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Abstract Earlier work has shown that the efficient subspace methodea@m-
ployed to reduce the effective size of the input data streamhigh dimensional
models when the effective rank of the first order sensitimstrix is orders of mag-
nitude smaller than the size of the input data. In this maripisdche method is
extended to handle nonlinear models, where the evaluafibigber order deriva-
tives is important but also challenging because the numbderivatives increases
exponentially with the size of the input data streams. A mégadeveloped hybrid
approach is employed to combine reverse mode automatiereiiffiation to cal-
culate first order derivatives and perform the required c&dan in the input data
stream followed by forward mode automatic differentiattorcalculate higher or-
der derivatives with respect only to the reduced input Wéei Three test cases
illustrate the viability of the approach.
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1 Introduction

As is the case in many numerical simulations in science agthearing, one can
use derivative information to gain insight into the modeh&eéor. Automatic dif-

ferentiation (AD) [7] provides a means to efficiently and @aetely compute such
derivatives to be used, for example, in sensitivity analysncertainty propagation,
and design optimization. The basis for AD is the availapitif a program that im-
plements the model as source code. Transforming or renetiamg the source code
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enables the derivative computation. Given the compleXithe numerical simula-
tions the derivative computation can remain quite costigpite the efficiency gains
made possible by AD techniques.

Exploiting model properties that are known at a higher mathtécal level but are
not easily recognizable at the source code level in an autorfi@ghion is a major
factor for improving the efficiency of derivative based nwth. Problems in nu-
clear engineering provide a good example for such highatfgroperties. Detailed
nuclear reactor simulations involve high-dimensionaluingnd output streams. It
is, however, known that the effective numerical rangéf such models is typically
much lower than the size of the input and output streams waaikely suggest. By
reducing the the higher-order approximation of the model (pseudo) variables
one can significantly reduce the approximation cost whiléntaiming reasonable
approximation errors. This approach, the efficient subspaethod (ESM), is dis-
cussed in Sect. 2. The implementation with AD tools is désctin Sect. 3 and the
paper closes with three test cases in Sect. 4.

2 Methodology

For simplicity we begin with constructing a low rank approstion to a matrix op-
erator. LetA € R™" be the unknown matrix and the operator provide matrix vector
products withA andAT. The following steps provide a low rank approximation of
A are as follows:

1. Formk matrix vector productg!) = Ax( i =1,.. .,k for randomly chosem()
2. QR factorize the matrix of responsést¥) ... y¥ | =QR=[q¥ ... q¥]R
3. Determine the effective ramk

a. Choose a sequencelofandom Gaussian vectons')

b. Computel!) = (I — QQ")Aw()

c. Test for anyi if ||Z")|| > € then incremenk and go back to step 1 else set
r :=kand continue.

4. Calculatep!) = ATqy) foralli=1,... .k
5. Using thep;) andq; vectors, a low rank approximation of the forn= usv’
can be calculated as show in the appendix of [1]

It was shown in [8] that with at least-110 k probability, one can determine a
matrix Q of rankr such that the following error criterion is satisfied

10— QQNA[| < &/(10y/2/m)

whereg is the user specified error allowance.

In real applications, these ideas can be applied by regglabig matrix operator
with a computational model. Let the computational modelntéiest be described
by a vector-valued functiog = ©(x), wherey € R™ andx € R". The goal is to
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compute all derivatives of a given order by reducing the disngns of the problem
and thus reducing the computational and storage requirtsmieinst we consider
the casem = 1. A (possibly non-linear) functio®(x) can be expanded around a
reference poinkp. It was shown in [2] that an infinite Taylor-like series expem
may be written as follows (without loss of generality, assug= 0 and©®(xo) = 0)

e<x>=k§ Z (BT (BT X)... (B TX) (1)
=1

Loy )1 Jk=1

where the{y) }>_; can be any kind of scalar functions. The outer summation over
the variablek goes from 1 to infinity. Each term represents one order oftian,
e.g.k =1 represents the first order terta= 2, the second order terms. For the
case ofy; (8) = 6, thek!™ term reduces to thi" term in a multi-variable Taylor
series expansion. The inside summation forkfieéerm consists ok single valued
functions{ ¢ },° , that are multiplying each other. The arguments for {iig}°
functions are scalar quantities representing the innedumts between the vector

x andn vectors{Bj(lk)}’-1 ;1 Which span the parameter space. The supersgkipt

] =
implies that a different basis is used for each ofltterms, i.e. one basis is used for
the first-order term, another for the second-order term arghs
Any input parameter variations that are orthogonal to tmgeaformed by the

collection of the{Bj(Ik)} vectors will not produce changes in the output response, i.e
the value of the derivative of the function will not changehke {Bj<|k)} vectors span

