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Abstract

Computational science faces new challenges posed by multiphysics
and multiscale, or more generally put, coupled models. These systems
are composites formed from separate subsystem models that interact
via data exchanges. These data dependencies pose a coupling problem,
and on distributed-memory computers, a parallel coupling problem.
This paper presents a definition of terms and a set of organising prin-
ciples for the coupling and parallel coupling problems. It is meant as
a first step towards creating a theory of coupled models. These prin-
ciples are then employed in a case study of a coupled climate model
and offer remarkable insight into its structure.

Contents

1 Introduction 2

2 Definition of Terms and Problem Statement 3

3 The Organising Principles 4

4 Case Study: Coupled Climate Modelling 8

∗ANU Supercomputer Facility, The Australian National University, Canberra, Aus-

tralia
†Australian Partnership for Advanced Computing (APAC)
‡Mathematics & Computer Science Division, Argonne National Laboratory, Argonne,

Illinois, USA
§Computation Institute, University of Chicago, Chicago, IL, USA

1



5 Conclusions 10

1 Introduction

Computational science is becoming more ambitious by moving beyond the
traditional approach of simulating individual isolated subsystems towards in-
tegrated systems having numerous mutually interacting components. Two
distinct types of these composite models are emerging: multiphysics models,
which violate the frequent modelling assumption that the system under study
does not interact with the outside world; and multiscale models, which violate
an often-imposed notion that phenomena prevalent on disparate spatiotem-
poral scales do not interact. The main driver for this change of approach has
been the advent of high-performance computing, and in particular, message-
passing parallel computing (a.k.a. distributed-memory parallelism) on com-
modity microprocessor-based clusters.

A classic example of a multiphysics model is a climate system model, com-
prising an atmospheric general circulation model (GCM), an ocean GCM, a
fully dynamic sea-ice model, and a land-surface model[1]. Other multiphysics
modelling problems can be found in the fields of controlled thermonuclear fu-
sion, space weather, reactive flow, modelling of rocket engines, fluid-structure
interaction, materials science, and groundwater hydrology.

Numerical weather prediction provides a leading example of a multiscale
application in forecast models that allow multiple, nested, and interact-
ing computational domains, such as the Weather Research and Forecasting
(WRF) Model[5]. Examples of multiscale systems abound in science and
engineering in the fields of plasma physics, climate and weather, biology,
hydrology, and materials science.

Multiscale and multiphysics models are coupled models, a term adopted
from climate modelling that describes well the importance of model-to-model
interaction in these systems. Some software technology has been developed
to support coupling, with many application-specific ad hoc solutions, or in
some cases slightly more general domain-specific packages. More generic
coupling infrastructure packages exist[4, 3]. Coupling and parallel coupling
form a computational science problem in need of a precise definition and
some theoretical foundations. This paper is an early attempt to construct a
vocabulary for describing coupling and parallel coupling, and to state some
organising principles. Taken together they are not yet a rigorous theoretical
framework, but rather a set of heuristic notions whose explicatory power will
be demonstrated in Section 4.
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2 Definition of Terms and Problem Statement

A coupled modelM consists of N constituent1 models—or simply constituents—
that collectively model a complex system through their evolution and mutual
interactions.

A constituent Ci is characterised by a model Mi that solves its equations
of evolution on its domain2 Γi to calculate state Ui. This state is computed
using the current model state and a set of input variables Vi. Output variables
Wi are computed from Ui. The sets Vi and Wi comprise the connections of Ci

to the outside world, and are defined on the boundary domain ∂Γi (or subset
thereof). Thus, a constituent Ci is Ci ≡ {Mi, Ui, Vi, Wi, Γi, ∂Γi}.

Two components Ci and Cj are coupled if and only if (1) Γi ∩ Γj 6= ∅
and (2) (a) Wj ∩ Vi 6= ∅ and/or Vj ∩ Wi 6= ∅ or (b) the inputs Vi (Vj) can
be computed from the outputs Wj (Wi). That is, two models are coupled
if their domains intersect and some of the outputs of one model serve as
some of the inputs to the other. Coupling between Ci and Cj occurs on the
overlap domain Ωij = Γi ∩ Γj (Figure 1). Couplings are transformations
Tij : (Wji, Ωij) → (Vij , Ωij) and Tji : (Wij, Ωij) → (Vji, Ωij) that deliver
inputs to Ci and Cj , respectively.

The above definitions collectively specify a coupled model M as M ≡
{C1, . . . , C1, T }, where T ≡ {Tij , i = 1, . . . , N, j = 1, . . . , N, i 6= j} is the set
of all the inter-constituent coupling transformations.

