
ZOID: I/O-Forwarding Infrastructure for Petascale Architectures ∗

Kamil Iskra1 John W. Romein2

1Argonne National Laboratory

Mathematics and Computer Science Division

9700 South Cass Avenue

Argonne, IL 60439, USA

{iskra,kazutomo,beckman}@mcs.anl.gov

Kazutomo Yoshii1 Pete Beckman1

2 Stichting ASTRON (Netherlands Foundation

for Research in Astronomy)

Oude Hoogeveensedijk 4

7991 PD Dwingeloo, The Netherlands

romein@astron.nl

Abstract

The ZeptoOS project is developing an open-source alterna-

tive to the proprietary software stacks available on contem-

porary massively parallel architectures. The aim is to enable

computer science research on these architectures, enhance

community collaboration, and foster innovation. In this pa-

per, we introduce a component of ZeptoOS called ZOID—

an I/O-forwarding infrastructure for architectures such as

IBM Blue Gene that decouple file and socket I/O from the

compute nodes, shipping those functions to dedicated I/O

nodes. Through the use of optimized network protocols and

data paths, as well as a multithreaded daemon running on

I/O nodes, ZOID provides greater performance than does

the stock infrastructure. We present a set of benchmark re-

sults that highlight the improvements. Our infrastructure also

offers vastly improved flexibility, allowing users to forward

data using custom-designed application interfaces, through

an easy-to-use plug-in mechanism. This capability is used

for real-time telescope data transfers, extensively discussed

in the paper. Plug-in–specific threads implement prefetch-

ing of data obtained over sockets from an input cluster and

merge results from individual compute nodes before send-

ing them out, significantly reducing required network band-

width. This approach allows a ZOID version of the applica-

∗ This work was supported by the Mathematical, Information, and Compu-

tational Sciences Division subprogram of the Office of Advanced Scientific

Computing Research, Office of Science, U.S. Department of Energy, under

Contract DE-AC02-06CH11357.

LOFAR is funded by the Dutch government in the BSIK programme for in-

terdisciplinary research for improvements of the knowledge infrastructure.

Additional funding is provided by the European Union, European Regional

Development Fund (EFRO) and by the “Samenwerkingsverband Noord-

Nederland,” EZ/KOMPAS.

[Copyright notice will appear here once ’preprint’ option is removed.]

tion to handle a larger number of subbands per I/O node, or

even to bypass the input cluster altogether, plugging the in-

put from remote receiver stations directly into the I/O nodes.

Using the resources more efficiently can result in consider-

able savings.

1. Introduction

A supercomputer is a device for turning compute-bound

problems into I/O-bound problems—this half-humorous def-

inition, attributed to either Seymour Cray or Ken Batcher,

holds true today more than ever.

File I/O bandwidth available in current-generation su-

percomputers varies greatly per installation. One of the

strongest machines, the ASC Purple [1], with a computa-

tional power of about 100 TF, has file I/O bandwidth of about

100 GB/s—1 GB/s per 1 TF. The consensus for contempo-

rary machines appears to be that at least 0.5 GB/s per 1 TF

is desirable. The upcoming IBM Blue Gene/P machine, to

be hosted at Argonne National Laboratory, will have a peak

computational power of 500 TF. Even though it is planned

to spend as much as 20% of the cost of the whole system on

the I/O, the per-TF I/O bandwidth will be significantly lower

than on current machines, possibly by as much as an order

of magnitude. The increase in the computational power, pri-

marily due to a larger number of cores per node, is just too

large to keep up with. Instead of binding the I/O throughput

to the computational power, therefore, Argonne decided to

bind it to the system memory size. The design goal is to be

able to perform a full memory dump in no more than 30

minutes. For comparison, a similar action on a laptop would

take no more than 1–2 minutes.

Since I/O is clearly one of the most precious resources in

a supercomputer, every effort must be made to ensure that

it is used to its full capacity. We would like to have control

over the complete I/O path, from application processes run-

ning on compute nodes to the fileservers. This would allow

us to, for example, instrument I/O operations in the appli-

cation and individually track those instrumented operations

through each level of the I/O stack. We would then have

much-needed insight into where bottlenecks occur and by

1 2007/8/20

fixing them would improve the performance.

Unfortunately, contemporary massively parallel archi-

tectures, such as the IBM Blue Gene/L [12] or the Cray

XT3 [8], have seriously limited flexibility in this area. They

employ a number of closed-source, proprietary technolo-

gies, ranging from special-purpose compute node kernels to

interconnection protocols, which by their very nature are un-

amenable to external modification or instrumentation. This

situation limits the scope of independent computer science

research that can be performed on these state-of-the-art ar-

chitectures. It can also affect ordinary execution of appli-

cations. Some codes will not run at full speed, because the

high-performance interfaces required are simply not avail-

able, such as the parallel I/O API between the compute nodes

and the fileservers. Some codes cannot be run at all, as they

expect a much richer run-time environment on the com-

pute nodes than the proprietary components provide; a good

example is LLNL’s KULL [11], which cannot be run on

LLNL’s largest supercomputer.

The shortcomings of available software stacks and the

lack of a community-owned toolkit for exploring and ex-

perimenting with optimizations for large-scale machines

prompted us to launch the development of the ZeptoOS

project [15]. ZeptoOS uses widely available open-source

components such as the Linux kernel to develop an alterna-

tive, fully open software stack on large-scale parallel sys-

tems. The aim is to enable computer science research on

these architectures, enhance community collaboration, and

foster innovation.