a subspace of dimensignas opposed to (span{[jj(lk>} =R"), then the effective
number of input parameters can be reduced fndor. The mathematical range can
be determined by using only first-order derivatives. Défgiating (1) with respect
to x gives

o n k
00(x) = /(BYTx)BM (BT ) 2
W=3 5 (ETos” [ wel™) @

wherewl'(ﬁj(lk)Tx) Bj(lk) is the derivative of the terrg (Bj(|k>Tx). We can reorder (2) to
show that the gradient of the function is a linear combinatibthe{B]-(lk)} vectors

e =5 Y ﬂxf,")Bﬁ") = [V B ]

where
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In a typical application, th& matrix will not be known beforehand. It is only nec-
essary to know the range &f which can be accomplished using the rank finding
algorithm, see above. After determining the effective rahkan be seen that the
function only depends oneffective dimensions and can be reduced to simplify the
calculation. The reduced model only requires the use ofuibssace that represents
the range oB, of which there are infinite possible bases.
This concept is now expanded to a vector-valued model.qﬁmspons@q(x)
of the model and its derivatiw_a\@q( ) can be written just like (1) and (2) with an ad-

ditional indexqin the vectors{ﬁ q} The active subspace of the overall model must
contain the contributions of each individual response. iarix B will contain the

{leyq} vectors for all orders and responses. To determine a low agpkoxima-
tion, a pseudo respons,s 4o Will be defined as a linear combination of the
responses:

(o] n

Opseudo(X) Z S S GBS0 WB - w(BLG ) ()

k=1 j1,... i, k=1

whereyy are randomly selected scalar factors. The gradient of thedusresponse
is:

Opael®) = 3 15 z,_l(w(m,gq 8L, ﬂ;”' Bl

Calculating derivatives of the pseudo response as oppaseddh individual re-
sponse provides the necessary derivative informationenglving considerable
computational time for large models with many inputs angats.

3 Implementation

In this section we discuss the rationale for the specific Apraach, tool indepen-
dent concerns and some aspects of applying the tools to obvepn scenario.

3.1 Gradientswith OpenAD

The numerical mode® has the formy = ©(x), wherey € R™ is the output and

x € R" the input vector. No additional information regardi@gis required except
for the progran® implementing®. Following (3) we define the pseudo respogse ~
as the weighted sum

y— iiwyi @
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This requires a change i but is easily done at a suitable top level routine. The
source code (Fortran) for the modified progr&iecomes the input to OpenAD
[10] which facilitates the computation of the gradi€ijtusing reverse mode source
transformation. The overall preparation of the model aredfitst driver was done
following the steps outlined in [11].

The source code d? used for the test cases described in Sect. 4 exhibited some
of the programming constructs known to be obstacles for pipéiGation of source
transformation AD. Among them are the useegfui val ence especially for the
initialization of cormon blocks. The idiom there was to equivalence an array of
length 1 with the first element in the common block. Then tmgle-1 array was
used to access the entire common block via subscript valesgey than 1. The
Fortran standard requires that a subscript value shall b@nathe bounds for its
dimension but typically this cannot be verified at compitediand therefore this
non-standard is tacitly accepted. It has since appearedhthdame pattern is also
used in other nuclear engineering models making this pnobbere interesting than
it would be for just for a single occurrence.

OpenAD usesssociation by address [5], that is an active type, as the means of
augmenting the original program data to hold the derivatif@ermation. The usual
activity analysis would ordinarily trigger the redeclaoatof only a subset of com-
mon block variables. Because the access of the common bilatievarray enforces
a uniform type for all common block variables to maintain geo alignment, all
common block variables had to be activated. Furthermorguse the equivalence
construct applied syntactically only to the first commonchleariable, the implicit
equivalence of all other variables cannot be automaticdlyuced and required a
change of the analysis logic for OpenAD to maintain aligntri®nconservatively
overestimating the active variable set.

Superficially this may seem a drawback of the associationdoyess. Theas-
sociation by name [5], used in other AD source transformation tools will notefa
better though. Shortening the corresponding loop for tieazassociated and equiv-
alenced derivative-carrying array is difficult for inteesped passive data and there-
fore one will resort to the same alignment requirement.

Once the source transformation succeeds a suitable doiyiertias to be written
to accommodate the steps neededkferaluations of the gradienty'}) using ran-
dom Weightsyi(J> and randomly set inpuuﬁ“). Thek gradients form the columns
of

G— [Dy“), L Dy(k>]

The effective rank of5 will be found via the following modified version of RFA,
cf. Sect. 2. A singular value decomposition (SVD)®fis computed in the form

G =USVT, with U € R™P,V € R**P S=diag(oy,...,0p), andoy > ... > gp >

0 the singular values o6. We successively drop the smallest singular values
Op, Op_1,...,0p_|, COMPUteGy_| = USp_ VT and test

IG—Gp il

G <f ®)
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for a givene. The lastGy_| = G satisfying (5) has rank = p—1. Next, G is QR
factorized

G=QR=[Q QJR

where the submatri®, € R™" contains only the first columns ofQ. The columns
of Q, are used to define the (reduced) pseudo inputs.

