
Combining Automatic Differentiation Methods
for High Dimensional Nonlinear Models

James A. Reed, Jean Utke, and Hany S. Abdel-Khalik

Abstract Earlier work has shown that the efficient subspace method canbe em-
ployed to reduce the effective size of the input data stream for high dimensional
models when the effective rank of the first order sensitivitymatrix is orders of mag-
nitude smaller than the size of the input data. In this manuscript, the method is
extended to handle nonlinear models, where the evaluation of higher order deriva-
tives is important but also challenging because the number of derivatives increases
exponentially with the size of the input data streams. A recently developed hybrid
approach is employed to combine reverse mode automatic differentiation to cal-
culate first order derivatives and perform the required reduction in the input data
stream followed by forward mode automatic differentiationto calculate higher or-
der derivatives with respect only to the reduced input variables. Three test cases
illustrate the viability of the approach.

Key words: reverse mode, higher-order derivatives, low-rank approximation

1 Introduction

As is the case in many numerical simulations in science and engineering, one can
use derivative information to gain insight into the model behavior. Automatic dif-
ferentiation (AD) [7] provides a means to efficiently and accurately compute such
derivatives to be used, for example, in sensitivity analysis, uncertainty propagation,
and design optimization. The basis for AD is the availability of a program that im-
plements the model as source code. Transforming or reinterpreting the source code

James A. Reed, Hany S. Abdel-Khalik
Dept. of Nuclear Engineering, North Carolina State University, Raleigh, NC, USA,{jareed3|
abdelkhalik}@ncsu.edu

Jean Utke
Argonne National Laboratory / The University of Chicago, IL,USA,utke@mcs.anl.gov

1

2 James A. Reed, Jean Utke, and Hany S. Abdel-Khalik

enables the derivative computation. Given the complexity of the numerical simula-
tions the derivative computation can remain quite costly, despite the efficiency gains
made possible by AD techniques.

Exploiting model properties that are known at a higher mathematical level but are
not easily recognizable at the source code level in an automatic fashion is a major
factor for improving the efficiency of derivative based methods. Problems in nu-
clear engineering provide a good example for such higher-level properties. Detailed
nuclear reactor simulations involve high-dimensional input and output streams. It
is, however, known that the effective numerical rankr of such models is typically
much lower than the size of the input and output streams wouldnaively suggest. By
reducing the the higher-order approximation of the model tor (pseudo) variables
one can significantly reduce the approximation cost while maintaining reasonable
approximation errors. This approach, the efficient subspace method (ESM), is dis-
cussed in Sect. 2. The implementation with AD tools is described in Sect. 3 and the
paper closes with three test cases in Sect. 4.

2 Methodology

For simplicity we begin with constructing a low rank approximation to a matrix op-
erator. LetA ∈R

m×n be the unknown matrix and the operator provide matrix vector
products withA andAT . The following steps provide a low rank approximation of
A are as follows:

1. Formk matrix vector productsy(i) = Ax(i), i = 1, . . . ,k for randomly chosenx(i)

2. QR factorize the matrix of responses:
[

y(1) ... y(k)
]
= QR =

[
q(1) ... q(k)

]
R

3. Determine the effective rankr:

a. Choose a sequence ofk random Gaussian vectorsw(i)

b. Computez(i) = (I−QQT)Aw(i)

c. Test for anyi if ||z(i)|| > ε then incrementk and go back to step 1 else set
r := k and continue.

4. Calculatep(i) = AT q(i) for all i = 1, . . . ,k
5. Using thep(i) andq(i) vectors, a low rank approximation of the formA = USVT

can be calculated as show in the appendix of [1]

It was shown in [8] that with at least 1− 10−k probability, one can determine a
matrix Q of rankr such that the following error criterion is satisfied

||(I−QQT)A|| ≤ ε/(10
√

2/π)

whereε is the user specified error allowance.
In real applications, these ideas can be applied by replacing the matrix operator

with a computational model. Let the computational model of interest be described
by a vector-valued functiony = Θ(x), wherey ∈ R

m andx ∈ R
n. The goal is to

Combining Automatic Differentiation Methods 3

compute all derivatives of a given order by reducing the dimensions of the problem
and thus reducing the computational and storage requirements. First we consider
the casem = 1. A (possibly non-linear) functionΘ(x) can be expanded around a
reference pointx0. It was shown in [2] that an infinite Taylor-like series expansion
may be written as follows (without loss of generality, assumex0 = 0 andΘ(x0) = 0)

