
Proceedings of ICAPP ‘12 
Chicago, USA, June 24-28, 2012 

Paper 12341 

 

 

RGG: Reactor Geometry (&mesh) Generator 

 
 

Rajeev Jain and Tim Tautges 
Argonne National Laboratory  

9700 S Cass Avenue, Argonne, IL 60439 
Tel: 630-252-3176, Fax: 630-252-5986, Email:jain@mcs.anl.gov, tautges@mcs.anl.gov 

 
 

Abstract – RGG takes advantage of information about repeated structures in both assembly and 
core lattices to simplify the creation of geometry and mesh, it is released as an open source 
software as a part of MeshKit mesh generation library.  The methodology operates in three stages. 
First, assembly geometry models of various types are generated by a tool called AssyGen, next, 
the assembly model or models are meshed using MeshKit tools or the CUBIT mesh generation 
toolkit, optionally based on a journal file output by AssyGen. After one or more assembly model 
meshes have been constructed, they are arranged in a core model using a tool called CoreGen, it 
uses a copy/move/merge process to create the core model. In this paper, we present the current 
state of tools, new features and parallel-enabled CoreGen. CoreGen is ideally suited for 
parallelism, during creation of large reactor core models it was realized as a bottleneck in the 
process. For several problems speedups for CoreGen are super-linear, due to the problem fitting 
in available RAM at higher processor counts. Several RGG applications viz. VHTR models, a ¼ 
PWR reactor core, and a Full Core model for MONJU are reported. 

 
 

I. INTRODUCTION 
 
Creation of geometry and mesh are two very important 

steps in the simulation of reactor cores. Nuclear reactor 
cores are typically formed by arranging pins in a lattice of 
surrounding material. It is possible to describe a reactor as 
two-level hierarchy of lattices [1]. The first level of 
hierarchy corresponds to fuel or other assemblies 
consisting of cylindrical pins, while in the second level 
assemblies are arranged in a lattice to form the reactor 
core. Although the structure inherent in this two-level 
hierarchy could be used to automate parts of this 
generation process, experience shows that user interaction 
is often required. We describes a system for generating 
reactor core geometry and mesh models that balances 
lattice-guided automation and user interaction at key points 
in the process. This system can be formulated in a three-
stage process. In the first stage, assembly geometry and 
meshing scripts are created, second stage creates the mesh 
for this assembly geometry, and finally the third stage 
creates the core model using the output from the first two 
stages. RGG contains two tools: AssyGen and CoreGen for 
modeling several types of nuclear reactor assembly and 
core models. 

Literature overview and various other domain-specific 
tools for geometry and mesh generation are discussed in 
our previous paper [1]. Also, during the development of 
the tools and discussions with neutronics and thermo-

hydraulics groups new features like support for tetrahedral 
meshing, creation of axially varying assemblies, support 
for 2D core creation, extrusion and others were added to 
the toolset, these are reported in a journal publication 
earlier this year [2]. The toolset continues to grow robust 
with more features and ability to create large models with 
automated model creation process. In this paper, we focus 
on parallel version of the tool, new models and keywords 
for aiding post processing.  

Various sections in this paper are organized as 
follows: Section II describes the current status of tools and 
provides a brief overview, Section III describes parallel 
version of the tool and new keywords to the input file 
language. Section IV describes core models created using 
these tools, along with performance data. Section V 
discusses our conclusions.  

 
II. ASSYGEN AND COREGEN 

 
AssyGen and CoreGen are tools developed as a part of 

MeshKit [3] library developed and maintained at Argonne 
National Laboratory. These tools rely on geometry and 
mesh libraries developed as a part of Interoperable Tools 
for Advanced Petascale Simulations (ITAPS) project. The 
Common Geometry Module (CGM) [4] provides function 
for constructing, modifying and querying geometric 
models in solid model-based and other formats. Finite 
element mesh and mesh related data are stored in the 
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Mesh-Oriented database (MOAB) [5]. Along with 
functions to query, construct and modify, MOAB also 
provides efficient functions to handle mesh in parallel. 
Mesh generation is performed by using a combination of 
tools. . The CUBIT mesh generation toolkit [6] provides 
algorithms for both tetrahedral and hexahedral mesh 
generation. MeshKit provides efficient algorithms for mesh 
copy/move/merge, extrude, and other algorithms. The 
AssyGen tool generates the assemblies and the CoreGen 
tool copy/move/merge(s) those assemblies to form a core.  