The focus of this paper is on ZOID—an I/O-forwarding

component of ZeptoOS. ZOID aspires to become the I/O-

forwarding infrastructure of choice on the upcoming petas-

cale platforms, especially the IBM Blue Gene/P and the Cray

XT4 (see Section 5). The current implementation, as de-

scribed in this paper, works on the IBM Blue Gene/L and is

freely downloadable from the ZeptoOS project website [15].

ZOID has been highly optimized. Through the use of op-

timized network protocols and data paths, as well as mul-

tithreading, it frequently offers a higher performance than

the stock IBM infrastructure. It is also far more flexible: it

can be easily extended with custom application interfaces

through the use of plug-ins, allowing application or middle-

ware writers to transfer data in and out of the machine in a

most convenient manner.

As an example, in Section 4 we elaborate on a plug-in

that is used to communicate real-time telescope data from

the LOFAR radio telescope. This telescope is currently be-

ing constructed and is operational at a small scale. A dedi-

cated Blue Gene/L system provides the computational power

to process the data centrally, but meeting the external band-

width requirements turned out to be hard. ZOID provides

the high throughput required to handle the large amounts of

data. Moreover, its flexibility enabled a redesign of the sys-

tem that uses the resources much more efficiently.

Massively parallel systems typically run a stripped-down

operating system lacking the capability to perform file I/O

(see, e.g., BG/L CNK [12] and XT3 Catamount [9]). This

design is motivated by a desire to reduce memory usage, sys-

tem complexity, and operating system noise (jitter) [2–4].

Naturally, applications still expect file I/O to be available;

at least two solutions to that problem have emerged. On

the Cray XT3 [8], applications need to be linked with the

SYSIO library [9] and the client part of the Lustre [10]

filesystem protocol. This approach is flexible but has a major

disadvantage: if the application process crashes, the heavy-

weight Lustre client, which runs in the same context, goes

down as well, potentially resulting in state inconsistencies

that are difficult to recover from gracefully. The filesystem

client code can also be a significant source of noise. On the

IBM Blue Gene [12], an additional layer of intermediary

I/O nodes is used instead. These nodes act as the filesys-

tem clients, and file I/O operations from the application pro-

cesses are forwarded to them and executed there. Such sep-

aration truly reduces complexity on the compute nodes and

presents an opportunity for interesting optimizations. This is

the design strategy followed by ZOID.

2. Architecture

Figure 1. IBM Blue Gene/L I/O architecture (with ZOID-

specific components on the right).

Figure 1 presents an overview of the I/O architecture of

the IBM Blue Gene/L and also shows how ZOID fits into

that architecture. A single IBM Blue Gene/L rack consists

of 1,024 compute nodes, each equipped with a dual-core

PowerPC 440 CPU, running at a relatively low 700 MHz to

reduce heat dissipation. The primary interconnect between

the compute nodes is a 3D torus network (not shown in the

figure). For more information on Blue Gene, see the special

issue of IBM’s Journal of Research and Development [12].

2.1 I/O Infrastructure

The compute nodes (Fig. 1, bottom) run a stripped-down

compute node kernel (CNK) that lacks the capability to

perform file I/O. The nodes are arranged in a binary tree

on the collective network; I/O nodes are also attached to

that network. I/O nodes feature basically the same hardware

as compute nodes but run embedded Linux and also have

Gigabit-Ethernet links connecting them to the fileservers

and the job management system (service node). Each I/O

2 2007/8/20

Figure 2. I/O path with CIOD and PVFS.

node has a fixed subset of compute nodes allocated to it;

together these nodes form a pset. Depending on the machine

configuration, the I/O node to compute node ratio can vary

between 1:8 and 1:64. CNK forwards file and socket I/O

requests over the collective network to I/O nodes, where they

are processed by the Linux kernel.

This model provides for hierarchical I/O layers and re-

duces the complexity of compute node software. It also pro-

vides good scalability—doubling the number of compute

nodes should not double the number of simultaneous file

system mount services by the storage servers. I/O nodes,

being less numerous than compute nodes, act as “client

reducers”—to the fileservers, it appears as if there are fewer

(albeit possibly more active) clients to take care of.

A process on I/O nodes called CIOD (Control and I/O

Daemon) plays a key role in the I/O-forwarding infrastruc-

ture. It receives I/O requests forwarded from the compute

nodes over the collective network and invokes correspond-

ing Linux system calls. The implementation of CIOD on the

Blue Gene/L is basic; it is a single-threaded process that pro-

cesses forwarded I/O calls one by one.

The whole infrastructure is unfortunately inflexible: it is

impossible to forward any other calls but the hardcoded sub-

sets of POSIX file I/O and BSD socket APIs. This can result

in optimization opportunities being lost, as shown in Fig-

ure 2. Even though the application uses high-performance

parallel I/O via MPI-IO, most of that effort goes in vain, be-

cause the calls need to be translated early on into the POSIX

API, as that is the only interface that the CNK supports.

Subsequently, a significant number of user-kernel context

switches take place before the data finally reaches the Eth-

ernet network—especially with PVFS [6], as its client core

is implemented in user space. In Section 5 we show some

of the shortcuts that can be taken if parallel I/O API can be

used between the compute and I/O nodes.

2.2 ZeptoOS I/O Daemon

Having been developed for the Blue Gene/L, ZOID follows

the design principles of IBM I/O infrastructure, with a sepa-

ration of compute and I/O nodes, and so forth. At the lowest

level, ZOID is a highly optimized function call-forwarding

infrastructure between application processes running on

stripped-down compute nodes and daemons on I/O nodes.

