inequality for vertex elination can be added to
(MinFlops) to strengthen the formulation:

F= 5 > fijg+) WX (16)
teT\{p} (i,])€E* kez

whereF is the variable representing the total cost of vertex elation, and the first
summation on the right-hand side is the cost of removing tisé gi— 1 vertices.
At first glance, the terms on both sides of the inequality seerepresent the same
quantity. However, when computationally solving IP and éissociated LP relax-
ations, all the integral restrictions on the variables aopped, and so the right-hand
side becomes a valid lower bound.

The second known result is established in [9]. Using the saotetion as in [9],
let X-k be the minimum vertex cut betweehandk, and letk-Y be the minimum
vertex cut betweek andY.

Observation 2 (Lemma 3.1 & 3.2[9]) The number of multiplications required to
eliminate vertex k, among all possible vertex elimination sequences, is underesti-
mated by | X-K| - |k-Y|; the minimal number of multiplications required for the trans-
formation G — G’ isgreater than or equal to ¥z |X-k| - [k-Y].

From now on, we usgy to denoteX-k| - |k-Y|, Yk € Z. One immediate implication
of Observation 2 i& > 3.z Ak. Although this inequality is valid, computationally
it is not useful. The reason is that only one variables involved in this inequality,
and this inequality does not cut off any fractional solusi@f the LP relaxations,
where we say a solutiofx, C,d, f) is fractional if one or more of components of the
solution have nonintegral values. Instead, we expressthédts in Observation 2 as

FZZ Z fij’["‘ Z Z/\kxkt/, VseT, (17)
t<3s(i,))eE* s<t’<pkeZ

where the second term on the right-hand side is a lower bonnigeocost of remov-
ing the lastp — s+ 1 vertices. We comment that (17) defipeonstraints that have

An IP Approach to AD 9

the same meaning but might have different effects commurtalily because each
constraint involves different components»oénd f and so might cut off different
fractional solutions of the LP relaxations.

Developing symmetry-breaking constraints It is easy to understand that some
elimination sequences may result in the same number of plioétions. However,
usually we need only one optimal sequence. The standardiBrs@annot recog-
nize the equivalence of two sequences and will waste coraditletime exploring
different branches of the B&B tree with the same optimal galuNe consider one
situation where two equivalent elimination sequencesioccu

Observation 3 If vertexi and j arenot adjacent at timet,Vi,jeZ, i< |, VteT,
then the following two elimination sequences give the same number of multiplica-
tions: (1) eliminate vertex i at timet and vertex j at timet + 1, and (2) eliminate
vertex j at periodt and vertexi at period t + 1; all the other vertices are eliminated
in the same order.

We call the two sequences in Observatiosy@metric, and we develop symmetry-
breaking constraints that permit only one of the two seqgeenc

Proposition 3. The following constraints are violated by one of the two symmetric
sequences in Observation 3:

Xjt + %y —CGijt <1, Vi,jeZ, i<], VteT\{p} (18)

Proof. If i and | are not adjacent at timte thencjjy = 0. Thus (18) becomes; +
Xt+1) < 1, which is invalid for the sequence that eliminajeat timet and then

i at timet + 1, in the other wordsx;t = X4+1) = 1. Obviously the sequence that
eliminates at timet andj at timet + 1, namelyxi; = X;.1) = 1, is permitted.

We point out that we do not know beforehand whether two vesticand j are
adjacent at timé. Constraints (18) should also be valid in the case wharel j are
adjacent at time. If (i, j) € E(t), thencij; is expected to have value 1. Then (18)
becomes

Xjt + Xty —1 <1 or Xji+ X1 < 2,

which permits all four possible combinations»gf andx; ;1)

2.3 Scarcity

The scarcity problem arises when partially accumulatirrgicobian matrix gives
overall lower cost than accumulating the full Jacobian irakoes; see Section 10.3
of [6] for more details on motivation and context. Here we make simplifica-
tion of the scarcity problem. In particular, we consider sigarcity problem in the
context of vertex elimination; we do not consider the sagrnender edge elimina-
tion or any other accumulation techniques. Thus the sanaiantas introduced in

10 Jieqiu Chen, Paul Hovland, Todd Munson, and Jean Utke

Sect. 2.1 and Sect. 2.2 is applicable. The problem redudewdiag the graptGi(t)
in the transformation proce&(0) = G — G’ = G(p) with the minimum number
of edges. And the minimum number of nonunitary edges can lnedfe@asily once
we knowG(p).