Θ(x) =
∞

∑
k=1

n

∑
j1,..., jl ,... jk=1

ψ1(β
(k)T
j1

x)...ψl(β
(k)T
jl

x)...ψk(β
(k)T
jk

x) (1)

where the{ψl}
∞
l=1 can be any kind of scalar functions. The outer summation over

the variablek goes from 1 to infinity. Each term represents one order of variation,
e.g. k = 1 represents the first order term;k = 2, the second order terms. For the
case ofψl(θ) = θ , thekth term reduces to thekth term in a multi-variable Taylor
series expansion. The inside summation for thekth term consists ofk single valued
functions{ψl}

∞
l=1 that are multiplying each other. The arguments for the{ψl}

∞
l=1

functions are scalar quantities representing the inner products between the vector

x and n vectors{β (k)
jl
}n

jl=1 which span the parameter space. The superscript(k)
implies that a different basis is used for each of thek-terms, i.e. one basis is used for
the first-order term, another for the second-order term and so on.

Any input parameter variations that are orthogonal to the range formed by the

collection of the{β (k)
jl
} vectors will not produce changes in the output response, i.e.

the value of the derivative of the function will not change. If the{β (k)
jl
} vectors span

a subspace of dimensionr as opposed ton (span{β (k)
jl
} = R

r) , then the effective
number of input parameters can be reduced fromn to r. The mathematical range can
be determined by using only first-order derivatives. Differentiating (1) with respect
to x gives

∇Θ(x) =
∞

∑
k=1

n

∑
j1,..., jl ,... jk=1

(
ψ ′

l (β
(k)T
jl

x)β (k)
jl

k

∏
i=1,i 6=l

ψi(β
(k)T
ji

x)
)

(2)

whereψ ′

l (β
(k)T
jl x)β (k)

jl is the derivative of the termψl(β
(k)T
jl x). We can reorder (2) to

show that the gradient of the function is a linear combination of the{β (k)
jl
} vectors

∇Θ(x) =
∞

∑
k=1

n

∑
j1,..., jl ,... jk=1

χ(k)
jl

β (k)
jl

=
[

β (1)
1 · · · β (k)

jl
· · ·

]




χ(1)
1
...

χ(k)
jl
...



= Bχ

where

χ(k)
jl

= ψ ′
l (β

(k)T
jl

x)
k

∏
i=1,i 6=l

ψi(β
(k)T
ji

x)

4 James A. Reed, Jean Utke, and Hany S. Abdel-Khalik

In a typical application, theB matrix will not be known beforehand. It is only nec-
essary to know the range ofB which can be accomplished using the rank finding
algorithm, see above. After determining the effective rank, it can be seen that the
function only depends onr effective dimensions and can be reduced to simplify the
calculation. The reduced model only requires the use of the subspace that represents
the range ofB, of which there are infinite possible bases.

This concept is now expanded to a vector-valued model. Theqth responseΘq(x)
of the model and its derivative∇Θq(x) can be written just like (1) and (2) with an ad-

ditional indexq in the vectors{β (k)
jl ,q

}. The active subspace of the overall model must
contain the contributions of each individual response. ThematrixB will contain the

{β (k)
jl ,q

} vectors for all orders and responses. To determine a low rankapproxima-
tion, a pseudo responseΘpseudo will be defined as a linear combination of them
responses:

Θpseudo(x) =
m

∑
q=1

γq

∞

∑
k=1

n

∑
j1,..., jl ,... jk=1

ψ1(β
(k)T
j1,q

x)...ψl(β
(k)T
jl ,q

x)...ψk(β
(k)T
jk,q

x) (3)

whereγq are randomly selected scalar factors. The gradient of the pseudo response
is:

∇Θpseudo(x) =
m

∑
q=1

γq

∞

∑
k=1

n

∑
j1,..., jl ,... jk=1

(
ψ

′

l (β
(k)T
jl ,q

x)β (k)
jl ,q

k

∏
i=1,i 6=l

ψi(β
(k)T
ji,q

x)
)

Calculating derivatives of the pseudo response as opposed to each individual re-
sponse provides the necessary derivative information while saving considerable
computational time for large models with many inputs and outputs.