It would have been relatively straightforward to replace

IBM’s CIOD, were it not for the fact that the protocols

CIOD uses to communicate with the service node and with

the compute nodes are proprietary and undocumented (on

the collective network, even the interface to send and re-

ceive packets is largely undocumented). We considered com-

pletely replacing the protocol on the collective network with

our own, but we found that approach to be unrealistic. The

problem is that the stock protocol does not allow for a clean

separation of application I/O from low-level system control.

In the end, we opted for a hybrid approach. We use CIOD

to perform the initial handshaking and loading of the the

application code onto the compute nodes. Once started, a

ZOID-enabled application sends a special packet to the I/O

node that notifies the ZOID daemon running there. The dae-

mon then suspends CIOD, thus gaining full control over the

collective network, allowing us to use our own protocol from

then on. We do not use the protocol engine in the CNK;

instead, we implement our own, in user space, inside a re-

placement version of the libc library that is linked with

the application. CNK has an access control mechanism that

prevents the user space from accessing the required chan-

nel of the collective network—we had to disable it (we dis-

tribute the necessary patch with ZeptoOS [15]). When the

application is about to terminate, we resume CIOD, so that

it can gracefully shut the nodes down. This approach lets us

avoid having to implement most of the system control pro-

tocols within ZOID. We still had to implement some of its

elements, such as the handling of crashing compute node

processes or the forwarding of the standard output and error

streams from the application processes to the service node,

but that was relatively easy.

The custom protocol used by ZOID offers a greater flex-

ibility than does the standard one. In particular, it allows

for extensibility via a plug-in mechanism. By default, ZOID

provides the UNIX plug-in, which forwards standard file I/O

and socket APIs (we support a more complete API subset

than CIOD). The forwarding is handled transparently by our

replacement libc. Multiple plug-ins can be active, and they

can provide a functionality highly tuned to the particular ap-

plication. A plug-in consists of three parts: an automatically

generated linker library with stub functions to be invoked on

the compute nodes; a corresponding automatically generated

shared object on I/O nodes that invokes the forwarded func-

tion calls; and a hand-coded implementation part running on

I/O nodes, which provides the actual implementation code

for the forwarded function calls. The linker library needs

3 2007/8/20

to be linked with the compute node application, while the

other two objects can be dynamically loaded at startup by

the ZOID daemon.

The automatic plug-in code generator is a script, written

in Perl, that takes a C header file as input and extracts func-

tion prototypes out of it. The prototypes need to adhere to a

particular convention, with additional hints to the generator

(such as whether an argument is an input, output, or both)

in the form of C-style comments. Figure 3 illustrates the an-

notations for the POSIX read() call. An advantage of this

approach over an IDL-based one is that we have only one

header file to maintain. The function-forwarding infrastruc-

ture supports passing of objects (by value and by pointer),

C-style character strings, and one- and two-dimensional ar-

rays. There is a user-adjustable limit on the maximum size

of function input or output; it is needed because a single I/O

node handles operations from multiple compute nodes and

thus could easily get overwhelmed by overly large requests.

ZOID daemon exports a small API to the implementation

functions, allowing them to, for example, find out which

compute node process invoked them.

ssize_t unix_read(

i n t fd /* in:obj */,

void *buf /* out:arr:size=+1:zerocopy */,

size_t *count /* inout:ptr */);

Figure 3. Declaration of the POSIX read() function

(size=+1 in the array argument indicates that the size of

that array is provided in the next argument).

Performance was one of ZOID’s key design criteria.

User-space implementation on the compute nodes reduces

the latency by avoiding context switches. It also simplifies

support for zero-copy operations, which ZOID supports both

for input and output. Extensive and highly flexible support

for zero-copy operations is also available on the I/O node

side; the buffer for the zero-copy data can be provided ei-

ther by the ZOID daemon or by a custom allocation function

in the plug-in. To further reduce the latency, our collective

network protocol uses the eager sending mode irrespective

of the message size. This can potentially reduce fairness,

as compute nodes closer to the I/O node in the collective

network’s highly irregular tree topology get a preferential

treatment, resulting in a near-starvation of the “far” nodes if

communication is intensive. Therefore, a rendezvous mode

is also available as an option. Requests from compute nodes

to transfer “large” messages are then queued in a FIFO order,

and only one such message at a time can be transmitted.

Another important characteristic of the ZOID daemon is

that it is multithreaded. This allows it to concurrently han-

dle operations from multiple application processes, unlike

the CIOD on the Blue Gene/L, which processes them one at

a time. Concurrent processing has the potential of reducing

the latency and improving the overall performance by ex-

posing the parallel nature of I/O operations to the underlying

file and socket I/O subsystems, allowing them to better use

the available network bandwidth. Multithreading also sig-

nificantly increases flexibility, enabling the implementation

functions to block for arbitrarily long time while the remain-

ing application processes communicate unobstructed using

other ZOID threads. This allows us to, for example, block

on a read from an empty socket without causing a deadlock

(IBM’s CIOD avoids this particular issue by converting the

compute nodes’ blocking calls to nonblocking ones on the

I/O nodes).

Multithreading comes with its own set of challenges, par-

ticularly on the Blue Gene/L, where, because of a lack of

cache coherence, only one of the two CPU cores is exposed

to the Linux kernel (see Section 5 for our current work in

this area). Only one thread can thus run at any particular

time, so careful tuning was required to ensure that the scarce

CPU resources were not being wasted on needless switch-

ing between the threads. We can receive a message from a

compute node, invoke the application function, and send a

reply, all within a single thread. For that matter, we send and

receive messages on the collective network within a single

loop, to further improve resource utilization and reduce the

latency. On compute nodes, where, at least in virtual node

mode [12], we have two CPU cores at our disposal, we can

even send a message from one core while simultaneously

receiving a reply on the other.