Domain overlap can range in severity from the simplest case of a lower-
dimensional interface (Figure 1(a)) to partial colocation (Figure 1(b)) to
complete colocation (Γi = Γj). In principle multiple domains can intersect,
forming higher-order overlap domains. In Figure 1(c), three domains Γi, Γj,
and Γk share such a domain Ωijk = Ωij ∩Ωjk. In this configuration, merging
of two constituents’ ouptuts for subsequent input is required on Ωijk if (1)
Wi ∩ Wj ∩ Vk 6= ∅, or (2) Wj ∩ Wk ∩ Vi 6= ∅, or (3) Wk ∩ Wi ∩ Vj 6= ∅.

The overlap domains together form the boundary domain of a constituent.
That is, ∂Γi = ∪i6=jΩij . The interior domain Γ̂i of Ci is the part of the domain
that is not in direct contact with the other constituents in M, and is the set
complement of Γi relative to its boundary ∂Γi. That is, Γ̂i = Γi\∂Γi.

1Many authors use the term component to label the individual parts of a coupled
model. Component-based software engineering is now emerging as a key software technol-
ogy for these systems, and a software ‘component’ is not necessarily the same as a model
‘component.’ For this reason, I will eschew the use of the term component in favour of
constituent.

2In principle a model might have multiple domains, but for illustrative purposes, it is
assumed here that each model has only one domain. The ideas presented in this paper
can be extended to the case of multiple domains.

3



Figure 1: Overlap domain configurations in two dimensions: (a) a one-
dimensional interface, (b) partial colocation, and (c) three intersecting do-
mains with multiple overlap domains.

In building a coupled model on a traditional uniprocessor (von Neuman)
computer architecture, one must surmount the following obstacle:

Problem 1 (Coupling Problem) Given N models executing in mutual in-
teraction, create a working coupled model.

3 The Organising Principles

Aspects of the CP and PCP The coupling problem (CP) and parallel
coupling problem (PCP) share an immediate organising principle in terms of
process decomposition.

Organising Principle 1 The CP and PCP each may be decomposed into
challenges of (1) coupled model architecture, (2) data processing in aid of
coupling, and (3) software environment.

This paper focuses on the architectural and algorithmic aspects of the
CP and PCP, which correspond to the first two aspects identified in this
organising principle. Software environment encompasses the bridging of pro-
gramming language barriers and software build strategies to arrive at a work-
ing executable from source code, and as such are beyond the scope of this
discussion.
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Connectivity Graph theory[6] is an often-used tool for describing systems
with interdependent processes, leading us to a fundamental organising prin-
ciple for the CP.

Organising Principle 2 A coupled model M can be represented as a di-
rected graph G, and this digraph is connected.

In this graph-theoretic picture of coupled models, the constituents and
their data dependencies are represented as nodes and arcs, respectively. A
coupled model’s associated digraph G is connected because were it not, G
would then consist of two or more separate graphs, implying M could be
separated into two or more independent coupled systems. Figures 2(a) and
2(b) depict directed-graph representations of coupled systems having four
and five constituents, respectively. A dependency of node A on output from
node B is expressed by an arc pointing from node B to node A. Each node’s
associated model computes its state from its time history, combined with its
inputs. This self-dependence could in principle be signified by one or more
loops on each node. Here the convention will be not to include loops.

The in- (out-) valency of a node is equal to the number of incoming
(outgoing) data connections from (to) the corresponding constituent in the
coupled system. In a digraph, there are five possible distinct connectivity
relationships between any two nodes, and each of these corresponds to a dif-
ferent data dependency relationship between Ci and Cj : Ci receives (delivers)
direct input (output) from (to) Cj (direct coupling); Ci does not receive (de-
liver) data directly from (to) Cj , but instead via a path through a series of one
or more intermediate constituents (indirect coupling); and Ci and Cj have no
path connecting them and are thus decoupled. If a node has only incoming
(outgoing) arcs, it is called a sink (source), and its associated constituent can
be run off-line. If Ci is associated with a source it can be run off-line and its
time history can be fed to the rest of the coupled system at a later time. If
Ci is associated with a sink, the rest of the coupled system can be run first,
and its time history subsequently can be fed to Ci.

The connectivity of a parallel coupled model M is the list of direct inter-
component interactions, and in a graph-theoretical context is expressible as
the adjacency matrix A of its associated digraph G.

Scheduling of Coupling Events Coupled models evolve by solving their
constituents’ equations, a process in which inter-constituent data exchanges
play a key role.

Organising Principle 3 Coupling events between any two constituents can
occur either following a schedule with the coupling event times known a
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Figure 2: Directed graphs for coupled systems with (a) four constitutents,
and (b) five constituents.

priori, or in a potentially nonperiodic and unpredictable fashion triggered
by some threshhold.