AssyGen tool is capable of generating rectangular or 
hexagonal assemblies. Fig. 1. shows two such hexagonal 
assembly geometries being created: Assembly Geometry 1 
and 2. It highlights the first two stages of the process. Input 
to AssyGen tool is a keyword-based text input file. Output 
is assembly geometry and mesh script. 

Fig. 1. First two stages of the geometry/mesh process, 
where AssyGen and CUBIT are executed for each 
assembly type.  

 Input file is based on a predefined set of keywords 
that are followed by values that describe the model. A 
complete list of keywords, options and values are 
described in the README file [7]. Geometry file created 
by AssyGen can be saved in formats supported by the 
geometry engine which was used to build CGM. ACIS [8] 
and OpenCascade [9] are currently supported by CGM. In 
the input file, we describe an assembly as a lattice of unit 
cells. Each unit cell has zero or more concentric cylindrical 
layers of material, cut from a background material defined 
for each unit cell or for the assembly as a whole. Unit cell 
shapes can also be imprinted on the background material, 
to more finely control the mesh in each unit cell.  The 
assembly can be surrounded by one or more layers of duct 
wall material.  Multiple pincell types can be defined, each 
with one or more concentric cylinders of material and a 
background material for the cell. Cylinders input for 
individual pin cells can be larger than the unit cell 
dimensions; these volumes will overlap neighboring 
pincell regions when present. In this case, a special 
keyword can be used to restrict these larger structures to 

the unit cell, such that they do not overlap neighboring 
regions. Empty pin cells can be specified in the assembly 
lattice by specifying a predefined “XX” or NULL unit cell 
type, indicating that only background material (and 
structures from neighboring unit cells) overlaps the cell. 
Parameters can be specified multiple times with varying Z-
dimensions and material properties to create assembly 
models with axially varying properties.  

In the second stage of the process assembly geometry 
and the CUBIT mesh script, which is automatically 
generated by AssyGen are run to generate an assembly 
mesh. This assembly mesh has the materials and boundary 
conditions defined. Top, bottom and side surfaces of all 
materials are marked as boundaries, material names are 
suffixed with “_top”, “_bot” and “_side” to name the 
boundary conditions respectively. Material names are 
defined in the text-based input file. AssyGen is capable of 
creating both surface and volume type geometry files and 
their corresponding mesh script files. It must be noted that 
for a given core configuration first two stages are repeated 
for each assembly that forms the core (see Fig. 2. for the 
core formed by assemblies created in Fig. 1). It is 
incumbent on the user to make sure that the meshes match 
between assemblies. The tools don’t explicitly enforce a 
constraint to match the nodes along the sides of the 
assemblies that sit next to each other. There are keywords 
in AssyGen to assign the intervals along the edges and in 
the z-direction. The same interval or bias factor must be 
used on all the assemblies to guarantee that neighboring 
assemblies are glued perfectly and the resulting core mesh 
is conformal. In case of a tetrahedral mesh, it is a bit 
difficult to enforce this constraint. Both translational and 
rotational symmetry of meshes on the side surface of all 
the assemblies are desired. This was achieved by meshing 
the sides first and then meshing the entire volume. Side 
surface are split and have the same mesh interval on the 
sides. One half of the split is meshed and then flipped onto 
the other half surface [2].  