3. ZOID I/O Performance

In this section, we explore the performance of ZOID, com-

paring it to the stock IBM CIOD. The experiments presented

here have been conducted on the Argonne Blue Gene, which

is a single-rack (1,024 nodes) BG/L machine with an I/O

node (ION) to compute node (CN) ratio of 1:32. IBM driver

version V1R3M2 has been used, with ZeptoOS kernel and

ramdisk running on I/O nodes. The experiments discussed

below are generally limited to a single pset and have been

conducted with the number of compute nodes ranging be-

tween 1 and 32, and one I/O node. The results remain valid

for larger configurations because individual I/O nodes are

largely independent, as are the parts of the collective net-

work forming psets. Any contention due to scaling can oc-

cur only outside the Blue Gene racks (such as within the

fileservers) and is outside the scope of this research. The

compute nodes run in coprocessor mode; that is, only one

core per node runs user code. We measure throughput as a

function of an application buffer size used. With CIOD, large

application buffers are normally fragmented into chunks of

256 KB, which would put ZOID at an unfair advantage in

certain cases; luckily, it is possible to adjust the CIOD buffer

size threshold, and we increased it enough to avoid any frag-

mentation. Every experiment has been repeated at least three

times. We show the best result achieved (this is especially

important for experiments that used resources shared with

other users, such as the PVFS filesystem).

4 2007/8/20

 0

 10

 20

 30

 40

 50

 60

 70

 4 16 64 256 1024 4096

M
a

x
 t

h
ro

u
g

h
p

u
t

[M
B

/s
]

Buffer size [KB]

File read throughput over NFS

ZOID, 1 CN
ZOID, 32 CNs

CIOD, 1 CN
CIOD, 32 CNs

 0

 10

 20

 30

 40

 50

 60

 70

 4 16 64 256 1024 4096

M
a

x
 t

h
ro

u
g

h
p

u
t

[M
B

/s
]

Buffer size [KB]

File write throughput over NFS

ZOID, 1 CN
ZOID, 32 CNs

CIOD, 1 CN
CIOD, 32 CNs

Figure 5. NFS file I/O performance: read (left) and write (right).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 4 16 64 256 1024 4096

M
a

x
 t

h
ro

u
g

h
p

u
t

[G
b

/s
]

Buffer size [KB]

/dev/zero throughput with 8 compute nodes

ZOID, CNs to ION
ZOID, ION to CNs
CIOD, CNs to ION
CIOD, ION to CNs

Figure 4. Base collective network performance.

Figure 4 compares the base throughput achieved on the

collective network. We show the results for 8 compute nodes

here, as they are fairly representative of the whole range

tested. Conceptually, to measure the base performance, one

transfers large quantities of data across the network, without

any processing of that data. While with ZOID we could in

principle create a suitable plug-in for that purpose, this is not

really possible with CIOD. We have thus settled for reading

from and writing to /dev/zero on I/O nodes—data gets

passed on the collective network just as if we were accessing

an ordinary file, and very little processing needs to take place

on the I/O node side.

The collective network has a theoretical peak raw band-

width of 2.8 Gb/s [12].1 Once the protocol overheads are

subtracted, the maximum user data throughput we manage

to achieve is around 2.5 Gb/s (see Figure 4). Both ZOID and

CIOD achieve that maximum, in either direction. As can be

observed, however, with ZOID the performance is clearly

1 Throughout this paper, we use Gb/s or Mb/s in the context of network

interface speeds; 1 Mb equals 1,000,000 bits. In other context, we use MB/s

or KB/s; 1 KB equals 1,024 bytes.

superior for smaller buffer sizes (128 KB and less). This re-

sult is important to us for at least two reasons. First, we at-

tribute the performance increase to the use of the eager pro-

tocol (CIOD uses rendezvous for almost all messages) and

the fully user-space implementation of ZOID on the com-

pute nodes. The result thus shows that the advantages are

not just theoretical. Second, this result shows that the over-

head of the more complex, multithreaded implementation of

the ZOID daemon is quite acceptable.

The above experiment could be considered slightly artifi-

cial, because on a BG/L the 1 Gb/s Ethernet network makes

it impossible to send the data out of an I/O node at anywhere

near the speed of the collective network. With ZOID, how-

ever, it is possible to use that excess bandwidth by perform-

ing data processing on I/O nodes, as described in Section 4.

Figure 5 shows results from a more practical experiment:

data transfer to and from an NFS filesystem (we used a ded-

icated server, not shared with other users). Note that, unlike

the previous figure, the y axis is scaled in MB/s, not Gb/s.

The outcome is actually mixed, and we include those re-

sults here primarily as a warning. In the case of both read

and write, ZOID slightly outperforms CIOD for small buffer

sizes if only one compute node process is used; this result is

consistent with Figure 4. If we increase the number of com-

pute node processes, however, the situation changes: with

reading, ZOID significantly outperforms CIOD; with writ-

ing, the opposite occurs. More important, however, is that

irrespective of which infrastructure is used, the performance

with multiple compute node processes is significantly lower

than with just one—hardly an encouraging result. The rea-

son is that NFS is heavily optimized for sequential access:

its caching and prefetching algorithms are of huge help with

one client process. However, the performance of NFS tends

to fall to pieces with multiple clients accessing the server

simultaneously, as anyone who has ever had a UNIX home

directory on a busy NFS filesystem can readily attest.