3 Implementation

In this section we discuss the rationale for the specific AD approach, tool indepen-
dent concerns and some aspects of applying the tools to the problem scenario.

3.1 Gradients with OpenAD

The numerical modelΘ has the formy = Θ(x), wherey ∈ R
m is the output and

x ∈ R
n the input vector. No additional information regardingΘ is required except

for the programP implementingΘ . Following (3) we define the pseudo response ˜y
as the weighted sum

ỹ =
m

∑
i=1

γiyi (4)

Combining Automatic Differentiation Methods 5

This requires a change inP but is easily done at a suitable top level routine. The
source code (Fortran) for the modified programP̃ becomes the input to OpenAD
[10] which facilitates the computation of the gradient∇ỹ using reverse mode source
transformation. The overall preparation of the model and the first driver was done
following the steps outlined in [11].

The source code ofP used for the test cases described in Sect. 4 exhibited some
of the programming constructs known to be obstacles for the application of source
transformation AD. Among them are the use ofequivalence especially for the
initialization of common blocks. The idiom there was to equivalence an array of
length 1 with the first element in the common block. Then the length-1 array was
used to access the entire common block via subscript values greater than 1. The
Fortran standard requires that a subscript value shall be within the bounds for its
dimension but typically this cannot be verified at compile time and therefore this
non-standard is tacitly accepted. It has since appeared that the same pattern is also
used in other nuclear engineering models making this problem more interesting than
it would be for just for a single occurrence.

OpenAD usesassociation by address [5], that is an active type, as the means of
augmenting the original program data to hold the derivativeinformation. The usual
activity analysis would ordinarily trigger the redeclaration of only a subset of com-
mon block variables. Because the access of the common block via the array enforces
a uniform type for all common block variables to maintain proper alignment, all
common block variables had to be activated. Furthermore, because the equivalence
construct applied syntactically only to the first common block variable, the implicit
equivalence of all other variables cannot be automaticallydeduced and required a
change of the analysis logic for OpenAD to maintain alignment by conservatively
overestimating the active variable set.

Superficially this may seem a drawback of the association by address. Theas-
sociation by name [5], used in other AD source transformation tools will not fare
better though. Shortening the corresponding loop for the name-associated and equiv-
alenced derivative-carrying array is difficult for interspersed passive data and there-
fore one will resort to the same alignment requirement.

Once the source transformation succeeds a suitable driver logic has to be written
to accommodate the steps needed fork evaluations of the gradient∇ỹ(j) using ran-

dom weightsγ(j)
i and randomly set inputsx(j)

i . Thek gradients form the columns
of

G =
[
∇ỹ(1), . . . ,∇ỹ(k)

]

The effective rank ofG will be found via the following modified version of RFA,
cf. Sect. 2. A singular value decomposition (SVD) ofG is computed in the form
G = USVT , with U ∈ R

n×p,V ∈ R
k×p,S = diag(σ1, . . . ,σp), andσ1 > .. . > σp ≥

0 the singular values ofG. We successively drop the smallest singular values
σp,σp−1, . . . ,σp−l , computeGp−l = USp−lVT and test

||G−Gp−l ||

||G||
< ε (5)

6 James A. Reed, Jean Utke, and Hany S. Abdel-Khalik

for a givenε. The lastGp−l ≡ G̃ satisfying (5) has rankr = p− l. Next, G̃ is QR
factorized

G̃ = QR = [Qr Q2]R

where the submatrixQr ∈R
n×r contains only the firstr columns ofQ. The columns

of Qr are used to define the (reduced) pseudo inputs.

x̃ = QT
r x

Because of orthogonality we can simply prepend to the original programP logic
implementingx = Qr x̃ to have thẽx as our new reduced set of input variables for
which derivatives will be computed. Similar to (4), this is easily done by adding
code in a suitable top level routine yieldinĝP(x̃) = y, P̂ : Rr 7→ R

m.