%=Qlx

Because of orthogonality we can simply prepend to the asigimogramP logic
implementingx = Q, X to have theX as our new reduced set of input variables for
which derivatives will be computed. Similar to (4), this iasdy done by adding
code in a suitable top level routine yieldifgx) =y,P : R" — R™.

3.2 Higher Order Derivatives with Rapsodia

Rapsodia [4] is used to compute all derivative tensor elésngmto ordeo

Oy, r
[(9)?‘1’10 ylaiﬁ"} . with multi-indexo, where o= |o| = kzlok . (8
for P following the interpolation approach in [6] supported bypRadia, see also
[3].

Rapsodia is in principle based on operator overloadinghferforward propaga-
tion of univariate Taylor polynomials. All other operatamsloading based AD tools
have overloaded operators that are hand-coded, operatytor Toefficient arrays
with variable length in loops with variable bounds to accomdate the derivative
orders and numbers of directions needed by the applicdtiorontrast, Rapsodia
generates on demand a library of overloaded operators fpeeifie number of
directions and a specific order. Thus, at compile time, tlopdcare already repre-
sented in (partially) unrolled code along with a fixed (=i flat) data structure
that provides more freedom for compiler optimization. Besmof the overall as-
sumption that, the reduced input dimension, is much smaller thathe higher
order derivative computation in forward mode is feasibld appropriate.

Because overloaded operators are triggered by using aasijaciive) type for
which they are declared it now appears as a nice conflueneamnfres that OpenAD
for the gradient computation already does the data augti@mtda association by
address, i.e. via an active type, and therefore the assomgtiuld be made that one
merely has to change the OpenAD active type to a Rapsodigdygpe to use the
operator overloading library. The following features oé tbpenAD type change
already undertaken for Sect. 3.1 can (partially) be reused.

selective type change based on activity analysis.  Here the main difference to Sect. 3.1

is the change of inputs fromto X and conversely to y. This merely requires
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subroutine foo(a,b,c) real :: d, t2; type(active):: e, f t1
type(active)::a, c I..
real::b call cvrt _p2a(c,tl1); call cvrt_a2p(d,t2)
[ call foo(tl,t2,f)

end subroutine call cvrt_a2p(tl,c); call cvrt_p2a(t2,d)

Fig. 1 Passive« active type change conversionyrt _{p2a| a2p} for a subroutine call
foo(d, e, f) made by OpenAD for applying a Rapsodia-generated library {shed names,
active variables underlined).

changing the pragma declarations identifying the depended independent
program variables in the top level routine.

type conversion for changing activity patternsin calls:  The activity analysis in-
tentionally does not yield matching activity signatures &t calling contexts
of any given subroutine. Therefore, for a subroutir®( a, b, ¢) , the formal
parameters, ¢ may be determined as active whiberemains passive. For a
given calling contextal | foo(d, e, f) it may be that the type of the actual
parameted is passive oe is active in which case pre and post conversion calls
to a type-matching temporary may have to be generated, sékigtration in
Fig. 1.

default projections to the value component:  The type change being applied to the
program variables, arithmetic and I/O statements reféngraxctive variables are
adapted to access the value component of the active typplicate the original
computation.

These portions are implemented in thgpeChange algorithm stage within the
xai f Boost er component of OpenAD. Of course, the last feature preveigs tr
gering the overloaded operators and the value componesgsneeds to be dropped
from the transformation. On the other hand, as in most opemerloading tools
there is, as a safety measure, no assignment operator dciingpinversion from
active types to the passive floating point types. Therefssignment statements to
passive left-hand sides need to retain the value componreesain the right-hand-
side expressions. These specific modifications were impitadén OpenAD’s post
processor with a - over | oad option. While manual type change was first at-
tempted it quickly proved a time intensive task even on theenately sized nu-
clear engineering source code in particular because of #my MO statements that
would need adjustments and the fact that the Fortran sood=given in fixed for-
mat made simple editor search and replaces harder. Thenfisrmanual attempt
was abandoned and this modification of the OpenAD sourcsfoemation capa-
bilities proved useful.

Given the type change transformation, the tensors in (6¢@rguted with Rap-
sodia. The first order derivatives in terms of theather than th& are recovered as
follows.

aY| dY| 0% aY|
X Z dxk oxj Z

EJ
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In terms of the Jacobian thisds= Q, J. Similarly for second order one has

02y B 0y,
ox;a% ~ 2 9%0% ik
N —_~—

c€Hj

which in terms of the Hessia; for i-th outputy; is H; = Q, ﬁiQrT. Theo-th order
derivatives are recovered by summing over the multi-irglice

Y - doYl °

0Xj, ...0%j, ‘k‘zo 0%, .- |—| Girk

For all derivatives in increasing order, products of thehefd;x can be incrementally
computed.