Meshing process is very brittle and often very 
sensitive to the input mesh size. This problem occurs due 
to several reasons, top surface is cut by a large number of 
cylindrical rods and is often hard to mesh using 
unstructured quadrilateral elements, also the ratio of largest 
to smallest dimension on the top surface of the model is 
very large, which entails having very small element size to 
mesh the top surface. Tight element budget and specific 
needs of the simulation scientists make it clear that finer 
control and freedom is required at during this stage of the 
reactor core generation process. At present we use CUBIT 
for the mesh generation process and specific keywords like 
‘EdgeInterval’, ‘RadialMeshSize’ and ‘AxialMeshSize’ are 
available as variables in the script to better control the 
meshing operation. CUBIT is closed-source, efforts are 
being made to develop algorithms like Jaal [10] etc. in the 
MeshKit library to tackle such the mesh generation 
problems.  
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CoreGen tool reads all the assembly mesh files and a 
keyword-based text input file similar to AssyGen input 
file. This file describes the arrangement of assemblies in 
the core lattice and locations of models for each assembly 
type, along with those meshes; this information is used to 
generate the overall core mesh. Fig. 2. shows two 
hexagonal assembly mesh files, an interstices mesh and a 
CoreGen input file. These files are read by the CoreGen 
program to create a makefile and a full hexagonal core 
mesh file with 19 assemblies as per the specification in the 
CoreGen input file. Unlike the example in Fig. 2., which 
creates a core mesh, CoreGen can read in geometry files to 
create the resulting core geometry, in which case the 
overall process becomes a two stage process with no 
meshing. The interstices mesh is not copy/moved like the 
other assembly mesh files; it is a way to provide fixed 
pieces in the model. The makefile generated by CoreGen, 
automates the whole process, from various assembly to the 
creation of the core.  Fig. 3. in Section IIIA demonstrates 
the generation of the same core mesh using parallel-
enabled CoreGen.  

 

 

Fig. 2. Third stage of the geometry/mesh process, where 
CoreGen is executed. 

CoreGen supports creation of 1/6th, 1/12th and full core 
models for a hexagonal type core and full for a rectangular 
type core. Details on the specifications and conventions 
used for core definition can be found in [1]. Example IVA 
creates a 1/6th hexagonal core.  Example IVC creates a full 
rectangular core. IVA also highlights another variation to 
this three stage process. A 2D core is formed in the first 
three stages, in the third stage, as per the user specification, 
the 2D core model is extruded to desired height and 
number of subdivisions to create a 3D core mesh. This 2D 
core generation plus extrusion process is faster than its 3D 
counterpart. 

It must be noted that metadata or material and 
boundary conditions must propagate from individual 
assemblies to the core. This is achieved by defining 
abstractions specifying the handling of specific types of 
groupings according to those abstractions [2]. The 
groupings are of three different types: copy, expands and 
extrude, when an entity is copied and new entities are 
created it is assigned to a copy grouping, when the 
grouping needs to accommodate and expand, it is assigned 
to a expand grouping, for extrude grouping the entities of a 
group are replaced by the newly created entities of the 
corresponding higher dimension that were extruded.  

Often sides or faces of overall core model are desired 
as boundary conditions. We use the ‘NeumannSet’ 
keyword in the input file for top, bottom and side faces; for 
side faces, equation of line in radial direction must be 
specified along with the keyword. This radial line sets the 
particular face or side of the core for which boundary 
condition is desired. Internally these boundary conditions 
on the core are assigned by obtaining the skin of the entire 
core and filtering the faces into relevant/desired groups 
specified in the input file. 
 

III. NEW SALIENT FEATURES 
 

For several models the mesh size didn’t fit in the 
available memory and we realized a need for parallel-
enabled CoreGen, which is described in section IIIA. In 
section IIIB, we highlight the ‘Info’ keyword which helps 
in keeping track of pin and assembly number in both 
assembly and core mesh files. 

 
IIIA. Parallel-Enabled CoreGen 

 
During creation of core models with large number of 

assemblies formed with only a few types of specific 
assemblies, it was realized that large memory requirement 
was a bottleneck in the process. Recent development in the 
parallel capabilities for handling and manipulating meshes 
in MOAB created a perfect environment for parallel-
enabled CoreGen. CoreGen itself is ideally suited for 
parallelism. The basic algorithm used for parallelizing can 
be summarized in five steps given below:  

1. On each processor: read CoreGen input file, parse, 
and determine assembly copies assigned to this 
processor based on a round-robin distribution. 

