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Abstract A significant number of large optimization problems exhibitstructure
known aspartial separability, for example, least squares problems, where element
functions are gathered into groups that are then squared. The sparsity of the Jaco-
bian (and Hessian) of a partially separable function can be exploited by computing
the smaller Jacobians of the elemental functions and then assembling them into the
full Jacobian. We implemented partial separability support in ADIC2 by using prag-
mas to identify partially separable function values, applying source transformations
to subdivide the elemental gradient computations, and using the ColPack coloring
toolkit to compress the sparse elemental Jacobians. We present experimental results
for an elastic-plastic torsion optimization problem from the MINPACK-2 test suite.
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1 Introduction

As introduced by Griewank and Toint [14], a functionf : Rn 7→ R is considered
partially separable iff can be represented in the form

f (x) =
m

∑
i=1

fi(x), (1)

where fi depends onpi ≪ n variables. Bouaricha and Moré [6] and Bischof and
El-Khadiri [4] , among others, have explored different waysto exploit the sparsity
of the Jacobians and Hessians of partially separable functions. To compute the (usu-
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ally dense) gradient∇ f of f , one can first compute the much smaller (and possibly
sparse) gradients of thefi elementals, then assemble the full gradient off . This ap-
proach can significantly reduces the memory footprint and floating-point operations
for overall gradient computation compared with computing dense gradients.

This paper describes the following new capabilities of the ADIC2 source trans-
formation tool.

• Pragma-guided source transformations to perform scalar expansion of the ele-
mental components of partially separable scalar-valued functions.

• Exposing of the sparsity present in the elemental Jacobians.
• Calculation of compressed the elemental Jacobians using ColPack.
• Combining of the elementals into the scalar valued result.

1.1 ADIC2
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Fig. 1 OpenAD component structure and
source transformation workflow.

ADIC2 is a source transformation tool for
automatic differentiation of C and C++
codes, with support for both the forward
and reverse modes of AD [15]. ADIC2 uses
the ROSE compiler framework [17], which
relies on the EDG C/C++ parsers [10].
ADIC2 is part of the OpenAD framework
at Argonne, whose general structure is il-
lustrated in Figure 1. Briefly, the process of
transforming the original source code into
code computing the derivatives consists of
several steps: (1) canonicalization (seman-
tically equivalent transformations for re-
moving features that hamper analysis or
subsequent AD transformations); (2) pro-
gram analysis (e.g., control flow graph con-
struction, def-use chains); (3) generation of
the language independent XAIF intermediate representation; (4) AD transformation
of the XAIF representation; (5) conversion of the resultingAD XAIF code back to
the ROSE intermediate representation; and (5) generation of C/C++ derivative code.
The general differentiation process as implemented by ADIC2 is discussed in de-
tail in [15]. To exploit the sparsity of the gradients of partially separable functions,
we have implemented several extensions of the AD process, which are described in
Section 3.
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1.2 ColPack

When a Jacobian (or a Hessian) matrix is sparse, the runtime and memory efficiency
of its computation can be improved throughcompression by avoiding storing and
computing with zeros. Curtis, Powell, and Reid demonstrated that when two or more
columns of a Jacobian are structurally orthogonal, they canbe approximated simul-
taneously using finite differences by perturbing the corresponding independent vari-
ables simultaneously [9]. Two columns are structurally orthogonal if there is no row
in which both columns have a nonzero. Coleman and Moré showed that the problem
of partitioning the columns of a Jacobian into the fewest groups, each consisting of
structurally orthogonal columns, can be modeled as a graph coloring problem [8].
The methods developed for finite-difference approximations are readily adapted to
automatic differentiation with appropriate initialization of the seed matrix [2]. A
survey of the use of graph coloring in derivative computation is available in [12].

ColPack is a software package containing algorithms for various kinds of graph
coloring and related problems arising in compression-based computation of sparse
Jacobians and Hessians [13]. The coloring problems vary depending on whether the
derivative matrix of interest is a Jacobian (nonsymmetric)or a Hessian (symmet-
ric) and whether the derivative matrix is compressed such that the nonzero entries
are to be recovered directly (with no additional arithmeticwork) or indirectly (by
substitution). In ColPack, a nonsymmetric matrix is represented using abipartite
graph, and a symmetric matrix is represented using anadjacency graph. Thus, a
partitioning of the columns of a nonsymmetric matrix into groups of structurally
orthogonal columns is obtained using adistance-2 coloring of the column vertices
of the bipartite graph.