4 Test Cases
Simple scalar-valued model We consider an example model given as

y=a'x+ (b'x)2 +sin(c'x) + ————
1+edx

where vectorx, a, b, c, andd € R". The example model is implemented in a simple
subroutine nametlead along with adr i ver main program that calleead and

is used to extract the derivatives. Theaad was transformed with OpenAD to
compute the gradient gfwith respect to the vectox.

A Python script was written to execute the subspace ideatiific algorithm with
the compiled executable code. The script takes a gkéssthe effective rank and
runs the code fok random input vectors. Within the Python script, the responses
are collected into a matri. Following the algorithm, the singular values@fare
found and reduced versions Gfare calculated until the effective ramkis deter-
mined. A QR decomposition is then performed on the reduceadxrend the first
r columns ofQ are written to a file to be used as input to the Rapsodia codagUs
the model above with = 50 and random input vectors with 8 digits of precision for
a,b,c, andd, with € = 107, the effective rank was found to lbe= 3.

Thedri ver is then modified for the use with Rapsodia and the library i ge
erated with the appropriate settings for the order and timeteu or directions. For

first order this is simply the number of inputs. Once the dﬂms(gi) are calcu-
lated , the full derivatives can be reconstructed by muyliiqg the Rapsodia results
by theQ;matrix used as input. Using an effective rank et 3 and therefore &,
matrix of dimension 5& 3, the reconstructed derivatives were found to have rela-
tive errors on the order of 183 compared to results obtained from an unreduced

Rapsodia calculation.



Combining Automatic Differentiation Methods 9

| Derivative Ordef Unreduced DirectiorjsReduced DirectiorjsRelative Errof

1 50 3 108
2 1275 6 10712
3 22,100 10 10°°

Table 1 Comparison of number of required directions for unreduced hadeduced model to-
gether with the relative error

Using Rapsodia to calculate second order derivatives giinpgblves changing
the derivative order to = 2 and recompiling the code. The output can then be con-
structed into a matriX of sizer x r and the full derivatives can be recovered by
Q1I:IQI which results in a1 x n symmetric matrix. When the second order deriva-
tives are calculated for the example above, there are orilg6étobns required for an
effective rank of 3 as opposed to 1275 directions for thegrdblem. The relative

errors of the reduced derivatives are on the order of4.0

Third order derivatives were also calculated using thisygda. The unreduced
problem would require 22,100 directions while the reduceabjem only requires
10. Relative errors were much higher for this case but gtél @asonable order of

10°8. The relative errors for each derivative order are sumradria Table 1.

Simple Vector-valued model Problems with multiple outputs require a slightly
different approach when determining the subspace. Firstomsider

.
yi=a x+ (b'x)2%; yo = sin(cTx) + (1+ e~ 4 X)L ys = (@Tx)(€Tx); ya = 28 %; ys = (dTx) 3

Following (4) we compute the pseudo respogsa the modified version of the
head routine implementing the above example model with randogdgerated
factorsy that are unique for each execution of the code. The computetiant is
of ¥ with respect tox. Then, following the same procedure as before, the subspace
identification script was run fan = 50 ands = 106, The effective rank was found
to ber =5 and we found for similar accuracy the reduction of dirawioeeded for
the approximation from 250 to 5, 6375 to 75 and 110500 to 17§kt up to third
order, respectively.

MATWS A more realistic test problem was done with the MATWS (a subset
of SAS4A [9]) Fortran code for nuclear reactor simulatio8sgle channel cal-
culations were performed using as inputs the axial expansiefficient, Doppler
coefficient, moderator temperature coefficient, contrdladaveline, and core radial
expansion coefficient. The outputs of interest are tempegatwithin the channel in
the coolant, the structure, the cladding, and the fuel. §hiss a 4x 5 output for
the first order derivatives and 15 and 35 directions for 2ndl 2ud order, respec-
tively. After applying the subspace identification algonit, it was found that the
effective rank was r = 3, giving 6 and 10 directions for 2nd @ndlorder derivative
calculations. Reductions and relative approximationrerave shown in Table 2.
This manuscript has presented a new approach to increasffitiency of au-
tomatic differentiation when applied to high dimensionahlinear models where
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| Derivative Ordef Unreduced DirectiorjsReduced DirectiorjsRelative Errof
1 5 3 0.00625
2 15 6 0.038

Table 2 Comparison of number of required directions for unreduced hadeduced model to-
gether with the relative error

high order derivatives are required. The approach idestfées pseudo input pa-
rameters and output responses which can be related to tliealmparameters and
responses via simple linear transformations. The AD is dpplied to the pseudo
variables which results in significant computational sgsin
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