Since the objective of the scarcity problem is differentirthat of the vertex
elimination problem, we need additional variables besitlese defined in (2) —(5).
Define the absorbed edge at tiinas

b — 1, if (i,]) € E(t—1) and(i, j) is generated at time
7 0, otherwise :

We formulate the scarcity problem as (Scarcity). The objedtere is to maximize
the reduction in edge count:

dhit — fiit + i) = g S
t;‘(i.%eé(”t ijt +bijt) teZ_LZ it z (fijt — bijt)

i,j)eE (i,))eE

where the first and the second summations in the square saekeesent the num-
ber of edges eliminated at timeand the new edges added in tilpeespectively.
Note that through maximizing the reduction in edge countasigieve the goal of
minimizing the number of edges in the graph. The varidbis introduced here
to model the absorbed edges, which does not change the edge Cmnstraints
(19) and (20) are similar to (6) and (7) but allow one to eliaisome, but not
all, of the intermediate vertices. Constraint (21) enferitet the vertices have to be
eliminated in consecutive time periods, mainly for easiggripretation. Constraints
(22) and (23) properly define the generated edges and alosedges, respectively.
Compared with (10), constraint (22) has two additional irsity to ensure that; j;
takes value zero whefi, j) is not a generated edge at tiéNe also enforce con-
straints (8), (9), (11), (12), and (13) of (MinFlops) here&ese they can be used
without any change to model the vertex elimination process.

An IP Approach to AD 11

maximize R= Zr z (dijt — fijt +bijt) (Scarcity)
teT (i,j)eE
subjectto (8), (9), (11), (12), (13)
xt<1l VteT (19)
Xt<1 VieZ (20)
&
Xt >) % vteT\{p (21)

fijt > die +dije — 1 .
fijtSZVGVdi\lt V(|,J)EE,Vk€Z,VtET (22)
fijt < Svev tvjt

bijt > fijt +Cijr1)—1 B

bijt < fijt V(i,j)) eENVteT (23)
bijt < Ciji-1

bijt € {0,1}, V(i,j)€E, VteT. (24)

EXAMPLE 2. Again take the computational graph in Fig. 1 for example $olu-
tion of integer program (Scarcity) is

X21 =1 (remove only vertex P
dip1=0th31=0ths1=0h51=1
fiz1="fia1="P151=1
bis1=1,
where we did not list since its value can be inferred from d, b, f), and the other

components ofx, e, b, f) not listed above take the value of zero. Ti&(4) contains
the minimum number of edges. The maximum reduction in edgatds

t; (Z dijt— Z (fijt—bijt) =4—-(3-1)=2

i,j)eE (i,))eE

Note that|E(0)| = 9 minus the number of edge reduction 2 gives the edge count of
G(1), which is 7. Another way to recover the minimum edge counbisdlculate
> (ij)cE Gijts wherec is readily available from solving (Scarcity).

3 Computational experiments

In this section, we present computational results for sglyMinFlops) and (Scarcity).
We collect several small problems from [4], where the opliwgatex elimination
and scarcity can be verified by hand. Here the main goals aeeftiid: (1) to il-

12 Jieqiu Chen, Paul Hovland, Todd Munson, and Jean Utke

lustrate how to apply the IP formulations we have developedalve the vertex
elimination and the scarcity problem, (2) to compare thénogitvalues found by
the IP solver with heuristic solutions, and (3) to demortettiae effects of the com-
putational methods developed in Sect. 3. Both the IP model$camulated with

GAMS [10] and solved with XPRESS 22.01 [1] on a standard cdempunder the

Linux system.