The distance-2 coloring problem, as well as every other coloring problem sup-
ported by ColPack, is NP-hard to solve optimally [11, 12]. The corresponding algo-
rithms in ColPack are fast, yet effective, greedy heuristics [13]. They are greedy in
the sense that vertices are colored sequentially one at a time and the color assigned to
a vertex is never changed. The number of colors used by the heuristic depends on the
order in which vertices are processed. Hence, ColPack contains implementations of
various effective ordering techniques for each of the coloring problems it supports.
ColPack is designed in a modular, object-oriented fashion and implemented in C++
for ease of extensibility and portability.

The rest of this paper is organized as follows. Section 2 contains a brief overview
of related work. Section 3 describes our implementation approach. We show experi-
mental results for an optimization application use case in Section 4, and we conclude
Section 5 with a brief summary and discussion of future work.

2 Related Work

Bischof and El-Khadiri [4] describe the approach they took in implementing par-
tial separability support in ADIFOR. Our approach, though similar in spirit, has a
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number of significant differences. The ADIFOR approach assumed that the elemen-
tal functions were encoded in separate loops, while our approach does not rely on
this assumption and supports partial separability when multiple element functions
are computed in the same loop nest. To determine the sparsitypattern automatically
when the Jacobian structure is unknown, both ADIFOR and ADIC2 use runtime
detection through different versions of the SparsLinC library; in addition however
ADIC2 also relies on ColPack to compute a coloring, which is used to initialize the
seed matrix for computing a compressed Jacobian (or Hessian) using the forward
mode of AD.

To exploit the sparsity in Jacobians of the element functions, we performscalar
expansion, which is the conversion of a scalar value into a temporary array. For ex-
ample, scalar expansion can convert a scalar variable with avalue of 1 to a vector or
matrix where all the elements are 1. Typically scalar expansion is used in compiler
optimizations to remove scalar data dependences across loop iterations to enable
vectorization or automated parallelization. This transformation is usually limited to
countable loops without control flow or function calls. The size of the temporary
arrays is typically determined through polyhedral analysis of the iteration space of
the loops containing the scalar operations that are candidates for expansion. Polyhe-
dral analysis is implemented in a number of compilers and analysis tools, including
Omega [16], CHiLL [7, 18], and PLuTo [3, 5]. Our current approach to the imple-
mentation of scalar expansion does not use polyhedral analysis. We describe our
approach in more detail in Section 3.

3 Implementation

The changes required to support partial separability were implemented in our
ADIC2 source-to-source transformation infrastructure introduced in Section 1.1.
While this source translation can be performed in a standalone manner, it was con-
venient to implement it as a precanonicaliation step in ADIC2. The ROSE com-
piler framework, on which ADIC2 is based, parses the input code and generates an
abstract syntax tree (AST). ROSE provides APIs to traverse and modify the AST
through the addition and deletion of AST nodes representingdata structures and
program statements.

The translation is implemented as the following three traversals of the nodes
representing the function definitions within the AST.

1. Identification of partial separability (traversalT1)
2. Promotion of elementals within loops and creation of a summation function

(traversalT2)
3. Generation of elemental initialization loop (traversalT3)

In the first traversal, (T1), the statements within each function definition are exam-
ined. If the pragma$adic partially separable is found, then the statement imme-
diately following the pragma is an assignment statement whose left-hand side is
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the dependent variable and the scalar-valued result of a partially-separable function
computation. The right-hand side of the assignment statement is an expression in-
volving the results of the element function computations. The names of the variables
representing the elementals are specified in the pragma.

If the pragma$adic partially separable is found, the function definition is tra-
versed again in theTopDownBottomUp fashion. This second traversal visits the
nodes of the AST starting at the node representing the function definition and pro-
ceeding down to the leaf nodes. During this phase, which we will refer to asT2P1

(for second traversal, first phase), inherited attributes can be passed down to child
nodes from parent nodes in the AST. Next, the nodes are visited one by one starting
at the leaf nodes all the way to the function definition node. In this phase, which we
will refer to asT2P2 (for second traversal, second phase), synthesized attributed are
passed from child nodes to their parent nodes.

In phaseT2P1, we perform the following transformations.

