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Abstract

In this paper we present high-order spectral element dis-
continuous Galerkin simulations for wake field and wake
potential calculations. Numerical discretizations are based
on body-conforming hexagonal meshes on Gauss-Lobatto-
Legendre grids. We demonstrate wake potential profiles
for cylindrically symmetric cavity structures in 3D includ-
ing the cases for linear and quadratic transitions between
two cross sections. Wake potential calculations are carried
out on 2D surfaces for various bunch sizes.

INTRODUCTION

We have developed a large scale computational code,
NEKCEM [5], for computing wake fields and wake poten-
tials [1, 2] in 3D structures. NEKCEM employs a high
order numerical scheme, especially spectral element dis-
continuous Galerkin method [3, 4]. It features accurate and
efficient computations with high-performance in parallel.

FORMULATIONS

The governing equations to study beam dynamics and
numerical discretizations in space and time are discussed.
Formulations are used in a mixed form with cartesian and
cylindrical coordinates for the sake of convenience.

Maxwell’s Equations
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where the current sourceJ is defined for an on-axis Gaus-
sian beam moving inz direction
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Conservation Form

We re-write the equation (1) into a conservation form

Q
∂q

∂t
+ ∇ · F (q) = 0 (4)
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by defining

q = (Hx, Hy, Hz, Ex, Ey, Ez)
T (5)

Q = diag(µ, µ, µ, ε, ε, ε). (6)

The fluxF (q) has the following form:
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0 Ez −Ey 0 −Hz Hy
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Ey −Ex 0 −Hy Hx 0


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T

(7)

Numerical Discretizations

We approximate solutions to the Maxwell’s equations in
the computational domainΩ as a set of bodyconforming
nonoverlapping hexagonal meshesΩe. We define local so-
lution qN on eachΩe as

qN(x, t) =

N
∑

j=0

qj(t)Lj(x) (8)

whereqj(t) is the solution atN grid pointsxj on Ωe, and
Lj(x) is the three dimensional Legendre Lagrange inter-
polation polynomial associated with theN -nodes [3]. We
seek the local solutionsqN

(

Q
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∂t
+ ∇ · F (qN), φ

)

Ωe

= (n̂ · [F − F ∗], φ)∂Ωe

(9)
where the local discontinuous test function isφ = Li(x)
and the numerical fluxesF ∗ are defined as in [4].

We use the fourth order Runge-Kutta method for time
integration.

Initial Conditions

To describe the electromagnetic fields at the presence of
the Gaussian beam for the initial time step, we first solve
the Poisson equation in two dimensions at the cross section
of the initial beam position

∇2Φ2D(r) = −ρ2D(r)

ε
(10)

and get the two-dimensional electric field at the cross sec-
tion

E2D = −∇Φ2D(r) (11)

Then, an initial electric fieldE in three dimensions is
assigned along thez-direction using the two-dimensional
electric fieldE2D scaled by the initial Gaussian distribu-
tion ρ(z) as

E(r, z) = E2D(r) ∗ ρ(z) (12)



Boundary Conditions

We apply uniaxial perfectly matched layer (UPML) [6]
in z-direction, and perfectly electric conducting (PEC)
boundary [4] in radial direction.

UPML formulations are defined in 3D as follows:
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where σx = −(x/d)m(m + 1)ln(R)/2ηd, denotingd,
x, m, R, and η for PML size, the PML depth, polyno-
mial grading, reflection error, and impedance, respectively.
Within UPML, the components of E are updated by
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A similar formula is defined for the components ofH to
update in UPML. In our simulations we apply UPML only
in x-direction by choosingσy = σz = 0.

PEC boundary conditions are assigned at the boundaries
in radial direction satisfying

n̂ × E = n̂ · H = 0. (19)

COMPUTATIONAL RESULTS

We show the performance of NEKCEM and and demon-
strate the wake potential profiles for beam dynamics on var-
ious cavity structures.

Performance

To demonstrate the performance of NEKCEM, we
compute the case with standing wave solutions for the
Maxwell’s equations with periodic boundaries on a cube
mesh. Computations are performed with 32 processors on
Jazz at ANL for the computational sizes by increasing the
numbers of meshes and the degree of polynomials. Fig-
ure 1 shows CPU time vs. degree of freedom and errors
vs. degree of freedom for different degrees of polynomi-
als. It shows that CPU time increases linearly depending
on the degree of freedom, but not being dominated by the
increases of the degrees of the polynomials. Errors are
much smaller with higher degree of polynomial for a fixed
amount of grids. This implies that one can obtain better ef-
ficiency and accuracy with the high order method we pre-
sented in this paper.

Figure 1: Performance with 32 processors on Jazz/ANL.
CPU time vs. degree of freedom (up); Errors in log scale
vs. degree of freedom (down).

Wake Potentials

Figure 2 shows electric field amplitude using contour
lines on a half half side of a pillbox mesh with circle cross
section radiusr = 1 andr = 2. The wake potential calcu-
lations are carried out on the 2D surface at r=1 which is the
size of Wake potential profiles show good agreement with
ABCI results. Figure 3 shows meshes for the cavities with
circle cross sections with radius changes from r=1 up to
r=2. figure 4 shows wake potential calculations carried out
on the 2D surface at r=1 which is the size of radius for the
outgoing tube on the sides. The wake potential profiles for
the cases with linear and quadratic transitions shows rea-
sonable profiles depending the changes of the bunch sizes
σz = 0.25, 0.5, 0.75, 1.0 for a fixedσr = 0.1.

CONCLUSIONS

We discussed spectral element discontinuous Galerkin
method applied to beam simulations for three-dimensional
cylindrical cavities with linear and quadratic transitions be-
tween circle cross sectons. The wake potential calculations
show resonable profiles depending the variation of bunch
sizes. We are currently tracking 1ps beam moving through
meter scale cavities with linear and quadratic transitions
between different sizes of elliptic cross sections. Rigorous
comparisons on the wake potential calculations with other
existing codes will be presented in a later paper.



Figure 2: Contour lines of the electric field in amplitude
on a half side of a pillbox mesh with circle cross section
radiusr = 4 andr = 2 (up). Wake potential on the surface
atr = 1 for σz = 0.25, 0.5, 0.75, 1.0andσr = 0.1 (down).
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Figure 3: Meshes with circle cross sections with linear (up)
and quadratic (down) transitions: tube radius isr = 1 for
the outgoing tubes on sides.

Figure 4: Wake potentials on the surface atr = 1 for σz =
0.25, 0.5, 0.75, 1.0 andσr = 0.1 on the meshes (shown in
Figure 3) with linear (up) and quadratic (down) transitions.