3.1 Optimal vertex elimination

We compare four IP models for the optimal vertex elimination

min{F : (6) —(13)} (Mo)
min{F : (6)—(9),(11) - (13),(15)} (My)
min{F : (6) —(9),(11) — (13),(15),(16),(17)} (M2)
min{F : (6) —(9),(11) — (13),(15),(16),(17),(18)}, (M3)

where Mp) is the basic model (MinFlops), ant{)—(M3) gradually incorporate the
three methods proposed in Sect. 3 into the basic model.

Table 1 presents the computational times of these four maatefive small prob-
lems, while Fig. 3.1 shows their computational graphs. We aiclude in the table
the number of multiplications required by the forward moithe, backward mode,
and minimum Markowitz degree for comparison. By comparhmg€PU times for

Table 1 Comparison of CPU times (in seconds) of solving modi&))&(Ms) for five small prob-
lems. Instances (a)—(c) are from [6]. .

Vertices No. of Multiplications Times
Problem||X| |Y| |Z||Forward Backward MarkowitE*| My M1 My M3
figl0.4 |4 3 3| 22 18 22 180.04 0.04 0.02 0.11
ex108 |4 3 5| 28 24 26 220.66 0.26 0.37 0.77
figl0.1 |4 2 5| 20 18 16 150.81 0.71 0.35 0.29
butterfly | 4 4 8| 48 48 48 48 2t t 337.97
revbound 1 1 10 10 19 10 10 t t 42.33 31.42

@t indicates failure to find a provably optimal solution within®6§ec.

(Mo) and M31), we see that the amount of time required B) is less than that
of (Mp), as a result of the reduction in the number of constrainte feduction is
crucial for large graphs in that a standard IP solver mightaecable to solve even
the root node LP relaxations because of the out-of-memeuneisvith (Mg) on large
instances. Comparing the results k] and (M), we see that “revbound” could not
be solved within the time limit if modeled byvi;) but can be solved with the help
of the lower bound constraints; these results demonstnatdtie lower bound con-

An IP Approach to AD 13

-3 4 -3 2 4 6
.
-2 1 -2 1
5 7
_1 _1 3 5
0o 8

(a) Fig. 10.4 of [6] (b) Exercise 10.8 of [6]

(c) Fig. 10.1 of [6] (d) butterfly

1 2 3 4 5 6 7 8 9 10 11

(e) revbound

Fig. 2 Computational graphs of test problems in Table 1 and Table 2

straints we develop tighten the LP relaxations signifiga@bserve that “butterfly”
is a computational graph with lots of symmetry in its edgadttire. Having or not
having the symmetry-breaking constraint (18) makes a bigréince on this graph.
This clearly illustrates the benefits of adding the symmébtgaking constraints to
problems with many equivalent elimination sequences.

3.2 Scarcity

We tested (Scarcity) with the same set of instances as ireThbTl'he results are

presented in Table 2. In the column heagsis the optimal value of (Scarcity), the
maximum reduction in edge count, afie{t*)| is the minimum number of edges that
can be achieved with vertex elimination. We also list theo$eertices that need to

be removed in order to achieve the scarcity.

14 Jieqiu Chen, Paul Hovland, Todd Munson, and Jean Utke

Table2 Results of solving (Scarcity).

Problem||X]| |Y] V] |E||R" |E(t*)| Removed vertices |Time
figl0.4 |4 3 10 121 11 2-3 0.05
ex10.8 |4 3 12 143 11 2-4-35 5.29
figl0.1 |4 2 11 125 7 2-3-5-1 2.92
butterfly | 4 4 16 248 16 6-7-8-1-5-2-3-4 600°
revbound 1 1 12 22j20 1 2-10-8-7-1-6-5-4-925.5

b The corresponding IP was not solved to optimality within a timtlof 600 sec., and a feasible
solution is returned instead.