3.2 Higher Order Derivatives with Rapsodia

Rapsodia [4] is used to compute all derivative tensor elements up to ordero

[
∂ oyi

∂ x̃o1
1 . . .∂ x̃or

r

]
, with multi-indexo, where o = |o|=

r

∑
k=1

ok , (6)

for P̂ following the interpolation approach in [6] supported by Rapsodia, see also
[3].

Rapsodia is in principle based on operator overloading for the forward propaga-
tion of univariate Taylor polynomials. All other operator overloading based AD tools
have overloaded operators that are hand-coded, operate on Taylor coefficient arrays
with variable length in loops with variable bounds to accommodate the derivative
orders and numbers of directions needed by the application.In contrast, Rapsodia
generates on demand a library of overloaded operators for a specific number of
directions and a specific order. Thus, at compile time, the loops are already repre-
sented in (partially) unrolled code along with a fixed (partially flat) data structure
that provides more freedom for compiler optimization. Because of the overall as-
sumption thatr, the reduced input dimension, is much smaller thanm the higher
order derivative computation in forward mode is feasible and appropriate.

Because overloaded operators are triggered by using a special (active) type for
which they are declared it now appears as a nice confluence of features that OpenAD
for the gradient computation already does the data augmentation via association by
address, i.e. via an active type, and therefore the assumption could be made that one
merely has to change the OpenAD active type to a Rapsodia active type to use the
operator overloading library. The following features of the OpenAD type change
already undertaken for Sect. 3.1 can (partially) be reused.

selective type change based on activity analysis: Here the main difference to Sect. 3.1
is the change of inputs fromx to x̃ and converselỹy to y. This merely requires

Combining Automatic Differentiation Methods 7

subroutine foo(a,b,c)
type(active)::a,c
real::b
!

end subroutine

real :: d, t2; type(active):: e, f t1
!...
call cvrt p2a(c,t1); call cvrt a2p(d,t2)
call foo(t1,t2,f)
call cvrt a2p(t1,c); call cvrt p2a(t2,d)

Fig. 1 Passive↔ active type change conversionscvrt {p2a|a2p} for a subroutine call
foo(d,e,f) made by OpenAD for applying a Rapsodia-generated library (shortened names,
active variables underlined).

changing the pragma declarations identifying the dependent and independent
program variables in the top level routine.

type conversion for changing activity patterns in calls: The activity analysis in-
tentionally does not yield matching activity signatures for all calling contexts
of any given subroutine. Therefore, for a subroutinefoo(a,b,c), the formal
parametersa,c may be determined as active whileb remains passive. For a
given calling contextcall foo(d,e,f) it may be that the type of the actual
parameterd is passive ore is active in which case pre and post conversion calls
to a type-matching temporary may have to be generated, see anillustration in
Fig. 1.

default projections to the value component: The type change being applied to the
program variables, arithmetic and I/O statements referencing active variables are
adapted to access the value component of the active type to replicate the original
computation.

These portions are implemented in theTypeChange algorithm stage within the
xaifBooster component of OpenAD. Of course, the last feature prevents trig-
gering the overloaded operators and the value component access needs to be dropped
from the transformation. On the other hand, as in most operator overloading tools
there is, as a safety measure, no assignment operator or implicit conversion from
active types to the passive floating point types. Therefore,assignment statements to
passive left-hand sides need to retain the value component access in the right-hand-
side expressions. These specific modifications were implemented in OpenAD’s post
processor with a--overload option. While manual type change was first at-
tempted it quickly proved a time intensive task even on the moderately sized nu-
clear engineering source code in particular because of the many I/O statements that
would need adjustments and the fact that the Fortran source code given in fixed for-
mat made simple editor search and replaces harder. Therefore this manual attempt
was abandoned and this modification of the OpenAD source transformation capa-
bilities proved useful.

Given the type change transformation, the tensors in (6) arecomputed with Rap-
sodia. The first order derivatives in terms of thex rather than thẽx are recovered as
follows.