Thus, if one hopes to achieve good file I/O performance

from parallel applications, a filesystem suited for the task,

5 2007/8/20

 0

 20

 40

 60

 80

 100

 4 16 64 256 1024 4096

M
a

x
 t

h
ro

u
g

h
p

u
t

[M
B

/s
]

Buffer size [KB]

File read throughput over PVFS

ZOID, 1 CN
ZOID, 32 CNs

CIOD, 1 CN
CIOD, 32 CNs

 0

 20

 40

 60

 80

 100

 4 16 64 256 1024 4096

M
a

x
 t

h
ro

u
g

h
p

u
t

[M
B

/s
]

Buffer size [KB]

File write throughput over PVFS

ZOID, 1 CN
ZOID, 32 CNs

CIOD, 1 CN
CIOD, 32 CNs

Figure 6. PVFS file I/O performance: read (left) and write (right).

such as PVFS [6], needs to be used. Figure 6 presents the

corresponding results, obtained with a PVFS 2.6.3 filesys-

tem spanning across 14 servers, shared with other users of

Blue Gene. With one compute node, the performance of

CIOD and ZOID is basically the same, and essentially equals

the performance of CIOD with 32 compute node processes,

since CIOD serializes file I/O. ZOID with 32 compute node

processes acts differently. Let us focus on writing (Fig. 6,

right) first. One can see a visible improvement across the x

axis, reaching as much as 64% for buffer size 64 KB, or over

16 MB/s for buffer size 4 MB. PVFS is thus quite capable of

exploiting the I/O parallelism ZOID presents it with. Unfor-

tunately, the picture is not all rosy. When one looks at the

performance of reading (Fig. 6, left), the behavior for small

buffer sizes (4–64 KB) is similar to that for writing. How-

ever, the performance then degrades, in the range of 512–

1024 KB becoming worse than CIOD or ZOID with a single

compute node, only to recover for the largest buffer sizes.

We have been in touch with the PVFS developers regarding

this phenomenon and hope that the problem, which is appar-

ently inside the PVFS client code, will soon be fixed.

Figure 7 compares CIOD and ZOID TCP-socket band-

width as a function of message size. The throughput num-

bers do not include protocol overhead. The measurements

were made on the LOFAR Blue Gene/L; the parameters of

CIOD and ZOID, as well as those of the Linux TCP/IP

stack, have been tuned to achieve maximum performance.

IBM tripled the CIOD performance during the past two years

(cf. [13], Fig. 12). ZOID outperforms CIOD for small and

medium-sized messages, but both are on a par for large mes-

sages and approach the theoretical maximum of 1.0 Gb/s

when writing.

4. Communicating Real-Time Telescope Data

with ZOID

ZOID is used extensively in the LOFAR radio telescope

that is being built. LOFAR (LOw Frequency ARray) is the

first of a new generation of telescopes and combines the

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0.0625 0.25 1 4 16 64 256 1024 4096

T
h

ro
u

g
h

p
u

t
[M

b
/s

]

Buffer size [KB]

Socket performance

ZOID read
ZOID write
CIOD read
CIOD write

Figure 7. TCP socket performance.

signals of thousands of simple, omnidirectional antennas

rather than expensive dishes [5]. Moreover, much of the

signal processing is done in software, where traditionally

custom-built hardware has been used. Eventually, LOFAR

will be one of the world’s largest telescopes. Its center is

located in the Netherlands; several European outer stations

will be added.

LOFAR’s structure is hierarchical: 192 colocated re-

ceivers form a station; their data are locally combined.

Each station produces samples from different subbands (fre-

quency ranges), which are complex numbers representing

the amplitude and phase of a wave at a particular moment.

The data from all stations are centrally collected via a wide-

area network, filtered, and correlated in real time on a six-

rack Blue Gene/L supercomputer [13,14]. Currently, 16 sta-

tions have been partially built, with a bandwidth limited to

500 Mb/s (48 subbands) each. More stations will be built

in the years to come, and the bandwidth of many of these

stations will increase to 13 Gb/s per station. Even though the

computational requirements are challenging, the processing

is I/O bound; therefore our BG/L system is configured with

6 2007/8/20

filter correlate

filter correlate

filter correlate

zoid daemon

(ZOID protocol over

collective network)

input cluster

circular buffer

circular buffer

circular buffer

synchronize stations

from station

from station

from station

to BG/L pset

to BG/L pset

data reordering

(Infiniband)

to BG/L pset

(TCP)(UDP)

I/O node

16 compute

cores

Blue Gene/L pset (only one shown)

write to disk

(TCP)

storage cluster

Figure 8. LOFAR central processing data flow.

the maximum number of one I/O node to 16 compute cores

(= 8 compute nodes). In total, 768 Gigabit-Ethernet (GbE)

interfaces are available to receive all samples and write the

correlated data.

Figure 8 illustrates how the data flows at the central pro-

cessing facility, of which the BG/L system is part. A clus-

ter of off-the-shelf PCs, called the input cluster, receives the

data and buffers the samples for up to some tens of seconds,

to synchronize the input streams and to handle short hiccups

in the remainder of the processing pipeline, without losing

data. Another function of the input cluster is to reorder the

data over a fast (Infiniband) switching network. Since the

correlator processes each subband independent of the other

subbands but needs the subband data from all stations to-

gether, the data must be reordered. Each input stream con-

tains many subbands from one station; each output stream

contains one subband from many stations. The reordering

step is implemented by using MPI_Alltoallv(). Im-

plicitly, the input cluster converts the station data stream

from UDP to TCP. The stations send UDP packets,2 but the

basic CIOD socket interface on the BG/L supports only TCP.

