
Fault Tolerance Techniques for Scalable Computing∗

Pavan Balaji, Darius Buntinas, and Dries Kimpe

Mathematics and Computer Science Division

Argonne National Laboratory

{balaji, buntinas, dkimpe}@mcs.anl.gov

Abstract

The largest systems in the world today already scale to hundreds of thousands of

cores. With plans under way for exascale systems to emerge within the next decade,

we will soon have systems comprising more than a million processing elements. As

researchers work toward architecting these enormous systems, it is becoming increas-

ingly clear that, at such scales, resilience to hardware faults is going to be a prominent

issue that needs to be addressed. This chapter discusses techniques being used for fault

tolerance on such systems, including checkpoint-restart techniques (system-level and

application-level; complete, partial, and hybrid checkpoints), application-based fault-

tolerance techniques, and hardware features for resilience.

1 Introduction and Trends in Large-Scale Computing Sys-

tems

The largest systems in the world already use close to a million cores. With upcoming systems

expected to use tens to hundreds of millions of cores, and exascale systems going up to a

billion cores, the number of hardware components these systems would comprise would be

staggering. Unfortunately, the reliability of each hardware component is not improving at

∗This work was supported by the Office of Advanced Scientific Computing Research, Office of Science,

U.S. Department of Energy, under Contract DE-AC02-06CH11357.

1



the same rate as the number of components in the system is growing. Consequently, faults

are increasingly becoming common. For the largest supercomputers that will be available

over the next decade, faults will become a norm rather than an exception.

Faults are common even today. Memory bit flips and network packet drops, for exam-

ple, are common on the largest systems today. However, these faults are typically hidden

from the user in that the hardware automatically corrects these errors by error correction

techniques such as error correction codes and hardware redundancy. While convenient,

unfortunately, such techniques are sometimes expensive with respect to cost as well as to

performance and power usage. Consequently, researchers are looking at various approaches

to alleviate this issue.

Broadly speaking, modern fault resilience techniques can be classified into three cate-

gories:

1. Hardware Resilience: This category includes techniques such as memory error

correction techniques and network reliability that are transparently handled by the

hardware unit, typically by utilizing some form of redundancy in either the data stored

or the data communicated.

2. Resilient Systems Software: This category includes software-based resilience tech-

niques that are handled within systems software and programming infrastructure.

While this method does involve human intervention, it is usually assumed that such

infrastructure is written by expert “power users” who are willing to deal with the

architectural complexities with respect to fault management. This category of fault

resilience is mostly transparent to end domain scientists writing computational science

applications.

3. Application-Based Resilience: The third category involves domain scientists and

other high-level domain-specific languages and libraries. This class typically deals

with faults using information about the domain or application, allowing developers to

make intelligent choices on how to deal with the faults.

2



In this chapter, we describe each of these three categories with examples of recent re-

search. In Section 2, we describe various techniques used today for hardware fault resilience

in memory, network and storage units. In Section 3, we discuss fault resilience techniques

used in various system software libraries, including communication libraries, task-based

models, and large data models. In Section 4, we present techniques used by application and

domain-specific languages in dealing with system faults. In Section 5, we summarize these

different techniques.

2 Hardware Features for Resilience

This section discusses some of the resilience techniques implemented in processor, memory,

storage and network hardware. In these devices, a failure occurs when the hardware is

unable to accurately store, retrieve or transmit data. Therefore most resilience techniques

focus on detection and reconstruction of corrupted data.

2.1 Processor Resilience

Detecting errors in the execution of processor instructions can be accomplished by redundant

execution, where a computation is performed multiple times and the results are compared.

In [52], Qureshi et al. identify two classes of redundant execution: space redundant and

time redundant. In space redundant execution, the computation is executed on distinct

hardware components in parallel, while in time redundant execution, the computation is

executed more than once on the same hardware components. The technique presented in

[52] is a time redundant technique which uses the time spent waiting for cache misses to

perform the redundant execution. Oh, et al. describe a space redundant technique in [47]

using super-scalar processors. In this technique separate registers are used to store the

results for each of the duplicated instructions. Periodically, the values in the registers are

compared in order to detect errors.

3



2.2 Memory Resilience

A memory error can be defined as reading the logical state of one or more bits differently

from how they were written. Memory errors are classified as either soft or hard. Soft errors

are transient; in other words, they typically do not occur repeatedly when reading the same

memory location and are caused mainly by electric or magnetic interference. Hard errors

are persistent. For example, a faulty electrical contact causing a specific bit in a data

word to be always set is a hard memory error. Hard errors are often caused by physical

problems. Note that memory errors do not necessarily originate from the memory cell itself.

For example, while the memory contents can be accurate, an error can occur on the path

from the memory to the processor.

The failure rate (and trend) of memory strongly depends on the memory technology [59].

