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Abstract A significant number of large optimization problems exhigstitucture
known aspartial separability, for example, least squares problems, where element
functions are gathered into groups that are then squaredspérsity of the Jaco-
bian (and Hessian) of a partially separable function canxpéged by computing

the smaller Jacobians of the elemental functions and tresmasing them into the

full Jacobian. We implemented partial separability supppoADIC2 by using prag-
mas to identify partially separable function values, apypysource transformations

to subdivide the elemental gradient computations, andgu$ia ColPack coloring
toolkit to compress the sparse elemental Jacobians. Werndresperimental results
for an elastic-plastic torsion optimization problem frome tMINPACK-2 test suite.
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1 Introduction

As introduced by Griewank and Toint [14], a functidrnt R" — R is considered
partially separable if can be represented in the form

() = i i), ®

where f; depends om; < n variables. Bouaricha and Me1{6] and Bischof and
El-Khadiri [4] , among others, have explored different way®xploit the sparsity
of the Jacobians and Hessians of partially separable fumstifo compute the (usu-

1 Mathematics and Computer Science Division, Argonne Natioahbkatory, Argonne, IL, USA,

[ snarayan, norris, hovl and] @rcs. anl . gov. Corresponding author: Sri Hari Krishna
Narayanan.

2purdue University, West Lafayette, IN , USAgebr eme@ur due. edu



2 Narayanan et al.

ally dense) gradierfl f of f, one can first compute the much smaller (and possibly
sparse) gradients of thig elementals, then assemble the full gradient of his ap-
proach can significantly reduces the memory footprint aratifig-point operations
for overall gradient computation compared with computiegsk gradients.

This paper describes the following new capabilities of tH2i®@2 source trans-
formation tool.

e Pragma-guided source transformations to perform scalaaresion of the ele-
mental components of partially separable scalar-valuedtions.

e EXxposing of the sparsity present in the elemental Jacobians

e Calculation of compressed the elemental Jacobians usitiRpCla

e Combining of the elementals into the scalar valued result.

1.1 ADIC2

ADIC2 is a source transformation tool for SSDOCOEDCESEEEEET
automatic differentiation of C and C++ ADIC2 ;
codes, with support for both the forward| ( Opené4 : Eﬂiﬁ
and reverse modes of AD [15]. ADIC2 uses Fromgvends 5
the ROSE compiler framework [17], which :
relies on the EDG C/C++ parsers [10]. EwhirIToXAIF] Egpel" } [SageToXAIF]E
ADIC2 is part of the OpenAD framework AV :
at Argonne, whose general structure is il

lustrated in Figure 1. Briefly, the process of : .
transforming the original source code into : OpenAD |

code computing the derivatives consists of p——
s_everal ste_ps: (1) canonicalizz_:\tion (seman (Cboost ) (AD source transformation)
tically equivalent transformations for re- 4

moving features that hamper analysis or

subsequent AD transformations); (2) proFig. 1 OpenAD component structure and
gram analysis (e.g., control flow graph corsource transformation workflow.
struction, def-use chains); (3) generation of

the language independent XAIF intermediate representgdd AD transformation
of the XAIF representation; (5) conversion of the resultiig XAIF code back to
the ROSE intermediate representation; and (5) generatiorCa-+ derivative code.
The general differentiation process as implemented by ADKCdiscussed in de-
tail in [15]. To exploit the sparsity of the gradients of pallyy separable functions,
we have implemented several extensions of the AD processhwine described in
Section 3.
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1.2 ColPack

When a Jacobian (or a Hessian) matrix is sparse, the runtichmamory efficiency
of its computation can be improved througbmpression by avoiding storing and
computing with zeros. Curtis, Powell, and Reid demonstr&tiat when two or more
columns of a Jacobian are structurally orthogonal, theybeaapproximated simul-
taneously using finite differences by perturbing the cqroesling independent vari-
ables simultaneously [9]. Two columns are structurallyyogonal if there is no row
in which both columns have a nonzero. Coleman andébiowed that the problem
of partitioning the columns of a Jacobian into the fewesuggy each consisting of
structurally orthogonal columns, can be modeled as a gralahicg problem [8].
The methods developed for finite-difference approximatiare readily adapted to
automatic differentiation with appropriate initializati of the seed matrix [2]. A
survey of the use of graph coloring in derivative computatgavailable in [12].