The reordered data flows from an input cluster node via

the I/O node to the compute nodes. We carefully connected

the GbE switches to all systems to avoid congestion within

or between the switches. Once the data arrive on a compute

core, they are filtered through a PolyPhase Filter, which

splits each subband into narrow frequency channels, and are

correlated. Since each compute core needs multiple seconds

to process one second of real-time data, the data are round-

robin distributed over the 16 compute cores in each pset:

every second with sampled data goes to the next compute

2 TCP would require large buffers in the FPGAs at the stations and add

protocol overhead, while occasionally dropped UDP packets hardly harm

the data quality.

core. After processing, the correlated data are sent to another

cluster, the storage cluster, and stored on disk. Here the

real-time pipeline ends. After an observation, the data are

calibrated and imaged.

4.1 Using ZOID in the Application

Three different application versions use ZOID. The first is

a recompilation of the standard code that uses ZOID TCP

sockets instead of CIOD sockets. Each compute core has one

TCP connection to one of the input cluster nodes and one

TCP connection to one of the storage cluster nodes. Each

ZOID daemon (on an I/O node) thus transparently handles

16× 2 TCP connections. The application aligns all data to

16 bytes and sends the data in multiples of 16 bytes; this is

the natural word size of the collective network. Both CIOD

and ZOID require aligned data for optimal performance.

The second version runs some application-specific code

on the I/O node, implemented as a ZOID plug-in, and loaded

as shared object by the ZOID daemon. The application runs

two threads, “scatter” and “gather,” in the address space of

the daemon. The scatter thread asynchronously prefetches

data from an input cluster node over a (single) TCP connec-

tion into application-supplied buffers. These data are scat-

tered over the compute cores in the pset, in round-robin or-

der. The gather thread receives correlated data from the com-

pute cores and optionally adds (integrates) the data from

multiple compute cores together, significantly reducing the

amount of data that is (asynchronously) sent over the GbE

interface to the storage cluster. The first version performs

the addition of data on an external computer system; but in

the second version, which has the ability to run application-

specific code on the I/O node, these additions are done on

the I/O node. The amount of data over the collective network

does not decrease, but this network is much faster (2.8 Gb/s)

7 2007/8/20

than the GbE interface.

The application extends the ZOID protocol with a few

functions that are invoked by the compute cores. Such a

function invocation is forwarded to the I/O node for execu-

tion, using ZOID’s function-shipping mechanism. There are

two important application-specific functions: one ships tele-

scope data from the I/O node to one of the compute cores;

the other returns correlated data from the compute core back

to the I/O node. The data are automatically transferred in the

output (resp. input) arguments of the function invocation.

Both functions use ZOID’s zero-copy protocol to achieve

high bandwidth.

Running application code in the ZOID daemon process is

good for performance, but a disadvantage is that a crashing

application thread crashes the daemon as well. Fortunately,

the process can be attached to with the gdb debugger, which

proved itself as a useful debugging tool.

Table 1. Number of subbands per pset for CIOD and ZOID.

subbands/pset Mb/s in Mb/s out CIOD ZOID

1 160 9.5 3 3

2 320 19.0 3 3

3 480 28.5 3 3

4 640 38.0 7 3

5 800 47.5 7 7

Table 1 shows that ZOID outperforms CIOD. Using

16 stations, each sending 48 subbands, ZOID handles up

to 4 subbands per pset in real time, while CIOD handles at

most 3. For this test, the gather thread in the ZOID version

does not reduce the output data rate by adding correlated

data, but both the scatter and gather threads communicate

asynchronously.

The third version breaks radically with the previous de-

sign and is described below.

4.2 Exploiting the Flexibility of ZOID: A New

Approach

Additional stations and a prospective bandwidth growth

from 500 Mb/s to 13 Gb/s per station will require signifi-

cant investments in new input cluster hardware. However,

the flexibility of ZeptoOS and ZOID offered a great oppor-

tunity: to omit the entire input cluster and move its func-

tionality to the BG/L. This redesign of the central process-

ing facility leads to an estimated cost saving of e700,000

(US$950,000), excluding power and maintenance costs.

We recently implemented and experimented with a soft-

ware version that bypasses the input cluster. Figure 9 shows

the data flow within a single pset. The circular buffers are

moved from the input cluster nodes to the I/O nodes. An

I/O node receives UDP packets from one of the stations.

It buffers the samples for up to five seconds in the circu-

lar buffer. The limited buffering capacity is due to the small

amount of memory on the I/O nodes (512 MB); but thanks

filter correlatereorder

filter correlatereorder

filter correlatereorder

circular buffer

add

to storage

(ZOID over collective network)

16 compute cores

from station

I/O node (3
D

 t
o

ru
s
)

d
a
ta

 r
e
o

rd
e
ri

n
g

Figure 9. LOFAR data flow within a single pset.

to the excellent real-time behavior of the BG/L, five sec-

onds is sufficient to operate without data loss. Each I/O node

receives 48 subbands from one station. From the circular

buffer, the data are forwarded to the compute cores, using

the ZOID protocol.

The compute cores reorder the data over the internal

BG/L 3D torus instead of over the external Infiniband

switch; they filter, correlate, and send the data to the stor-

age cluster as usual. Each compute core may or may not

have to handle station input, depending on whether the pset

is connected to a station. Also, a compute core may or may

not have to filter and correlate data, depending on whether

its computing capacity is needed. Compute cores that han-

dle input, process data, or do both, collectively perform an

MPI_Alltoallv() with compute cores from other psets.

