The Computer as Software Component: A
Mechanism for Developing and Testing Resource
Management Software

Narayan Desai #!, Theron Voran *?, Ewing Lusk #*, Andrew Cherry ™

Mathematics and Computer Science Division, Argonne National Laboratory
Argonne, IL 60449, USA
ldesai@mes.anl.gov
3lusk@mcs.anl. gov

*Computer Science Department, University of Colorado
Boulder CO 80309, USA

2
theron.voran@colorado.edu

tLeadership Computing Facility, Argonne National Laboratory
Argonne, IL 60439, USA

4acherry@alcf .anl.gov

Abstract—In this paper, we present an architecture that
encapsulates system hardware inside a software component used
for job execution and status monitoring. The development of this
interface has enabled system simulation, which yields a number
of novel benefits, including dramatically improved debug and
testing capabilities.

I. INTRODUCTION

In [1] and [2], we described a suite of system software
components for scalable parallel computers. We laid out an
architecture that enabled encapsulation and isolation of the
functions provided by process managers, job schedulers, batch
queueing systems, accounting packages, and so forth. We pre-
sented examples of such components, together with a flexible
infrastructure that allows them to securely communicate with
one another. We have also produced a software development
kit that makes it easy to create new components or new
instances of existing ones, thus enabling system administrators
to customize the overall component set for particular instal-
lations. The resulting software system, called Cobalt [3], is
freely available and has been used on a variety of computer
platforms. It is in use in production at a number of sites
worldwide, with plans to run it on the 100-Tflop and 500-
Tflop Blue Gene/P systems Argonne is acquiring.

In this paper, we describe an enhancement we have made to
Cobalt that is designed to simulate the hardware on which the
system software operates. The simulator is a “normal” Cobalt
component, communicating with the other Cobalt components
just as they do with one another, and has been implemented
by using the Cobalt software development kit.

This idea—creating a software component version of the
hardware—has several important benefits. First, we can now
develop and test our entire system software suite on a single
workstation or laptop, without having to bring the production
system down for testing. Second, we can vary the load on

the simulated machine in a natural way, by submitting job
mixes to the real queueing system component, and (provided
we have accurately modeled the response of the machine to
its software interface) observe its behavior as reflected in the
monitoring components that interact with it. Third, since the
simulator component has an interface by which we can control
its behavior independently of the Cobalt components, we can
inject faults of various kinds and see how our system software
responds. We can both replay logs of actual system events that
resulted in system software problems and create difficult test
scenarios to develop and test the responses of Cobalt and other
software. Moreover, all of these features are available to the
users of Cobalt, who can use these facilities to improve system
robustness.

In Section II we describe the larger context in which
this work has taken place and summarize related work. In
Section III we describe the motivation for our work, the
relevant aspects of Cobalt, and the implementation of the Blue
Gene simulator (note that one can easily write simulators for
other machines as well, given their control inputs and outputs).
In Section IV we describe our experiences with the augmented
Cobalt system. In Section V, we conclude with some directions
for future work.

II. CONTEXT AND RELATED WORK

Simulation has long been an important part of the develop-
ment of system software. The following are just two examples
illustrating how system software simulation has proved useful
in the high-performance computing community:

e The Blue Gene/L (BG/L) system was simulated on a
normal Linux cluster long before actual hardware was
available. IBM developed BGLsim [4], which had the
ability to model Blue Gene hardware in parallel. This

allowed system software developers to rapidly and ac-
curately prototype their software, so they were ready
to run as soon as the physical hardware was available.
Unfortunately, this simulator has not been maintained
since the hardware has become available.

e The Maui scheduler [5] is a widely used open source
scheduler that also provides a simulation mode. It was de-
signed to enable system administrators to try out different
scheduling policies on specific workloads and measure
their effects on performance. It is not intended, however,
to be used to test software correctness.

Our work on Cobalt offers a new approach to system soft-
ware development. Cobalt [1] uses a component architecture
based on the SciDAC Scalable System Software Architecture
[6] to implement resource management and allocation func-
tionality. We have extended the component model to include
a layer for simulating hardware. This extension has allowed
us to simulate interactions with Blue Gene control system
software while running on completely different (and less
exotic) hardware. Thus, we avoid one of the major difficulties
facing system software developers: gaining access to scarce
computer resources.

The approach of treating the system as a component can be
directly applied to the concept of mock objects [7], [8]. Mock
objects are test-specific objects that provide the same interfaces
as one that cannot be made to work in a test environment.
These are of clear use in cases, like ours, where hardware
availability is limited.