ColPack is a software package containing algorithms faouarkinds of graph
coloring and related problems arising in compression-dbasenputation of sparse
Jacobians and Hessians [13]. The coloring problems vargraéipg on whether the
derivative matrix of interest is a Jacobian (nonsymmeinica Hessian (symmet-
ric) and whether the derivative matrix is compressed suahttie nonzero entries
are to be recovered directly (with no additional arithmetimrk) or indirectly (by
substitution). In ColPack, a nonsymmetric matrix is repreésd using dipartite
graph, and a symmetric matrix is represented usingadjacency graph. Thus, a
partitioning of the columns of a nonsymmetric matrix intmgps of structurally
orthogonal columns is obtained usinglistance-2 coloring of the column vertices
of the bipartite graph.

The distance-2 coloring problem, as well as every otherroajgproblem sup-
ported by ColPack, is NP-hard to solve optimally [11, 12]eHorresponding algo-
rithms in ColPack are fast, yet effective, greedy heurssti@]. They are greedy in
the sense that vertices are colored sequentially one aeatichthe color assigned to
avertex is never changed. The number of colors used by thistiedepends on the
order in which vertices are processed. Hence, ColPack contaiplementations of
various effective ordering techniques for each of the déotpproblems it supports.
ColPack is designed in a modular, object-oriented fashishimplemented in C++
for ease of extensibility and portability.

The rest of this paper is organized as follows. Section 2a3osta brief overview
of related work. Section 3 describes our implementatiomagugh. We show experi-
mental results for an optimization application use casetiSn 4, and we conclude
Section 5 with a brief summary and discussion of future work.

2 Related Work

Bischof and El-Khadiri [4] describe the approach they tookmplementing par-
tial separability support in ADIFOR. Our approach, thoughikar in spirit, has a
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number of significant differences. The ADIFOR approach emsiithat the elemen-
tal functions were encoded in separate loops, while ouraggbr does not rely on
this assumption and supports partial separability whertiphellelement functions
are computed in the same loop nest. To determine the sppedtrn automatically
when the Jacobian structure is unknown, both ADIFOR and ADISe runtime

detection through different versions of the SparsLinCdilr in addition however
ADIC2 also relies on ColPack to compute a coloring, whichsedito initialize the

seed matrix for computing a compressed Jacobian (or Hgsssamy the forward

mode of AD.

To exploit the sparsity in Jacobians of the element funstiove performscalar
expansion, which is the conversion of a scalar value into a temporargyafFor ex-
ample, scalar expansion can convert a scalar variable wikug of 1 to a vector or
matrix where all the elements are 1. Typically scalar exjpemis used in compiler
optimizations to remove scalar data dependences acrogsterations to enable
vectorization or automated parallelization. This transfation is usually limited to
countable loops without control flow or function calls. Theesof the temporary
arrays is typically determined through polyhedral analygsithe iteration space of
the loops containing the scalar operations that are categidar expansion. Polyhe-
dral analysis is implemented in a number of compilers andyaistools, including
Omega [16], CHILL [7, 18], and PLuTo [3, 5]. Our current appact to the imple-
mentation of scalar expansion does not use polyhedral sisaWve describe our
approach in more detail in Section 3.

3 Implementation

The changes required to support partial separability wemglémented in our
ADIC2 source-to-source transformation infrastructureaduced in Section 1.1.
While this source translation can be performed in a stanéatoanner, it was con-
venient to implement it as a precanonicaliation step in ARIThe ROSE com-
piler framework, on which ADIC2 is based, parses the inpatecand generates an
abstract syntax tree (AST). ROSE provides APIs to travenseraodify the AST
through the addition and deletion of AST nodes represerdatg structures and
program statements.

The translation is implemented as the following three trsais of the nodes
representing the function definitions within the AST.

1. Identification of partial separability (travers@)

2. Promotion of elementals within loops and creation of a mation function
(traversalTy)

3. Generation of elemental initialization loop (travergsgl

In the first traversal,Ty), the statements within each function definition are exam-
ined. If the pragmapadic _partially_separable is found, then the statement imme-
diately following the pragma is an assignment statementseHeft-hand side is
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the dependent variable and the scalar-valued result ofte@ibaseparable function
computation. The right-hand side of the assignment stateimen expression in-
volving the results of the element function computatioriee Mames of the variables
representing the elementals are specified in the pragma.