2. Locally, on each processor read assembly meshes 
for assemblies determined in step 1. 

3. Perform assembly copy/move operations assigned 
to this processor. 

4. Perform parallel merge. 
5. Save output mesh. 
For steps 4 and 5, CoreGen leverages the parallel 

merge and save algorithms developed in MOAB [5]. New 
algorithms were developed for shared vertex and metadata 
resolution among the processors [11].  
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The copy/move task distribution is deterministic; it is 
done on each processor based on the text-based CoreGen 
input file. In step 1, three different cases arise when 
distributing the assembly meshes among processors: 

A. np <  nA 
B. nA < np < nT 
C. np  > nT 
In case A, each processors loads more than one 

assembly mesh file and solely performs the copy/move 
operation associated with that assembly for the entire core. 
For case B, some mesh files are loaded in multiple 
processors, this mesh file selection is based on the 
frequency or the number of occurrence of that mesh file in 
the core. The file that appears most number of times in the 
core is assigned to multiple processors. This operation is 
deterministic and performed by all processors. For case C, 
some processors remain idle, copy/move task is divided 
per assembly, therefore, only nT processors can take part 
in this parallel algorithm.  

Fig. 3. demonstrates a simple example to explain the 
parallel algorithm. Four processors P0 to P3 are used; 
individual assemblies are numbered from 1 to 19. The 
model uses two assembly mesh files 1 and 2 and one 
interstices mesh, making it three mesh files in total. Fig. 
3A shows the processor, mesh file loaded and the 
copy/move task. Fig. 3B shows the CoreGen output mesh 
for a full hexagonal core with numbered assemblies.  

 

 
 

Fig. 3. Third stage of the geometry/mesh process, where 
CoreGen is executed. 

Processor P0 loads assembly mesh 1, moves it to 
location 5 and then copies it to location 5, 6, 9, 10, 11, 14 
and 15. Both processor P1 and P3 load assembly mesh 2; 
this mesh occurs 12 times in the core. The copy/move task 
is shared among P1 and P3 each handling 6 assemblies. P2 
loads the interstices mesh and does not participate in the 

copy/move process. Once the copy/move task is complete, 
CoreGen performs parallel merge, this algorithm does not 
delete mesh matching nodes, rather the parallel sharing 
information is modified to indicate that they are the same 
logical vertex [11]. Parallel merge mesh also significantly 
lowers the total wall clock time as shown in Example IV 
A. Finally, mesh is saved in parallel using MOAB’s 
parallel HDF5-based writer. This writer can write a single 
output mesh file combining input from individual 
processors. Application codes may require having core 
mesh in separate small files for each processor and starting 
the simulation or they may require one mesh file from all 
the processors. CoreGen input file language defines a 
keyword “SaveParallel” which helps in specifying the 
option to save mesh from individual processor, one mesh 
file from all processors or both.  

For several examples superlinear speedup was 
obtained, results for 1/6th VHTR core and MONJU reactor 
are discussed in Section IV A and IV C respectively. 

 
IIIB. Keywords and Options 

 
Command line option “-m” and “-j” are added to 

CoreGen and AssyGen respectively. The “-m” option does 
not run the process; it only creates a makefile, which is 
often times desired for automatically generating the 
assemblies forming the core. The “-j” option in Assygen 
only creates a journal or mesh script file, without creating 
the geometry. Option “-t” was added to both the tools to 
printout detailed timing information, in case of CoreGen 
timing information is printed at the end of each step; for 
parallel version the maximum wall clock and CPU time 
required by a processor for each sub-process are given. 

Fuel and other coolant pins are grouped by materials 
in the resulting assembly and core mesh. It is often desired 
to keep track of the pin/assembly number in the 
assembly/core model respectively. Post processing is one 
of the areas where it proves to be very useful to mark the 
pin and assembly numbers. For instance the radiation or 
temperature profiles for a particular pin in a particular 
assembly are measured experimentally and must be 
validated by simulations; experience has shown that it is 
tedious to recognize and locate that pin in hundreds of 
thousands of pins that form the reactor core. We achieve 
this by creating some information files as output of 
AssyGen and CoreGen program. These files can be loaded 
into the simulation software and populated along with the 
mesh to label the pins and assemblies.  