The exposure of component interfaces also provides an
opportunity for fault injection. Fault injection is a technique
for testing software behavior under error conditions. It is
typically implemented in software by adding a mechanism to
internally simulate faults. While this mechanism is valuable for
hardening system software against faults, it frequently requires
modifying the software being tested; and such modifications
unfortunately can mean that the results may not represent
actual faults. In component-based systems, however, fault
injection can be implemented directly, thereby easing the
introduction of simulation faults into execution.

III. TECHNICAL APPROACH

In this section, we elaborate on our motivation for en-
capsulating system hardware inside the Cobalt component
architecture, described below. We then demonstrate how this
approach results in improved development, debugging, and
testing capabilities.

A. Cobalt Architecture

Cobalt consists of a set of functional units that provide a
specified interface to common operations, described in Fig-
ure 1. Each function is provided only by a single component.
In the Cobalt architecture, process management, scheduling,
queue management, and accounting are provided by individual
components. The primary benefits of the use of a component
architecture are flexibility and composability. Because com-
ponents interact with one another using defined interfaces,

BGL Control
System

Fig. 1. Old Cobalt Architecture on Blue Gene/L

arbitrary software can consume or provide interfaces. For
example, the queue manager component doesn’t need to know
which implementation of a process manager is used, so long
as it provides the process manager interface. This approach
facilitates the composition of component capabilities in new
ways, enabling the creation of new system functions that work
regardless of underlying component implementations.

Component interfaces consist of functions made available
via authenticated XML-RPC. Cobalt ships with an SDK that
provides convenient methods of implementing new component
implementations and clients. It uses this SDK heavily for
all components included in releases. As a result of this and
the overall component approach, Cobalt is relatively small; it
consists of less than 7,000 lines of Python code.

Using a component architecture has worked well for Cobalt,
allowing portability from clusters to the Blue Gene/L. The
porting effort for Blue Gene/L consisted of the replacement of
two components: the process manager and scheduler. In both
cases, this reimplementation was necessary because of the allo-
cation requirements of BG/L partitions; nodes can be allocated
only in aligned blocks of particular size. This requirement has
bearing on both the scheduling and process execution; hence,
these two components needed to be implemented specifically
for BG/L. The other components of the system were able to
be used as is and remain portable across clusters and BG/L.

B. Motivation

System software is difficult to design, develop, and test,
even under the best of circumstances. The unique character-

istics of modern high-performance computing environments
compound these difficulties. The use of exotic hardware in
HPC systems has become common in the past few years,
ranging from special-purpose networks to integrated systems
such as the IBM Blue Gene platform. As a result, establishing
dedicated test environments that duplicate the hardware of
production environments is impractical and cost-prohibitive.
And since production HPC systems are heavily used and often
governed by allocation policies, use of these resources for
extended testing is generally not a viable option.

Yet the availability of reliable system software is of utmost
importance on HPC systems. This fact places system software
developers in a precarious position. Software robustness is crit-
ical, but building identical testing systems for system software
development is not practical. Dedicated developer access to
production resources competes with application groups and,
hence, occurs infrequently.

This issue was our primary motivation in this work. We
found that the Cobalt development process was severely
hampered by this tension. This was especially apparent when
BG/L was new and Cobalt was first ported to it. In several
cases, bugs encountered soon after deployment could easily
have been found with access to development resources. These
problems resulted in additional downtime of the production
system for Cobalt testing—clearly not an efficient use of the
machine.

Recognizing the desirability of having the same level of
flexibility with respect to the Blue Gene control system as
we had become accustomed to with our higher-level compo-
nents, we began to view the Blue Gene control system as a
component with which other components interact. With our
new hardware component approach, the ability to properly
simulate hardware has greatly improved testing practices,
enabling us not only to test BG/L functionality with Cobalt
on other systems, but also to run automated regression testing
on a regular basis. As the Cobalt code-base grows and more
features are added, automated testing has become important,
since manual “spot checking” proved to be inadequate in
identifying potential problems.

C. Simulation of the Blue Gene/L Control System

The use of component interfaces makes it possible to
combine the functionality offered by multiple components in
a variety of significant ways. Hence, it is straightforward to
write sophisticated administrative tools with a minimal amount
of work. Moreover, the tools are portable across diverse
architectures.

The Blue Gene/L control system is the software that han-
dles all administrative interactions with the BG/L rack, from
partition allocation and setup to job execution. This system
is provided by IBM and is closed source. Cobalt uses this
software to execute jobs and to poll for current hardware state
information.

In order to directly support the Blue Gene simulator without
using different code paths from inside Cobalt, we created a
new component interface for the Blue Gene control system.