DRAM stores individual bits as a charge in a small capacitor. Because of leaking from the

capacitor, DRAM requires periodic refreshing. DRAM memory cells can be implemented by

using a single transistor and capacitor, making them relatively inexpensive to implement,

so most of the memory found in contemporary computer systems consists of DRAM. Unfor-

tunately, like other memory technologies, DRAM is susceptible to soft errors. For example,

neutrons originating from cosmic rays can change the contents of a memory cell [24].

It is often assumed that when decreasing chip voltages in order to reduce the energy

required to flip a memory bit and increasing memory densities, the per bit soft error rate

will increase significantly [44, 58]. A number of studies, however, indicate that this is not

the case [19, 33, 8].

The DRAM error rate, depending on the source, ranges from 10−10 to 10−17 errors per

bit per hour. Schroeder and Gibson show that memory failures are the second leading cause

of system downtime [56, 57] in production sites running large-scale systems.

Memory resilience is achieved by using error detection and error correction techniques.

In both cases, extra information is stored along with the data. On retrieval, this extra

information is used to check data consistency. In the case of an error correction code

(ECC), certain errors can be corrected to recover the original data.

4



For error detection, the extra information is typically computed by using a hash function.

One of the earliest hash functions used for detecting memory errors is the parity function.

For a given word of d bits, a single bit is added so that the number of 1 bits occurring in the

data word extended by the parity bit is either odd (odd parity) or even (even parity). A

single parity bit will detect only those errors modifying an odd number of bits. Therefore,

this technique can reliably detect only those failures resulting in the modification of a single

data bit.

Parity checking has become rare for main memory (DRAM), where it has been replaced

by error-correcting codes. However, parity checking and other error detection codes still

have a place in situations where detection of the error is sufficient and correction is not

needed. For example, instruction caches (typically implemented by using SRAM), often

employ error detection since the cache line can simply be reloaded from main memory if an

error is detected. On the Blue Gene/L and Blue Gene/P machines, both L1 and L2 caches

are parity protected [63].

Since on these systems memory writes are always write-through to the L3 cache, which

uses ECC for protection, error detection is sufficient in this case even for the data cache.

When an error-correcting code is used instead of a hash function, certain errors can be

corrected in addition to error detection.

For protecting computer memory, hamming codes [31] are the most common. While

pure hamming codes can detect up to two bit errors in a word and can correct a single-bit

error, a double-bit error from a given data word and a single-bit error from another data

word can result in the same bit pattern. Therefore, in order to reliably distinguish single-bit

errors (which can be corrected) from double-bit errors (which cannot be corrected), an extra

parity bit is added. Since the parity bit will detect whether the number of error bits was

odd or even, a failed data word that fails both the ECC and the parity check indicates a

single-bit error, whereas a failed ECC check but correct parity indicates an uncorrectable

dual-bit error. Combining a hamming code with an extra parity bit results in a code that

is referred to as single error correction, double error detection (SECDED).

5



Unfortunately, memory errors aren’t always independent. For example, highly energetic

particles might corrupt multiple adjacent cells, or a hard error might invalidate a complete

memory chip. In order to reduce the risk of a single error affecting multiple bits of the same

logical memory word, a number of techniques have been developed to protect against these

failures. These techniques are, depending on the vendor, referred to as chip-kill, chipspare,

or extended ECC. They work by spreading the bits (including ECC) of a logical memory

word over multiple memory chips, so that each memory chip contains only a single bit of

each logical word. Therefore, the failure of a complete memory chip will affect only a single

bit of each word as opposed to four or eight (depending on the width of the memory chip)

consecutive bits.

Another technique is to use a different ECC. Such ECC codes become relatively more

space-efficient as the width of the data word increases. For example, a SECDED hamming

code for correcting a single bit in a 64-bit word takes eight ECC bits. However, correcting

a single bit in a 128-bit word requires only nine ECC bits. By combing data into larger

words, one can use the extra space to correct more errors. With 128-bit data words and 16

ECC bits, it is possible to construct an ECC that can correct random single-error bits but

up to four (consecutive) error bits.

Since ECC memory can tolerate only a limited number of bit errors and since errors

are detected and corrected only when memory is accessed, it is beneficial to periodically

verify all memory words in an attempt to reduce the chances of a second error occurring

for the same memory word. When an error is detected, the containing memory word can

be rewritten and corrected before a second error in the same word can occur. This is

called memory scrubbing [55]. Memory scrubbing is especially important for servers, since

these typically have large amounts of memory and very large uptimes, thus increasing the

probability of a double error.

The use of ECC memory is almost universally adopted for supercomputers and servers.

This is the case for the IBM Blue Gene/P [63] and the Cray XT5 [1]. Note that the IBM

Blue Gene/L did not employ error correction or detection for its main memory. Personal

6



computing systems such as laptops and home computers typically do not employ ECC

memory.

2.3 Network Resilience

Network fault tolerance has been a topic of continued research for many years. Several

fault tolerance techniques have been proposed for networks. In this section, we discuss

three techniques: reliability, data corruption, and automatic path migration.