“Info” keyword was introduced in both AssyGen and 
CoreGen to trigger the tools to generate extra files 
specifying pin/assembly number and their location. Both 
AssyGen and CoreGen generate a file with the base name 
suffixed with “_info.csv”, in case of AssyGen, this file has 
pincell number and location of the pin; for CoreGen the 
file contains assembly number, assembly index (mesh files 
1 to 2 and number 1 to 19 in Fig. 3) and center of the 
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assembly. CoreGen also creates a file with base file name 
suffixed with “_mesh_info.csv” file. This contains the 
pincell number and the centroid of each element that 
belong to the specified pincell. Internally in AssyGen 
during geometry creation each pin is assigned a NAME tag 
[3] for material and an extra NAME tag for the pin 
number. We trick the system by creating each pin as a 
separate material in AssyGen stage. In CoreGen stage after 
retrieving the pin number from the assembly these extra 
materials are deleted.  

This technique has been demonstrated with STAR-
CCM+, where after loading the mesh file the info files with 
pin/assembly number and cell centroids are used to mark 
the pins using annotations defined in STAR-CCM+. This is 
achieved by means of a Java macro which reads the info 
file and populates the pin/assembly number based on the 
cell centroid to the existing simulation, the macro can be 
played from STAR-CCM+ GUI. 

 
 

IV. EXAMPLES 
 

In this section we present several examples. Example 
IV A is available in the MeshKit repository [7]. 

 
IV.A. Sixth Core model, Constructed without /with 

Using Extrusion and Using Parallel-Enabled CoreGen 
 

In this example we construct the model shown in Fig. 
4.,one-sixth Very High Temperature Reactor (VHTR) core. 
We create this model using three different techniques and 
compare the performance of each technique. . The model 
consists of 11.8M hexahedral elements and 14M mesh 
vertices. There are a total of 58 assemblies in total and 12 
different assemblies that form this core. This model is 
tailored to automatically run and create the core mesh from 
scratch without any user interaction. Appropriate values of 
axial and radial mesh size are specified in the input files. 
Makefile generated by CoreGen is used to run the problem. 

First, this model was created by using the three-stage 
process described in this paper. The tools were run on a 
desktop Linux-based workstation with a clock speed of 2.5 
GHz and 12 GB RAM. With the three-stage process 
without extrusion, it took 4 minutes to generate the 
geometries using AssyGen, 5 minutes to create hexahedral 
assembly meshes using CUBIT  (version 12.2), and 15 
minutes to generate the core model using CoreGen.  Thus 
the total time using this method is 24 minutes.  

 
 

Fig. 4. One-sixth of a VHTR core model generated by 
using CoreGen (left); a closeup of assembly mesh in this 
model (right). 
 

Second, the same model was constructed by using a 
four-stage process. First, two-dimensional assemblies were 
created using AssyGen; then, CUBIT was used to mesh 
these assemblies (with quadrilaterals); next, a two-
dimensional core was generated by using CoreGen; in the 
fourth stage of this process, the entire 2D core mesh was 
extruded into the third dimension. Using this extrusion-
based approach required 0.6 times the execution time of 
the three-stage process.  The total execution time was 
reduced from 24 minutes to 15 minutes, or by almost 40%. 
This reduction was due primarily to the reduced number of 
vertices that needed to be copied, moved, and merged 
between assemblies during the CoreGen stage. For 
example, the number of vertices considered for merging 
was reduced from 162,690 in the 3D process to only 9,570 
in the 2D CoreGen process.  

The minimum and maximum shape metrics for the 
VHTR mesh are 0.00125 and 0.00618, respectively.  These 
metrics are low (normally, shape metric values above 0.2 
are deemed acceptable).  However, the metric are due to 
the high aspect ratio of the assemblies (each assembly is 
7.93 meters in length but only about 37 cm across) and the 
resulting mesh. 

The performance of parallel CoreGen was measured 
using the without extrusion or three-stage process model 
described above. When using 56 processors for running 
CoreGen. The total execution time for creating this model 
is less than 10 mins (9 mins  of serial execution time: 
AssyGen and Meshing + 0.33 mins of CoreGen time). 
CoreGen takes only 0.33 mins compared to 15 mins in the 
serial case.  