∂yi

∂x j
=

r

∑
k=1

∂yi

∂ x̃k︸︷︷︸
∈J̃

∂ x̃k

∂x j
=

r

∑
k=1

∂yi

∂ x̃k
q jk

8 James A. Reed, Jean Utke, and Hany S. Abdel-Khalik

In terms of the Jacobian this isJ = Qr J̃. Similarly for second order one has

∂ 2yi

∂x j∂xg
= ∑

k,l

∂ 2yi

∂ x̃k∂ x̃l︸ ︷︷ ︸
∈H̃i

q jkqgl

which in terms of the HessianHi for i-th outputyi is Hi = Qr H̃iQT
r . Theo-th order

derivatives are recovered by summing over the multi-indices k

∂ oyi

∂x j1 . . .∂x jo
= ∑

|k|=o

∂ oyi

∂ x̃k1 . . .∂ x̃ko

o

∏
l=1

q jlkl

For all derivatives in increasing order, products of the of theq jk can be incrementally
computed.

4 Test Cases

Simple scalar-valued model We consider an example model given as

y = aTx+(bTx)2+sin(cTx)+
1

1+ e dTx

where vectorsx,a,b,c, andd ∈ R
n. The example model is implemented in a simple

subroutine namedhead along with adriver main program that callshead and
is used to extract the derivatives. Thenhead was transformed with OpenAD to
compute the gradient ofy with respect to the vectorx.

A Python script was written to execute the subspace identification algorithm with
the compiled executable code. The script takes a guessk for the effective rank and
runs the code fork random input vectorsx. Within the Python script, the responses
are collected into a matrixG. Following the algorithm, the singular values ofG are
found and reduced versions ofG are calculated until the effective rankr is deter-
mined. A QR decomposition is then performed on the reduced matrix and the first
r columns ofQ are written to a file to be used as input to the Rapsodia code. Using
the model above withn = 50 and random input vectors with 8 digits of precision for
a,b,c, andd, with ε = 10−6, the effective rank was found to ber = 3.

Thedriver is then modified for the use with Rapsodia and the library is gen-
erated with the appropriate settings for the order and the number or directions. For

first order this is simply the number of inputs. Once the derivatives
(

dy
dx̃

)
are calcu-

lated , the full derivatives can be reconstructed by multiplying the Rapsodia results
by theQ1matrix used as input. Using an effective rank ofr = 3 and therefore aQ1
matrix of dimension 50×3, the reconstructed derivatives were found to have rela-
tive errors on the order of 10−13 compared to results obtained from an unreduced
Rapsodia calculation.

Combining Automatic Differentiation Methods 9

Derivative Order Unreduced DirectionsReduced DirectionsRelative Error

1 50 3 10−13

2 1275 6 10−12

3 22,100 10 10−6

Table 1 Comparison of number of required directions for unreduced and the reduced model to-
gether with the relative error

Using Rapsodia to calculate second order derivatives simply involves changing
the derivative order too = 2 and recompiling the code. The output can then be con-
structed into a matrix̃H of sizer × r and the full derivatives can be recovered by
Q1H̃QT

1 which results in an× n symmetric matrix. When the second order deriva-
tives are calculated for the example above, there are only 6 directions required for an
effective rank of 3 as opposed to 1275 directions for the fullproblem. The relative
errors of the reduced derivatives are on the order of 10−12.

Third order derivatives were also calculated using this example. The unreduced
problem would require 22,100 directions while the reduced problem only requires
10. Relative errors were much higher for this case but still at a reasonable order of
10−6. The relative errors for each derivative order are summarized in Table 1.

Simple Vector-valued model Problems with multiple outputs require a slightly
different approach when determining the subspace. First weconsider

y1 = aT x+(bT x)2; y2 = sin(cT x)+(1+ e−dT x)−1; y3 = (aT x)(eT x); y4 = 2eT x; y5 = (dT x)−3

Following (4) we compute the pseudo response ˜y in the modified version of the
head routine implementing the above example model with randomlygenerated
factorsγi that are unique for each execution of the code. The computed gradient is
of ỹ with respect tox. Then, following the same procedure as before, the subspace
identification script was run forn = 50 andε = 10−6. The effective rank was found
to ber = 5 and we found for similar accuracy the reduction of directions needed for
the approximation from 250 to 5, 6375 to 75 and 110500 to 175 for first up to third
order, respectively.