If the exchange periods between all the constituents are mutually com-
mensurate and not displaced in time by offsets incommensurate with the
exchange periods, one can define a repeatable coupling cycle and, within this
cycle, a coupling frequency for each inter-constituent exchange. Coupling fre-
quency is determined by the interconstituent coupling sensitivities, and the
timescales over which the constituents evolve significantly. In practice, these
frequencies are often chosen based on intuition and experimentation.

Coupling Strength Coupling strength between two constituents Ci and
Cj can be characterised by the sensitivity of their states Ui and Uj to the
couplings, the degree of colocation between their domains, and the compu-
tational overhead due to coupling.

The most compelling measure of coupling strength between constituents
Ci and Cj is the impact of Wi on Uj and Wj on Ui. Of particular interest is

the impact of the couplings on Ui and Uj within Γ̂i and Γ̂j, respectively.

Organising Principle 4 For a constituent Ci, overall coupling sensitivities
σi are defined by the Jacobian of its state Ui with respect to its inputs Vi,
Ji = ∂(Ui; Γ̂i)/∂(Vi; ∂Γi), and σi = Ji. The coupling sensitivities σij of Ci,

to input from Cj are σij = Jij = ∂(Ui; Γ̂i)/∂(Vij ; Ωij).
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Two constituents Ci and Cj may have direct dependencies between their
respective states Ui and Uj. Diagnostic coupling occurs on Ωij when (1)
Wi ∩ Ui = ∅ and Vj ∩ Uj = ∅ and (2) Wj ∩ Uj = ∅ and Vi ∩ Ui = ∅. Prog-
nostic coupling occurs on Ωij when (1) Wi ∩ Ui 6= ∅ and Vj ∩ Uj 6= ∅ and/or
(2) Wj ∩ Uj 6= ∅ and Vi ∩ Ui 6= ∅. Examples of diagnostic coupling are ex-
changes of either boundary conditions or interfacial fluxes such as in a coupled
climate model. Prognostic coupling is indicative of stronger coupling such
as self-consistent computation of electromagnetic fields for magnetosphere-
ionosphere coupling.

Organising Principle 5 To the coupled model builder, diagnostic coupling
is preferable because it is easier to implement. Prognostic coupling can impose
a requirement for repeated iterative execution of constituents to achieve self-
consistent state solutions.

Thus far, we have treated constituent domains generally as sets. In prac-
tice, Γi is a discretised finite subset of ℜD, and thus both Γi and ∂Γi will be
countable finite sets. Let S(Γ) be the number of elements in a domain Γ.
This definition leads to an effective surface-to-volume ratio ρi for Ci.

Organising Principle 6 The domain surface-to-volume ratio ρi for a con-
stituent Ci is ρi = S(∂Γi)/S(Γi).

Each constituent can have its own domain discretisation. Therefore, Ci

and Cj can have differing discretisations of Ωij , with Si(Ωij) and Sj(Ωij)
elements as seen by Ci and Cj , respectively.

Organising Principle 7 The degree ∆ij of colocation of two domains Γi

and Γj is ∆ij = [Si(Ωij) + Sj(Ωij)]/[Si(Γi) + Sj(Γj)].

Coupling overhead can be assessed by analysing the system’s load matrix
L. The off-diagonal elements Lij are the cost of performing the transforma-
tions Tij : (Wj , Ωij) → (Vi, Ωij), and the diagonal elements Lii are the cost
of evolving the constituents Ci in decoupled mode. These costs are typically
defined in terms of computer resources (e.g., CPU time).

The elements of L can be used to compute a number of execution cost
metrics. The system-wide decoupled simulation cost is KD = Tr(L). The
coupling cost to Ci is KCi =

∑
i6=j(Lij +Lji)/2. The total coupling cost to M

is KC =
∑N

i=1
KCi. The total coupled simulation cost is then KT = KC +KD.

Organising Principle 8 Coupling tightness can be quantified in terms of
the ratio of coupling cost to total simulation cost.

The coupling overhead ωi imposed on Ci is ωi = KCi/(Lii + KCi). The
coupling tightness τij between Ci and Cj is τij = (Lij +Lji)/(Lii +Ljj +Lij +
Lji). The total coupling overhead τ is τ = KC/KT .
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Effects of Distributed Memory Parallelism The chief impetus for
model coupling is the computational capacity created by the message-passing
parallel programming model. On such platforms, the lack of a global address
space poses a different coupling problem:

Problem 2 (Parallel Coupling Problem) Given N models that employ
distributed-memory parallelism and executing in mutual interaction, create a
working and scalable parallel coupled model.