If the pragmasadic_partially_separable is found, the function definition is tra-
versed again in th@opDownBottomUp fashion. This second traversal visits the
nodes of the AST starting at the node representing the fumckéfinition and pro-
ceeding down to the leaf nodes. During this phase, which vlerefer to asT,Py
(for second traversal, first phase), inherited attributas e passed down to child
nodes from parent nodes in the AST. Next, the nodes aredisite by one starting
at the leaf nodes all the way to the function definition nodehls phase, which we
will refer to asT,P, (for second traversal, second phase), synthesized aédlaue
passed from child nodes to their parent nodes.

In phaser, Py, we perform the following transformations.

1. Scalar expansion of elementals. In this transformation, the declaration of each
of the scalar elementals is changed into a dynamically aféatarray. The size
of the array is determined to be the maximum number of updatése value
inside any loop nest within the function body. Each refeeetucthe scalar vari-
able is modified into a reference to the array elemental. mtiex of each array
reference is determined by the bounds of the surroundingsldeor example,

double elemental ;
for(j =1b0; j < ub0O; j++){
for(i = Ibl; i <ubl; i++){
elemental = ...
}

}

is transformed to

double xelemental ;
ADIC_SPARSECreatelDimArray(&elemental, (ub1bl) « (ubO-1b0));
for(j =1b0; j < ub0O; j++){
for(i =1Ibl; i <ubl; i++){
elemental = ...
tempO = j x( ubO— Ib0) + i;
elemental [tempO] = ...

}

This transformation is made possible by passing the bouhalster loops in the
T,P, pass to the inner loops. In tAeP, phase, if a reference is to an elemental
is encountered, it is converted into an array referenceaarappropriate assign-
ment to the array index variable is inserted at the beginafrige loop body.

In phaseT,P, (BottomUp pass), when an innermost loop is visited, we eraat
parametrized expression whose value will be the numbenwddithat loop exe-
cutes (based only on its own loop bounds). This expressipadgsed to its parent
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as a synthesized attribute. All parent loops multiply tlosin local expression
by the maximum of the synthesized attributes received fitsnchildren. When
phasel,P; is concluded, the function definition node will contain theximum
number of updates to the elementals. This value is useddoaadd memory for
the type-promoted elementals.

2. Creation of the result vector. In this transformation, the assignment statement
immediately following the pragmé&adic_partially_separable is modified. This
assignment statement is not affected by the previous temstion. A for loop
is created to replace the assignment statement. The assigistatement itself
is inserted into the body of the for loop. The for loop itesaés many times as
the maximum number of updates to the elementals, which wasnmed in the
previous transformation. For example,

#poragma $adicpartiallyseparable , elemental
xscalar = temp (elemental );

is transformed to

#pragma $adicpartiallyseparable , elemental
for (k = 0; k< (ubl-Ib1)x (ubO-Ib0); k++){
xscalar = temp (elemental );
¥

The elemental variable references within the assignmes¢ngo scalar expan-
sion, and the LHS of the assignment statement is replaced hyray reference.
The dimensions of this array are the maximum number of ugdatthe elemen-
tals, which was determined in the previous transformatod, the loop becomes

#pragma $adicpartiallyseparable , elemental
for (k = 0; k< (ubl-Ib1)« (ubO-Ib0); k++){
tempvector[k] = temp(elemental)[k];
¥

3. Summation of the result vector. Last, a call to a summation function is added
to the code. The arguments to the summation function arectlarsdependent
variable and the temporary array reference that forms tirddend side of the
modified assignment statement. For example,

ADIC_SPARSESummation(scalar, temyector);

is a call that can result from this transformation.

In the third traversalTs), the statements within each function definition are ex-
amined again. If the pragméadic_partialelemental is found, then the statement
immediately following the pragma is an assignment statéméose left-hand side
is an elemental and whose right-hand side is an initiabratalue. Such an assign-
ment statement is not modified by any earlier transformaamilar to the creation
of a result vector, a for loop is created that iterates as niams as the maximum
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number of updates to the elementals, which was determingteiprevious trans-
formation (I2). The assignment statement itself is inserted into the lddiye for
loop. Finally the loop replaces the annotated assignmatgrsents. For example,

#pragma $adic partialelemental
elemental = 0.0;

is transformed to

#pragma $adicpartiallyseparable , elemental
for (k = 0; k< (ubl-Ib1)x (ub0-1b0); k++){
elemental[k] = 0.0;
}

4 Experimental Results

We evaluated the performance of the partial separabiliteation implementa-
tion in ADIC2 by using a two-dimensional elastic-plasticsion model from the
MINPACK-2 test problem collection [1]. This model uses a tBrélement dis-
cretization to compute the stress field on an infinitely loylindrical bar to which
a fixed angle of twist per unit length has been applied. Theltiag unconstrained
minimization problem can be expressedns f (u), wheref : 0" — 0O, wheref (u)
is the quadratic

f(0) = [ {510060]— cu @

wherec is a constant, an® is a bounded domain with a smooth boundary.