4 Conclusion

We have developed integer programming models for two proplia AD: the vertex
elimination problem for the optimal Jacobian accumulatamd the scarcity prob-
lem. These models allow us to use IP technology to solve thes@#lems, so that
one can evaluate the effectiveness of heuristics used iroAB and find an optimal
strategy for certain computational kernels. The IPs fos¢hgroblems are neverthe-
less hard to solve. We have developed several techniquesttiagthen the basic
vertex elimination model. As demonstrated by Sect. 3, thapjfroach to solve the
two problems is promising.

Several directions remain for research. First, one miglaidde to derive alterna-
tive IP formulations for these problems with stronger LRxations, crucial to solv-
ing them with a standard IP solver. Also, it is possible tavadhese problems more
efficiently with specialized IP techniques, such as Berigldessomposition [3]. Sec-
ond, as indicated by the computational results in Table 1Tatde 2, (Scarcity) is
harder to optimize than (MinFlops), and it is desirable tal filght lower bounds
and other computational enhancements techniques for gie mdel. Third, we
hope to create a benchmark with a wide variety of small to mmeelized instances
with known optimal vertex elimination sequence and scar€ibnceptually it is not
hard to see that the integer programming approach can alsaterded to edge-
elimination, and how to computationally solve the corregting IP models is both
interesting and challenging.

Acknowledgements We sincerely thank Robert Luce for helpful discussion that leant@arlier
IP formulation of the vertex elimination problem. This work wasgported by the Office of Ad-
vanced Scientific Computing Research, Office of Science, Uept.df Energy, under Contract
DE-AC02-06CH11357.

References

1. Xpress-Optimizer Reference Manual (2009). URLt p: // fi co. conl xpr ess

An IP Approach to AD 15

10.
11.

. Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: Thaaveling Salesman Problem: A

Computational Study. Princeton (2007)

. Benders, J.F.: Partitioning procedures for solving mixethisées programming problems.

Numerische Mathematil, 238-252 (1962). URLhtt p: //dx. doi . org/ 10. 1007/
BF01386316. 10.1007/BF01386316

. Griewank, A.: Evaluating Derivatives: Principles and fieiques of Algorithmic Differentia-

tion. No. 19 in Frontiers in Appl. Math. SIAM, PhiladelphidA (2000)

. Griewank, A., Reese, S.: On the calculation of Jacobian cesttly the Markowitz rule. In:

A. Griewank, G.F. Corliss (eds.) Automatic DifferentiationAd§orithms: Theory, Implemen-
tation, and Application, pp. 126—135. SIAM, Philadelpi®a, (1991)

. Griewank, A., Walther, A.: Evaluating Derivatives: Piiples and Techniques of Algorithmic

Differentiation, 2nd edn. No. 105 in Other Titles in Applidththematics. SIAM, Philadel-
phia, PA (2008). URLht t p: / / ww. ec- secur ehost . com’ SI AM OT105. ht m

. Miller, C.E., Tucker, A.W., Zemlin, R.A.: Integer progranmgiformulation of traveling sales-

man problems. J. ACM, 326-329 (1960). DOI http://doi.acm.org/10.1145/321823046.
URL http://doi.acm org/ 10. 1145/ 321043. 321046

. Naumann, U.: Optimal Jacobian accumulation is NP-completeth.MA0g.112, 427-441

(2006). DOI 10.1007/s10107-006-0042-z

. Naumann, U., Hu, Y.: Optimal vertex elimination in single-egsion-use graphs. ACM

Transactions on Mathematical Softw&%{1), 1-20 (2008). DOI 10.1145/1377603.1377605
Rosenthal, R.E.: GAMS — A User’s Guide (2011)

Wolsey, L.A., Nemhauser, G.L.: Integer and Combinatoridir@pation. Wiley-Interscience
(1999)

The submitted manuscript has been created by the UnivessiGhicago as Op
erator of Argonne National Laboratory (“Argonne”) under dact DE-ACO02-
06CH11357 with the U.S. Department of Energy. The U.S. Guwent retains for
itself, and others acting on its behalf, a paid-up, nonested) irrevocable world
wide license in said article to reproduce, prepare devigatiorks, distribute copie
to the public, and perform publicly and display publicly, by on behalf of the
Government.

n