1. Scalar expansion of elementals. In this transformation, the declaration of each
of the scalar elementals is changed into a dynamically allocated array. The size
of the array is determined to be the maximum number of updatesto the value
inside any loop nest within the function body. Each reference to the scalar vari-
able is modified into a reference to the array elemental. The index of each array
reference is determined by the bounds of the surrounding loops. For example,

double elemental ;
for ( j = lb0 ; j < ub0; j++) {

for ( i = lb1 ; i < ub1; i++) {
elemental = ...

}
}

is transformed to

double ∗elemental ;
ADIC SPARSECreate1DimArray(&elemental, (ub1−lb1) ∗ (ub0−lb0));

for ( j = lb0 ; j < ub0; j++) {
for ( i = lb1 ; i < ub1; i++) {

elemental = ...
temp0 = j ∗( ub0− lb0) + i ;
elemental [temp0] = ...

}
}

This transformation is made possible by passing the bounds of outer loops in the
T2P1 pass to the inner loops. In theT2P2 phase, if a reference is to an elemental
is encountered, it is converted into an array reference, andan appropriate assign-
ment to the array index variable is inserted at the beginningof the loop body.
In phaseT2P2 (BottomUp pass), when an innermost loop is visited, we create a
parametrized expression whose value will be the number of times that loop exe-
cutes (based only on its own loop bounds). This expression ispassed to its parent
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as a synthesized attribute. All parent loops multiply theirown local expression
by the maximum of the synthesized attributes received from its children. When
phaseT2P2 is concluded, the function definition node will contain the maximum
number of updates to the elementals. This value is used to allocate memory for
the type-promoted elementals.

2. Creation of the result vector. In this transformation, the assignment statement
immediately following the pragma$adic partially separable is modified. This
assignment statement is not affected by the previous transformation. A for loop
is created to replace the assignment statement. The assignment statement itself
is inserted into the body of the for loop. The for loop iterates as many times as
the maximum number of updates to the elementals, which was determined in the
previous transformation. For example,

#pragma $adicpartiallyseparable , elemental
∗ scalar = temp∗ ( elemental );

is transformed to

#pragma $adicpartiallyseparable , elemental
for (k = 0; k< (ub1−lb1) ∗ (ub0−lb0); k++) {

∗ scalar = temp∗ ( elemental );
}

The elemental variable references within the assignment undergo scalar expan-
sion, and the LHS of the assignment statement is replaced by an array reference.
The dimensions of this array are the maximum number of updates to the elemen-
tals, which was determined in the previous transformation,and the loop becomes

#pragma $adicpartiallyseparable , elemental
for (k = 0; k< (ub1−lb1) ∗ (ub0−lb0); k++) {

tempvector [k] = temp∗(elemental )[k ];
}

3. Summation of the result vector. Last, a call to a summation function is added
to the code. The arguments to the summation function are the scalar dependent
variable and the temporary array reference that forms the left-hand side of the
modified assignment statement. For example,

ADIC SPARSESummation(scalar, tempvector);

is a call that can result from this transformation.

In the third traversal (T3), the statements within each function definition are ex-
amined again. If the pragma$adic partialelemental is found, then the statement
immediately following the pragma is an assignment statement whose left-hand side
is an elemental and whose right-hand side is an initialization value. Such an assign-
ment statement is not modified by any earlier transformation. Similar to the creation
of a result vector, a for loop is created that iterates as manytimes as the maximum
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number of updates to the elementals, which was determined inthe previous trans-
formation (T2). The assignment statement itself is inserted into the bodyof the for
loop. Finally the loop replaces the annotated assignment statements. For example,

#pragma $adic partialelemental
elemental = 0.0;

is transformed to

#pragma $adicpartiallyseparable , elemental
for (k = 0; k< (ub1−lb1) ∗ (ub0−lb0); k++) {

elemental [k] = 0.0;
}

4 Experimental Results

We evaluated the performance of the partial separability detection implementa-
tion in ADIC2 by using a two-dimensional elastic-plastic torsion model from the
MINPACK-2 test problem collection [1]. This model uses a finite-element dis-
cretization to compute the stress field on an infinitely long cylindrical bar to which
a fixed angle of twist per unit length has been applied. The resulting unconstrained
minimization problem can be expressed asmin f (u), wheref : ℜn →ℜ, wheref (u)
is the quadratic

f (u) =
∫
D

{
1
2
‖∇u(x)‖2− cu(x)}dx (2)

wherec is a constant, andD is a bounded domain with a smooth boundary.
In our experiments, we applied ADIC2 to the C version of the function imple-

mentation after the original Fortran code was manually translated into C. As de-
scribed in more detail in Section 3, we insert two types of pragmas to define (i)
the elementals of the partially separable function and (ii)the initialization of the
elementals.