Fig. 2. Blue Gene/L Simulator Architecture

This implementation consists of two parts. First, we added
a thin wrapper on top of the Blue Gene control system that
calls it directly, providing the functionality we currently use.
The simulator implements the same interface. This architecture
is shown in Figure 2. As seen in this diagram, the process
management component of Cobalt interacts directly with the
simulator or the hardware abstraction layer.

The addition of this abstraction barrier allows us to run
precisely the same Cobalt code against a simulator as we
would on actual hardware. Since the simulator implements
the same interface, Cobalt components can address either
implementation transparently.

While the simulator provides an identical interface, its
behavior is quite different from the standard implementation in
three ways. First, no actual process execution occurs as a result
of requests; the simulator produces only the external appear-
ance of execution. Second, we added operational constraints
similar to those required on Blue Gene hardware. For example,
if a request attempts to use a partition that is already in use,
the simulator logs an error message locally and returns an
error message to the requester. Third, we added the ability for
the simulator to reproduce common Blue Gene control system
failures or failures of the Blue Gene hardware itself. The
combination of these three features affords an unprecedented
level of flexibility in development and testing.

When the Blue Gene simulator receives a request, it first
checks whether running that request would result in a job
failure. For example, if the new job overlaps with a currently
running job, it both returns an error code to the requester and
logs an error message locally. During the job execution, it
simulates the real system by showing the partition in the busy
state. When the job has completed, it sends a notification to
the caller.

When the system is configured to simulate control system
failures, it can produce results similar to errors encountered on
the actual system. One such situation manifested itself early
in the life of BG/L, wherein partitions would be left in an
inconsistent state after an application exited. Because we are
simulating the behavior through the interface, these errors and
many similar ones of this class can be easily replicated. This
turn-key replication of known system faults allows us to test
Cobalt against these and other error cases on demand.

This use of simulation is considerably different than that
used by other resource managers. In general, simulation is
used to assess the performance and effectiveness of scheduling
algorithms. Our goals for the Blue Gene simulator are com-
pletely different. We aim to properly exercise the Cobalt code
base as accurately as possible by simulating the responses of
the Blue Gene control system. Because accuracy of system and
Cobalt behavior is the primary goal, simulation must occur in
real time, since consumers of the interfaces provided by the
simulator may perform timeouts.

In some ways this limits the utility of this approach, since
it is impossible to model schedules over large periods of time.
At the same time, this approach allows us to validate the
interactions between the resource manager and the underlying
system, even under fault conditions.

D. Simulator Control

In order for the simulator to properly exercise Cobalt, it
must be able to produce all of the observed behaviors of the
Blue Gene control system. To this end, we have introduced the
notion of job outcomes. Each different job outcome simulates a
different result that a running job can have on the system. The
most common outcome is proper execution, where a job runs
for some period of time, less than the requested run time. This
simulates proper job execution and submission, where the user
has requested enough time, and the program runs properly.

Several other types of outcomes are also available. An over-
run outcome models the case where a user has not requested
enough time for their job. Many system or application failures
manifest themselves in this way, for example if application
performance drops or I/O issues occur. Another outcome we
have implemented models control system failure, where a
job fails and leaves the involved nodes in an unusable state.
As more failure pathologies are observed, they can each be
implemented as an outcome.

Using this set of outcomes, we can test Cobalt against
each of these fault modes upon demand. By controlling the
particular outcome as the simulator simulates job execution,

we can ensure that Cobalt is properly hardened against all
failure modes we have previously seen and recorded.

Users can control the application of outcomes to a workload
by using percentages or raw failure counts. For example, the
simulator can be configured to correctly execute 90% of jobs,
with the other 10% using the control system failure outcome.
This will result in a gradually growing pool on unusable Blue
Gene nodes. With this behavior, we can ensure that Cobalt
properly functions in the face of problems we have previously
experienced, even if we have not actually experienced these
problems recently.

IV. EXPERIENCES

Introducing a simulator component into Cobalt has dramati-
cally changed the way we are able to develop, debug, and test
Cobalt. We can now begin running our post-installation test
suite against releases prior fo their deployment. Previously, we
had to run these tests after deployment, during a maintenance
window. Such a window could last up to four hours, depending
on the magnitude of the testing performed. During these
periods, no user jobs could run; hence, the system was being
wasted from the perspective of users. The first major benefit
of the simulator component was the dramatic reduction of
duration of these windows. After the initiation of simulator-
based testing, Cobalt maintenance windows were reduced to
one hour.