 
 
 
 
 
 
 

TABLE I 
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CPU time in mins and maximum memory used for 1/6th 
VHTR core with 11.8M hexes. 

procs 
 

Copy/Move 

(mins) 

Merge 

(mins) 

Save 

(mins) 

Total 

(mins) 

Memory 

(GB) 

1 10.3  3.8  0.4  14.7  3.18 
8 5.8  7.5  0.35  13.8  2.13 
16 0.2  6.7  0.18  7.2  1.33 
32 0.03  0.9  0.09  1.06  0.41 
56 0.004  0.2  0.06  0.33  0.2 

 

Table I lists the CPU time and the maximum memory 
used for various steps of the CoreGen stage, when using 
different number of processors. It is observed that all the 
operations see super-linear speedups in some cases; 
memory usage data indicates that these steps are where the 
application goes from swapping to a state where the job fits 
in available memory.  This indicates one important reason 
for parallelizing RGG, i.e. so the application can fit in 
memory without swapping.  Next, mesh joining is 
observed to actually slow down going from one to eight 
processors; this is probably due to the communication 
overhead required in the parallel algorithm.  However, at 
larger numbers of processors, the joining time is reduced 
far below the serial time. As expected, the total time, time 
taken to save and maximum memory used by a processor 
decreases on increasing the number of processors. 

VI.C. Full Core MONJU Reactor  
 

Fig. 5 and 6 show a full core MONJU reactor which is 
made up of 8 different assembly types and consisting of 
715 assemblies in total. AssyGen and meshing takes 5.5 
minutes (serial process) and CoreGen on 712 processors on 
Fusion cluster at Argonne National Laboratory takes only 
1.5 minutes to copy/move/merge and save 8 assemblies to 
715 different locations in the core. The total wall clock 
time required to generate this 101M hexahedral element 
model is 7 mins.  

 
Fig. 5. Full core MONJU reactor (top view). 

 
Fig. 6. Full core MONU reactor; closeup area in red 
rectangular region is highlighted from left to right.  

VI.D. 1/4th PWR Core Geometry 
 

Fig. 7. shows the benchmark problem: “MOX Fuel 
Loaded Small PWR Core”, detailed description can be 
found on the website of Nuclear Reactor Analysis and 
Particle Transport Lab [12]. Individual assembly 
geometries are created using the AssyGen tool and then 
CoreGen tool is used to copy/move the assemblies and 
form the core geometry. It must be noted that trivial 
assemblies that do not contain any rods or the baffles are 
generated directly using CUBIT. When creating the core 
model “NeumannSet” keyword is used to create individual 
side faces of the core as boundary conditions. In Fig. 7. A, 
B and C are closeup of the area in red rectangular region 
highlighted on the core model. The model consists of 
approximately 11k volumes. On a Linux desktop: all the 
assembly geometry creation takes 8 mins and CoreGen 
takes 12 mins of wall clock time and uses 0.9GB of RAM. 

 

 
Fig. 7. 1/4th PWR benchmark geometry with closeup views 
A, B and C showing details of the model. 
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VII. CONCLUSION 
 

The original three-stage approach for generating 
lattice-based models reported in earlier papers has proven 
to be very useful. Huge reduction in total clock time 
required to create geometry and mesh models for reactor 
cores are reported. CoreGen tool was modified to work in 
serial and parallel, parallel version of the tool allows the 
problem to fit in memory, superlinear speedups are 
observed due to the problem fitting in memory, thereby 
significantly reducing the total time required for generating 
large models. Parallel-enable CoreGen has prompted new 
developments in parallel file save and mesh merge 
algorithm. AssyGen tool provides new keywords to aid 
creation of matching meshes between different assemblies 
forming the core. New options for reporting the timing, 
creation of only mesh script and makefile are added. 
Experience in using the tools has prompted the 
development of “Info” keyword which generates new files 
along with model files; these info files contain pin number, 
assembly number and their location. The info files can be 
useful in post processing and other such areas. New types 
of reactors are generated using the tools. The full core 
MONJU reactor example demonstrates the power of the 
parallel-enabled CoreGen tool. Geometry only models can 
be created, 1/4th PWR core geometry creation is presented. 
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NOMENCLATURE 
 
nP: Number of processors. 
nA: Number of different assemblies forming the core. 
nT: Total number of assemblies forming the core. 
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