The torus is sufficiently fast, although we had to schedule

the work over the compute cores in a complex way to avoid

isoplanar cores overloading some of torus links. Note that

input data are first transferred from an I/O node to a com-

pute node in the same pset (over the collective network) and

subsequently (over the torus) to the compute node that really

processes the data. If the I/O nodes had been connected to

the torus rather than the collective network or if the collec-

tive network would had had enough aggregate bandwidth

throughout the entire BG/L, it would have been possible to

send the data directly from the I/O node to the compute core

that processes the data, omitting the extra hop.

Table 2. Current LOFAR data rates per I/O node, in Mb/s.

Payload +

Payload protocol overhead

Ethernet in 481 485

collective, ION → CN 492 533

collective, CN → ION 38.0 41.2

Ethernet out 1.27 1.37

Table 2 shows data rates for the nightly observations that

we perform with the 16 partial stations currently installed,

observing 48 subbands and integrating correlated data over

30 seconds. We use 16 psets to receive data from the stations

(one pset per station); 12 of these psets also filter and corre-

late data (four subbands per pset). The numbers in the table

8 2007/8/20

are not upper limits of what ZOID can achieve; these are

numbers that ZOID handles with the current station setup.

We expect higher data rates in the future. The prospective

13 Gb per station will be divided over 24 psets per station,

increasing the input bandwidth to 540 Mb/s per I/O node.

Additional future stations will not increase the input data

rate per pset, since additional psets will be used. However,

the correlated (output) data rate per GbE interface grows

quadratically with the number of stations and is inversely

proportional to the integration time of the correlated data.

Depending on the eventual number of LOFAR stations and

the requirements of future observation modes, we expect

output data rates between 80 and 200 Mb/s per I/O node.

Since the CPU of the I/O node shares the time between

the ZOID threads and the application threads, communica-

tion bandwidth is reduced if the application consumes many

CPU cycles, especially since the nodes run at a low clock

speed. ZOID is highly optimized; the performance of the

application itself could be improved at the cost of increased

complexity, but we have not needed to do so yet. In Sec-

tion 5, we elaborate on future work that will improve the

performance.

Removing the input cluster has many implications, both

positive (e.g., reduced costs), and negative (e.g., program

complexity). The advantages are likely to prevail. Omitting

the input cluster would not have been possible without ZOID

and ZeptoOS, because the standard operating environment

(CIOD) provides neither the flexibility to run application

software on I/O nodes nor the ability to receive UDP.

5. Conclusions and Future Directions

This paper introduced ZOID—a high-performance I/O-

forwarding infrastructure for massively parallel systems. We

discussed its design in Section 2, focusing on its extensibility

through the support for custom plug-ins, as well as flexibil-

ity and high performance owing to its multithreaded dae-

mon architecture and optimized network protocols and data

paths. Performance measurements presented in Section 3

confirmed ZOID’s potential but also showed the challenges.

Some components ZOID depends on, such as the filesys-

tems, could be so strongly optimized for sequential access

that accessing them in parallel might significantly slow them

down—NFS being a prime example Some of the problems

we currently observe are simply manifestations of bugs in

the components and will in time be fixed.

Performance is a moving target, especially when making

comparisons with components outside of our control. When

we started this effort, we could easily outperform stock IBM

Blue Gene/L CIOD in a variety of situations. With time, this

has become increasingly difficult, as CIOD has seen steady

performance improvements. By now, most performance dif-

ferences that we observe are due to inherent differences in

design, not low-level optimizations.

As we mentioned earlier, only one CPU core is used by

the Linux kernel on I/O nodes. That core is fast enough to

drive the collective network at full capacity, or the Ethernet

network, but trying to do anything else at the same time is

risky. Yet ZOID encourages putting extra functionality on

I/O nodes. The problem is exacerbated by the fact that the

interface to the collective network is based on polling. A

CPU-bound polling thread puts pressure on the Linux pro-

cess scheduler and makes the scheduling of other threads un-

predictable. While using real-time priorities would address

this issue, it would raise its own problems. We are currently

working on enabling the second CPU core and using it ex-

clusively for the communication over the collective network.

This would free up the much needed CPU resources and

make more advanced optimizations viable.

Section 4 showed how ZOID is used in a real applica-

tion: the central correlator of the LOFAR radio telescope,

that processes real-time, streaming data on a Blue Gene/L

system. Initially, ZOID was used just as a high-bandwidth

replacement for CIOD. However, ZOID’s ability to run ap-

plication code on the I/O nodes led to a redesign of the en-

tire system that significantly reduces the costs, by omitting

a dedicated input cluster and by moving its functionality to

the Blue Gene/L.

More ZOID plug-ins than the two discussed in this paper

are under development. ZOID was in fact conceived for use

not with the UNIX or LOFAR plug-ins, but with ZOIDFS—

an interface far better suited for high-performance parallel

file I/O than is the POSIX API. ZOIDFS was designed in

collaboration with other U.S. DOE laboratories to be easy to

integrate with MPI-IO and parallel filesystems: its stateless

nature allows it to scale better and makes various optimiza-

tions simpler. Thanks to the user-space nature of ZOID, a

number of shortcuts can be taken, especially if the client part

of the filesystem code can be implemented in user space, as

is the case with PVFS. Figure 10 shows the infrastructure we

are building for the upcoming Argonne IBM Blue Gene/P

machine. Compared to the standard IBM infrastructure (see

Figure 2), it has significantly fewer context switches be-

tween the user and kernel space, increasing throughput and

reducing latency. With ZOIDFS, we expect to be able to in-

vestigate I/O scalability in ways not previously possible.