Organising Principle 9 The parallel coupling problem (PCP) is a superset
of the challenges posed by the coupling problem (CP). The definitions and
organising principles stated thus far apply equally well to the CP and PCP.

Distributed memory increases coupled model architectural complexity by
introducing concurrency. In the CP, the constituents and their couplings
can execute only in turn as an event loop (serial composition). In the PCP,
concurrency allows another strategy called parallel composition[2] in which
the global processor pool is partitioned into cohorts, one for each constituent.
This allows the constituents to execute simultaneously. Parallel composition
has the advantage in minimising processor idle time by choosing cohort size
based on its constituent’s parallel scaling behaviour. The disadvantage of
parallel composition is that coupling becomes sensitive to synchronisation
between independently running parallel models, making performance tun-
ing notoriously difficult. Serial and parallel composition strategies can be
combined (hybrid composition).

Data processing operations for the PCP are parallel operations. This
requires the description of distributed data (i.e., Vi and Wi and their resident
domains Γi and ∂Γi). The coupling transformations Tij are now message-
passing parallel operations, and in addition to computation they will likely
be required to perform parallel data transfer and/or redistribution.

The parallel data description, transfer, and transformation operations
described above are amenable to automation, and a prime example of such
technology is the Model Coupling Toolkit (MCT)[4, 3]. The architectural
decision space created by including concurrency in coupled systems is less
well understood, and is a promising topic for further research.

4 Case Study: Coupled Climate Modelling

The Community Climate System Model (CCSM) is a coupled climate model
with five constituents {C1, C2, C3, C4, C5} = {atmosphere, ocean, sea-ice, land,
coupler }, forming a hub-and-spokes system (Figure 2(b)). The coupler is an
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intermediary through which the other constituents exchange fields, performs
the appropriate transformations T , and acts as an overall coordinator for
the system’s evolution. The coupler exists because (1) some of the model
outputs are not precisely the inputs required by the other models (here our
second criterion for coupling is active), and (2) it lowers the coupling overhead
experienced by the other constituents by consolidating their interactions with
the outside world. In the absence of the coupler, the other constituents would
have to interact directly in the point-to-point pattern shown in Figure 2(a).

The overlap domains in the model coincide with the earth’s surface. All of
the models have effectively three-dimensional domains, minimising colocation
(e.g., ρ1 ≈ 0.038, ρ2 ≈ 0.025, and ∆12 ≈ 0.037). Along coastlines and
in regions where sea-ice is present, the interface to the atmosphere will see
input of the same fields from multiple entities. Thus higher-order overlap
domains exist on which merging is required.

Coupling occurs on a schedule, with a model day as the coupling period.
The atmosphere, sea-ice, and land models exchange data each model hour,
and diagnostics are time-integrated for coupling with the ocean once per
model day. The hourly exchanges between atmosphere, land, and sea-ice
are based on the requirement for input radiation fluxes by the atmosphere’s
radiative transfer package, and because the atmosphere evolves significantly
on this timescale. The ocean surface evolves on a slower timescale, and trial
and error has arrived at one day for the ocean’s coupling frequency.

Computation of the sensitivities σi and σij for this model is not practi-
cal. Each of the domains has thousands of grid points, and the associated
Jacobians are quite large matrices3. Furthermore, calculating σi and σij is
more computationally complex than solving the systems’ model equations.
Scientists rely instead on visualisaiton-based analysis of model history output
(and statistical moments thereof) to assess model sensitivity.

CCSM’s couplings are predominantly diagnostic in nature. This obviates
the need for iterative execution to arrive at self-consistent solutions, and
coupling is thus the one-way delivery of data from one constituent to another
via the coupler.

CCSM employs message-passing parallelism, and is implemented using
a parallel composition. This allows the combination of codes with differing
scaling behaviour (see Figure 4 in reference [4] for details). The chief per-
formance challenge posed by CCSM is the existence of intermittent delays
caused by one constituent awaiting data from another, but this is largely
solved by shifting these delays from the models to idle time in the coupler.
Overall, the coupling overhead in CCSM is low with τ < 0.5.

3For example, in CCSM’s standard atmospheric configuration, σ1 has O(1011) elements.
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5 Conclusions

A heuristic set of definitions and organising principles for coupled models
has been stated. This work is a first step towards a more comprehensive
theoretical framework for the CP and PCP. Each of the principles stated
here provides a glimpse of a rich vein in need of exploration. This conceptual
framework has been applied successfully to describe the architecture of a
coupled climate model. Future work will refine these principles and expand
them to encompass the complexities of parallel coupling. It is hoped that
the resulting theory will guide the development of future coupled systems.
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