Moreover, since testing no longer competes with applica-
tions for cycles, we have been able to perform more invasive
and time-consuming tests. Running more comprehensive tests
has resulted in increased reliability in production mode.

Based on these initial experiences with the simulator, we
recognized its potential for providing a number of innovative
capabilities affecting software hardening, correctness check-
ing, and system debugging. To this end, we made several
enhancements to the simulator.

First, we added consistency tests to detect improper use of
hardware. For example, Blue Gene nodes can only run a single
job simultaneously. If two jobs are simultaneously executed on
the same nodes, the simulator will signal a job failure, and log
an error message. The detection of this error mode, and several
others like it, have enabled us to detect a number of latent
problems that could cause failures during normal workloads.

Next, we added the ability to simulate particular faults as
a part of a test workflow. Because all interactions between
Cobalt and the hardware system cross a component interface,
we can log requests and responses to be played back later.
When system failures occur, we can use the traces collected
to add these fault modes to the simulator.

The use of the component-based simulator has improved
aspects of Cobalt’s development, testing, and debugging. In
this section, we discuss each in detail.

A. Development

One major advantage to moving system interactions into a
component interface is that developers no longer need to deal
with the system interfaces directly in the main components,

such as the scheduler and process manager. Hence, developers
can focus on the logic required for the component, without
having to worry about system interfaces.

The simulator component also removes the need for separate
code paths for development and actual execution. Separate
code paths basically double the complexity of any piece of
code, which in turn increases the probability of introducing
bugs in the development process.

Developers are now able to run Cobalt on inexpensive and
common hardware. Not only does this approach lower the cost
of developing and testing new features, but it also improves
the reliability of prereleases by enabling more thorough testing
prior to their initial installation on exotic hardware.

B. Correctness Testing

System software correctness is a characteristic that is hard
to test rigorously. Typically, system managers perform a series
of basic tests after system upgrades. Often, these are the only
testing that deployed system software receives on a regular
basis.

The availability of the simulator makes these tests exe-
cutable at any time. Also, because the simulator implements
system use consistency checks, test workloads provide ac-
curate insight into the correctness of Cobalt’s scheduling
and allocation behavior. Moreover, the availability of system
activity traces provides a path to easy improvement of these
tests.

In addition to improving the the quality of Cobalt, these tests
provide insight into the suitability and stability of new Cobalt
releases prior to deployment. Because system administrators
are ultimately responsible for overall system stability, this
capability is key. Moreover, all of these tests can be performed
without the consumption of any time on the production system.

Once we integrated use of this simulator into our daily
processes, the number of bugs found during post-upgrade tests
fell dramatically, because the tests run after upgrades can now
be run on the simulator using a synthetic workload. Most
important, system administrators can now gain confidence in
new releases of Cobalt without exposing users to any risk of
decreased system stability.

C. Debugging

Debugging system software on scalable systems is the most
difficult task faced by developers. Problems are frequently
scale-related and may occur only occasionally. These issues
can be caused by subtle hardware and software interactions
that are unexpected and difficult to replicate. The addition of a
component interface between the resource manager and system
hardware provides a new set of capabilities for debugging
these problems.

First, this interface can be monitored. Because the interface
is exposed, common code in Cobalt can be used to directly
capture traces of system events. This tracing functionality can
be used to record standard workloads or unexpected behavior.
The patterns in these activity logs can be used to understand
unexpected system behavior.

The behavior of this interface in fault cases also can be
mimicked by the simulator. The simulator supports custom
job execution outcomes, which are patterns of activity that
correspond with known system behavior. As new patterns of
failure are encountered, administrators can use activity traces
to prepare new execution outcomes for use in simulation.
These outcomes can be used as a part of a standard test suite
to ensure that Cobalt is appropriately hardened against faults
of this type. As more faults are experienced and a library of
“faulty” outcomes is compiled, the range and effectiveness of
this simulator-based debugging grow.

Moreover, when problems are encountered, the availability
of these execution traces provides the ability to execute a fault
on demand and the ability to replicate the fault on inexpensive
hardware. Together, these abilities dramatically reduce the time
and expense needed to discover the root cause of system
problems. Problems can be debugged offline while production
applications continue to run in the stable environment.

These capabilities enabled us to harden Cobalt against BG/L
hardware and control system failures. Achieving this same
outcome manually would have required considerably more
time and effort.