...
#pragma $adicpartialelemental

fquad = zero ;
#pragma $adicpartialelemental

flin = zero ;
...
/∗ computation of the elementals fquad and fln of the

function f and their sparse Jacobians∗/
...

#pragma $adicpartiallyseparable , fquad, flin
∗f = area∗(p5∗fquad+flin );
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...

In the initialization portion, the value of the double constantzero is 0.0. After the
T2P1 transformation pass (described in Section 3), the last portion of the code above
(the function computation) is transformed to

...
#pragma $adicpartiallyseparable , fquad, flin
ADIC SPARSECreate1DimArray(& adic temp f, ad var max);
for ( adic temp0 = 0; adic temp0 < ad var max; adic temp0++){

adic temp f [ adic temp0 ] = (area∗ ((p5 ∗ fquad[ adic temp0 ])
+ flin [ adic temp0 ]));

}
ADIC SPARSESummation(f, adic temp f,ad var max);

...

wheread var max is the size of the gradient vector array for the full Jacobian.
We validated the correctness of the sparse computation by comparing it with the

values produced by the analytical version. For example, foran input array size 100,
the error of norm of the difference was approximately 1.5e-16, or near the limit of
machine precision for floating-point computations.

We measured the execution time of the gradient computation on an Intel Xeon
workstation with dual quad-core E5462 Xeon processors (8 cores total) running
at 2.8 GHz (1600 MHz FSB) with 32 KB L1 cache, 12 MB of L2 cache (6MB
shared per core pair), and 16 GB of DDR2 FBDIMM RAM, running Linux kernel
version 2.6.35 (x86-64). All codes were compiled with gcc version 4.4.5 with -O2
optimizations enabled.
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Fig. 2 Left: comparison between the runtimes of the three gradient versions: hand-coded analytical
gradients, dense AD, and partially separable sparse AD (PSS). A breakdown of the steps in the PSS
version is also shown: sparsity detection, seed generation, and gradient computation and Jacobian
recovery. Right: gradient array sizes for the dense and PSS versions.
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Figure 2 (left) shows the execution times for computing the Jacobian of the func-
tion in Eq. 2 using three approaches: (1) manually implemented analytical derivative
computation; (2) dense, forward mode AD (using ADIC2); and (3) sparse, forward
mode AD (using ADIC2) with additional sparsity detection (using SparsLinC) and
Jacobian compression (using ColPack). The analytic version performs best, as ex-
pected. The forward-mode dense AD version is between 500 and3,400 times slower
than the manually optimized analytical derivatives computation, while the partially
separable sparse AD version achieves performance within a factor of 6 of the ana-
lytic version for small array sizes, and less than a factor of2 slower for larger array
sizes. The right side of Fig. 2 shows the reduction in memory requirements (ranging
from 500- to 4000-fold) for storing the gradients using the PSS approach compared
with dense gradients.

5 Conclusion

We presented an approach to exploiting sparsity in the computation of gradients of
partially separable functions, which are common in large-scale optimization. We
identify partially separable computations by using pragmas, which guide our source
transformation system to perform scalar expansion and generate efficient forward
mode AD code for computing the gradients of the element functions. In addition,
we exploit sparsity in these gradients by using the SparsLinC library and the Col-
Pack coloring toolkit to enable efficient forward mode AD by using statically allo-
cated compressed dense vectors for computing the gradientsof intermediate active
variables. We evaluated the performance of our implementation using a case study
of the elastic-plastic torsion problem in the MINPACK-2 test suite, demonstrating
that (1) exploiting partial separability and sparsity significantly reduces the memory
requirements of the generated code, enabling the solution of larger problems than
possible with dense forward mode, and (2) the performance ofthe best AD version
compares favorably with that of the hand-coded gradients. In future work we will
extend ADIC2 to remove certain restrictions, for example, the assumption that the
gradient vectors of different element functions are of the same size. We also plan
to integrate the polyhedral analysis currently being developed in ROSE and add
support for exploiting partial separability when using thereverse mode in ADIC2.
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