Another plug-in, ftb_agent, is under development within

the CIFTS [7] project. That plug-in enables compute node

processes to be part of a fault tolerance backplane being

developed, providing an interface for throwing and catching

fault tolerance events.

We expect intelligent caching and “collective behavior”

to be extremely important with file I/O in order to reduce the

load on the fileservers. For many applications, using MPI-

IO coupled with the aforementioned ZOIDFS may be the

solution of choice. However, we would like to investigate

performing similar optimizations with POSIX file I/O, so

that more applications can take advantage of them. Many

file I/O calls, such as open() or read(), could easily be

implemented as collective operations. An intelligent ZOID

9 2007/8/20

Figure 10. I/O path with ZOID, ZOIDFS, and PVFS (compare with Figure 2).

plug-in, in cooperation with the application, could forward

only the first of the many individual requests to the filesys-

tem and broadcast the result to every process interested in it.

This would reduce the total number of filesystem requests to

the number of I/O nodes. If I/O nodes could work coopera-

tively, they could do even better: large read requests could be

split between multiple I/O nodes; a global cache layer could

be created, and so forth.

IBM promises to make the Blue Gene/P a far more trans-

parent platform than BG/L, with open interfaces between

compute nodes, I/O nodes and the service node. We are

working on a full integration of ZOID with the job man-

agement system, so that CIOD will never even need to be

started. Unlike on BG/L, where ZOID cooperates with the

CNK on the compute nodes, on BG/P we currently plan to

have ZOID working with the Compute Node Linux, which

is another component being developed under the ZeptoOS

project. ZOID on BG/P will take care of system control tasks

such as job launching and will perform other “convenience”

tasks, such as exporting filesystems from the I/O nodes to

compute nodes using FUSE or even forwarding IP traffic,

enabling one to, for example, log on a compute node with

ssh to debug a problem.

As mentioned earlier, Cray uses a different approach to

file I/O on XT3/4, with filesystem clients on each com-

pute node. However, the architecture does feature I/O nodes.

They are currently not used for I/O forwarding, but it appears

that they could be used for this purpose if so desired. Hence,

we plan to port ZOID to Portals (a low-level communication

library used by Cray) and to experiment with I/O-forwarding

setup on that architecture.

Acknowledgments: We acknowledge the students who con-

tributed to ZOID: Ivan Beschastnikh, Peter Boonstoppel,

Hajime Fujita, Jason Kotenko, and Alex Nagelberg. We also

thank Chris Broekema, Ger van Diepen, Martin Gels, Mar-

cel Loose, Ellen van Meijeren, Ruud Overeem, Kjeld van

der Schaaf, and Walther Zwart for their contributions to the

LOFAR software.

References

[1] ASC Purple. http://www.llnl.gov/asc/computing_resources/

purple/.

[2] P. Beckman, K. Iskra, K. Yoshii, and S. Coghlan. The

influence of operating systems on the performance of

collective operations at extreme scale. In Proceedings of the

8th IEEE International Conference on Cluster Computing,

Barcelona, Spain, Sept. 2006.

[3] P. Beckman, K. Iskra, K. Yoshii, and S. Coghlan. Operating

system issues for petascale systems. ACM SIGOPS Operating

Systems Review, 40(2):29–33, Apr. 2006.

[4] P. Beckman, K. Iskra, K. Yoshii, S. Coghlan, and A. Nataraj.

Benchmarking the effects of operating system interference on

extreme-scale parallel machines. Cluster Computing, 2007.

Accepted.

[5] H. R. Butcher. LOFAR: First of a new generation of radio

telescopes. Proceedings of the SPIE, 5489:537–544, Oct.

2004.

[6] P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur.

PVFS: A parallel file system for Linux clusters. In Pro-

ceedings of the 4th Annual Linux Showcase and Conference,

pages 317–327, Atlanta, GA, Oct. 2000.

[7] CIFTS: Coordinated fault tolerance for high performance

computing. http://www.mcs.anl.gov/research/cifts/.

[8] Cray XT3. http://www.cray.com/products/xt3/.

[9] S. M. Kelly and R. Brightwell. Software architecture of the

light weight kernel, Catamount. In Proceedings of the 47th

Cray User Group Conference, Albuquerque, NM, May 2005.

[10] Lustre. http://www.lustre.org/.

[11] J. A. Rathkopf et al. KULL: LLNL’s ASCI inertial

confinement fusions simulation code. In Physor 2000,

ANS Topical Meeting on Advances in Reactor Physics and

Mathematics and Computation into the Next Millennium,

May 2000.

[12] J. J. Ritsko, I. Ames, S. I. Raider, and J. H. Robinson, editors.

Blue Gene, volume 49 of IBM Journal of Research and

Development. IBM Corporation, March/May 2005.

[13] J. W. Romein, P. C. Broekema, E. van Meijeren, K. van der

Schaaf, and W. H. Zwart. Astronomical real-time streaming

signal processing on a Blue Gene/L supercomputer. In

Proceedings of the 18th ACM Symposium on Parallel

Algorithms and Architectures, pages 59–66, Cambridge, MA,

July 2006.

[14] K. van der Schaaf, C. Broekema, G. van Diepen, and

E. van Meijeren. The LOFAR central processing facility

architecture. Experimental Astronomy, 17:43–58, 2004.

[15] The ZeptoOS project. http://www.zeptoos.org/.

10 2007/8/20

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”).

Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357.

The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license

in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly,

by or on behalf of the Government.

11 2007/8/20