V. CONCLUSIONS AND FUTURE WORK

Testing has become an increasingly difficult task as the scale
of systems has increased. We believe that the combination of
component interfaces with simulation and hardware interaction
provides a new series of tools that help developers to better
cope with system complexity and scale. Using this mechanism,
developers and users alike have benefited from increased
portability, making Cobalt easier to test separately from the
production system. The method of simulator implementation
used—the addition of a component interface—adds an exami-
nation point where fault behavior traces can be gathered. These
behavior traces have proved indispensable in replicating faults
on demand. Because these traces can be captured from a single
fault occurrence and executed arbitrarily on the simulator, root
cause analysis and debugging are substantially eased.

We have identified several areas for future work. For exam-
ple, we plan to provide faster-than-real-time simulation for a
subset of Cobalt. Because of the mechanisms employed by our
simulation environment, this change will be problematic; it is
likely that we will have to reimplement the way we interact
with the system clock and time-sensitive system calls. Also, it
will only be useful for modeling scheduling performance, as
opposed to system robustness.

Our simulation approach can be extended to other platforms.
In each case, a software component that models hardware
behavior must be implemented. Because simulator accuracy
is the goal, it will likely be impossible to write a generic
system simulator. By their nature, these simulators must be
system-specific. We plan to implement similar simulators and
hardware components for Cray XT4 systems, clusters, and
SICortex systems.

Another area that can be improved is the recognition of
anomalous events. Currently, these must be manually recog-

nized and then translated into a job outcome the simulator can
use. It is highly likely that some fault modes may not cause an
obvious failure and thus may escape notice. Detection of these
faults could provide more data for use in proactive hardware
maintenance or early detection of software problems.

Work is under way to interface Cobalt with the CIFTS fault-
tolerant backplane [9]. This software is a common mechanism
to propagate and use system and software fault data. The
mechanisms described in this paper will likely be directly
applicable to this new data source.

ACKNOWLEDGMENTS

This work was supported by the Mathematical, Informa-
tion, and Computational Sciences Division subprogram of
the Office of Advanced Scientific Computing Research, Of-
fice of Science, U.S. Department of Energy, under Contract
DE-AC02-06CH11357. Other support was from the DOE
SciDAC program under award #DE-FG02-04ER63870, NSF
MRI Grant #CNS-0420873, and the NSF sponsorship of the
National Center for Atmospheric Research.

REFERENCES

[1] E. Lusk, N. Desai, R. Bradshaw, A. Lusk, and R. Butler, “An interop-
erability approach to system software, tools and libraries for clusters,”
International Journal of High Performance Computing Applications,
vol. 20, no. 3, pp. 401-407, Fall 2006.

[2] N. Desai, R. Bradshaw, A. Lusk, E. Lusk, and R. Butler, “Component-
based cluster systems software architecture: A case study,” in Proceedings
of the 6th IEEE International Conference on Cluster Computing (CLUS-
TERO04). 1EEE Computer Society, 2004, pp. 319-326.

[3] N. Desai. Cobalt Web page. Argonne National Laboratory. [Online].
Available: http://trac.mcs.anl.gov/projects/cobalt

[4] L. Ceze, K. Strauss, G. Almasi, P. Bohrer, J. Brunheroto, C. Cascaval,
J. Castanos, D. Lieber, X. Martorell, J. Moreira, A. Sanomiya, and
E. Schenfeld, “Full circle: Simulating linux clusters on linux clusters,”
in LCI 2003: Proceedings of the Fourth LCI International Conference
on Linux Clusters: The HPC Revolution, 2003. [Online]. Available:
citeseer.ist.psu.edu/ceze03full.html

[5S] D. B. Jackson, H. L. Jackson, and Q. Snell, “Simulation based hpc
workload analysis,” in I[PDPS ’01: Proceedings of the 15th International
Parallel & Distributed Processing Symposium. Washington, DC, USA:
IEEE Computer Society, 2001, p. 47.

[6] A. Geist. SciDAC scalable system software Web
page. Oak Ridge National Laboratory. [Online]. Available:
http://www.scidac.org/ScalableSystems

[7] T. Mackinnon, S. Freeman, and P. Craig, “Endo-testing: Unit testing with
mock objects,” in Proceedings of the eXtreme Programming and Flexible
Processes in Software Engineering Conference (XP2000), 2000.

[8] S. Freeman, T. Mackinnon, N. Pryce, and J. Walnes, “jmock: supporting
responsibility-based design with mock objects,” in OOPSLA ’04: Com-
panion to the 19th annual ACM SIGPLAN conference on Object-oriented
programming systems, languages, and applications. New York, NY,
USA: ACM Press, 2004, pp. 4-5.

[9] P. Beckman. CIFTS Web page. Argonne National Laboratory. [Online].
Available: http://www.mcs.anl.gov/research/cifts