In our experiments, we applied ADIC2 to the C version of thecfion imple-
mentation after the original Fortran code was manuallydiatad into C. As de-
scribed in more detail in Section 3, we insert two types ofjpras to define (i)
the elementals of the partially separable function andtl{i) initialization of the
elementals.

#pragma $adicpartialelemental
fquad = zero;

#pragma $adic partialelemental
flin = zero;

/x computation of the elementals fquad and fln of the
function f and their sparse Jacobians

#pragma $adicpartiallyseparable , fquad, flin
«f = areax(p5«fquad+flin );




8 Narayanan et al.

In the initialization portion, the value of the double candizerois 0.0. After the
T,P, transformation pass (described in Section 3), the lastqroof the code above
(the function computation) is transformed to

#pragma $adicpartiallyseparable , fquad, flin
ADIC_SPARSECreatelDimArray(&_adic tempf, ad var max);
for (__adictempO = 0; __adictempO < advarmax; __adictemp0++){
__adictempf[__adictemp0] = (areax ((p5* fquad[__adictempO ])
+ flin [ __adictempO0 ]));
¥

ADIC_SPARSESummation(f,_adic tempf,ad var. max);

wheread_var_max is the size of the gradient vector array for the full Jacobian

We validated the correctness of the sparse computationtopaong it with the
values produced by the analytical version. For exampleafianput array size 100,
the error of norm of the difference was approximately 1.6edt near the limit of
machine precision for floating-point computations.

We measured the execution time of the gradient computatioanolntel Xeon
workstation with dual quad-core E5462 Xeon processors (8sctotal) running
at 2.8 GHz (1600 MHz FSB) with 32 KB L1 cache, 12 MB of L2 cacheMB
shared per core pair), and 16 GB of DDR2 FBDIMM RAM, runninglx kernel
version 2.6.35 (x86-64). All codes were compiled with gcesien 4.4.5 with -O2
optimizations enabled.
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Fig. 2 Left: comparison between the runtimes of the three gradiestores: hand-coded analytical
gradients, dense AD, and partially separable sparse AD (PSSgakdown of the steps in the PSS
version is also shown: sparsity detection, seed generation, adeegt computation and Jacobian
recovery. Right: gradient array sizes for the dense and PS®mer
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Figure 2 (left) shows the execution times for computing #heobian of the func-
tionin Eq. 2 using three approaches: (1) manually impleetkanalytical derivative
computation; (2) dense, forward mode AD (using ADIC2); aBdgparse, forward
mode AD (using ADIC2) with additional sparsity detectiorsiftg SparsLinC) and
Jacobian compression (using ColPack). The analytic veqsésforms best, as ex-
pected. The forward-mode dense AD version is between 508,400 times slower
than the manually optimized analytical derivatives corafiah, while the partially
separable sparse AD version achieves performance wittantarfof 6 of the ana-
lytic version for small array sizes, and less than a fact@ sibwer for larger array
sizes. The right side of Fig. 2 shows the reduction in memeguirements (ranging
from 500- to 4000-fold) for storing the gradients using tt&SRapproach compared
with dense gradients.

5 Conclusion

We presented an approach to exploiting sparsity in the ctatipn of gradients of
partially separable functions, which are common in largales optimization. We
identify partially separable computations by using pragyméich guide our source
transformation system to perform scalar expansion andrgenefficient forward
mode AD code for computing the gradients of the element fanst In addition,
we exploit sparsity in these gradients by using the Spaliorary and the Col-
Pack coloring toolkit to enable efficient forward mode AD Ising statically allo-
cated compressed dense vectors for computing the gradieimigrmediate active
variables. We evaluated the performance of our implemientaising a case study
of the elastic-plastic torsion problem in the MINPACK-2ttegite, demonstrating
that (1) exploiting partial separability and sparsity siigantly reduces the memory
requirements of the generated code, enabling the solufitarger problems than
possible with dense forward mode, and (2) the performandteedbest AD version
compares favorably with that of the hand-coded gradientguture work we will
extend ADIC2 to remove certain restrictions, for examphe, assumption that the
gradient vectors of different element functions are of thme size. We also plan
to integrate the polyhedral analysis currently being dgwed in ROSE and add
support for exploiting partial separability when using tbeerse mode in ADIC2.
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