MATWS A more realistic test problem was done with the MATWS (a subset
of SAS4A [9]) Fortran code for nuclear reactor simulations.Single channel cal-
culations were performed using as inputs the axial expansion coefficient, Doppler
coefficient, moderator temperature coefficient, control rod driveline, and core radial
expansion coefficient. The outputs of interest are temperatures within the channel in
the coolant, the structure, the cladding, and the fuel. Thisgives a 4×5 output for
the first order derivatives and 15 and 35 directions for 2nd and 3rd order, respec-
tively. After applying the subspace identification algorithm, it was found that the
effective rank was r = 3, giving 6 and 10 directions for 2nd and3rd order derivative
calculations. Reductions and relative approximation errors are shown in Table 2.

This manuscript has presented a new approach to increase theefficiency of au-
tomatic differentiation when applied to high dimensional nonlinear models where

10 James A. Reed, Jean Utke, and Hany S. Abdel-Khalik

Derivative Order Unreduced DirectionsReduced DirectionsRelative Error

1 5 3 0.00625
2 15 6 0.038

Table 2 Comparison of number of required directions for unreduced and the reduced model to-
gether with the relative error

high order derivatives are required. The approach identifies few pseudo input pa-
rameters and output responses which can be related to the original parameters and
responses via simple linear transformations. The AD is thenapplied to the pseudo
variables which results in significant computational savings.

Acknowledgements This work was supported by the U.S. Department of Energy, undercontract
DE-AC02-06CH11357.

References

1. Abdel-Khalik, H.: Adaptive core simulation. Ph.D. thesis (2004). URLhttp://books.
google.com/books?id=5moolOgFZ84C

2. Bang, Y., Abdel-Khalik, H., Hite, J.M.: Hybrid reduced order modeling applied to nonlinear
models. International Journal for Numerical Methods in Engineering (to appear)

3. Charpentier, I., Utke, J.: Rapsodia: User manual. Tech. rep.,Argonne National Labo-
ratory. Latest version available online athttp://www.mcs.anl.gov/Rapsodia/
userManual.pdf

4. Charpentier, I., Utke, J.: Fast higher-order derivative tensors with Rapsodia. Optimization
Methods Software24(1), 1–14 (2009). DOI 10.1080/10556780802413769

5. Fagan, M., Hascöet, L., Utke, J.: Data representation alternatives in semantically augmented
numerical models. In: Proceedings of the Sixth IEEE International Workshop on Source Code
Analysis and Manipulation (SCAM 2006), pp. 85–94. IEEE Computer Society, Los Alamitos,
CA, USA (2006). DOI 10.1109/SCAM.2006.11

6. Griewank, A., Utke, J., Walther, A.: Evaluating higher derivative tensors by forward propaga-
tion of univariate Taylor series. Mathematics of Computation69, 1117–1130 (2000)

7. Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation, 2nd edn. No. 105 in Other Titles in AppliedMathematics. SIAM, Philadel-
phia, PA (2008). URLhttp://www.ec-securehost.com/SIAM/OT105.html

8. Halko, N., Martinsson, P.G., Tropp, J.A.: Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions. SIAM Review 53(2), 217–
288 (2011). DOI 10.1137/090771806. URLhttp://link.aip.org/link/?SIR/53/
217/1

9. SAS4A:http://www.ne.anl.gov/codes/sas4a/
10. Utke, J., Naumann, U., Fagan, M., Tallent, N., Strout, M., Heimbach, P., Hill, C., Wunsch, C.:

OpenAD/F: A modular, open-source tool for automatic differentiation of Fortran codes. ACM
Transactions on Mathematical Software34(4), 18:1–18:36 (2008). DOI 10.1145/1377596.
1377598

11. Utke, J., Naumann, U., Lyons, A.: OpenAD/F: User Manual. Tech. rep., Argonne National
Laboratory. Latest version available online athttp://www.mcs.anl.gov/OpenAD/
openad.pdf