Reliability. Most networks used on large-scale systems today provide reliable communi-

cation capabilities. Traditionally, reliability was achieved by using kernel-based protocol

stacks such as TCP/IP. In the more recent past, however, networks such as InfiniBand [64]

and Myrinet [18] have provided reliability capabilities directly in hardware on the network

adapter. Reliability is fundamentally handled by using some form of a handshake between

the sender and receiver processes, where the receiver has to acknowledge that a piece of

data has been received before the sender is allowed to discard it.

Data Corruption. Most network today automatically handle data corruption that might

occur during communication. Traditional TCP communication relied on a 16-bit checksum

for data content validation. Such low-bit checksums, however, have proved to be prone

to errors when used with high-speed networks or networks on which a lot of data content

is expected to be communicated [60]. Modern networks such as InfiniBand, Myrinet, and

Converged Ethernet1 provide 32-bit cyclic-redundancy checks (CRCs) that allow the sender

to hash the data content into a 32-bit segment and the receiver to verify the validity of

the content by recalculating the CRC once the data is received. Some networks, such

as InfiniBand, even provide dual CRC checks (both 16-bit and 32-bit) to allow for both

end-to-end and per-network-hop error corrections.

One of the concerns of hardware managed data corruption detection is that they are

1Converged Ethernet is also sometimes referred to as Converged Enhanced Ethernet, Datacenter Ethernet,

or Lossless Ethernet.

7



not truly end to end. Specifically, since the CRC checks are performed on the network

hardware, they cannot account for errors while moving the data from the main memory

to the network adapter. However, several memory connector interconnects, such as PCI

Express and HyperTransport, also provide similar CRC checks to ensure data validity.

Nevertheless, the data has no protection all the way from main memory of the source node

to the main memory of the destination node. For example, if an error occurs after data

validity is verified by the PCI Express link, but before the network calculates its CRC, such

an error will go undetected. Consequently, researchers have investigated software techniques

to provide truly end-to-end data reliability, for example by adding software CRC checks

within the MPI library.2

Automatic Path Migration. Automatic path migration (APM) is a fairly recent tech-

nique for fault tolerance provided by networks such as InfiniBand. The basic idea of APM is

that each connection uses a primary path but also has a passive secondary path assigned to

it. If any error occurs on the primary path (e.g., a network link fails), the network hardware

automatically moves the connection to the secondary fallback path. Such reliability allows

only one failure instance, since only one secondary path can be specified. Further, APM

protects communication only in cases where an intermediate link in the network fails. If an

end-link connecting the actual client machine fails, APM will not be helpful.

A secondary concern that researchers have raised with APM is the performance im-

plication of such migration. While migrating an existing connection to a secondary path

would allow the communication to continue, it might result in the migrated communication

flow interfering with other communication operations thus causing performance loss. Un-

fortunately, currently no techniques have been shown to work around this issue specifically,

although the recently introduced adaptive routing capabilities in InfiniBand work around

this problem.

2The MVAPICH project is an example of such an MPI implementation: http://mvapich.cse.ohio-

state.edu.

8



2.4 Storage Resilience

Two types of storage devices can be found in modern large installation sites: electrome-

chanical devices, which contain a spinning disks (i.e., traditional magnetic hard drives), and

solid-state drives (SSD), which use a form of solid-state memory.

Spinning disks partition data into sectors. For each sector, an ECC is applied (typically

a Reed-Solomon code [70]).

The most common type of solid-state drive uses flash memory internally to hold the

data. There are two common types of flash, differentiated by how many bits are stored in

each cell of the flash memory. In Single Level Cell (SLC) flash, a cell is in either a low or

high state, encoding a single bit. In Multi Level Cell (MLC) flash, there are four possible

states, making it possible to store two bits in a single cell.

For SLC devices, hamming codes are often used to detect and correct errors. A com-

mon configuration is to organize data in 512-byte blocks, resulting in 24 ECC bits. For

MLC devices, however, where a failure of a single cell results in the failure of two consec-

utive bits, a different ECC has to be used. For these devices, Reed-Solomon codes offer a

good alternative. Because of the computational complexity of the Reed-Solomon code, the

Bose-Chaudhuri-Hocquenghem (BCH) algorithm is becoming more popular since it can be

implemented in hardware [69].

However, while resilience techniques within each physical device can protect against

small amounts of data corruption, uncorrectable errors do still occur [56, 51]. In addition,

it is possible for the storage device as a whole to fail. For example, in rotating disks,

mechanical failure cannot be excluded. Moreover, storage devices are commonly grouped

into a larger, logical device to obtain higher capacities and higher bandwidth, increasing

the probability that the combined device will suffer data loss due to the failure of one of its

components.

Because of the nature of persistent storage, persistent data loss typically has a higher

cost. In order to reduce the probability of persistent data loss, storage devices can be

grouped into a redundant array of independent disks (RAID) [49].

9



A number of RAID levels, differing in how the logical device is divided and replicated

among the physical devices, have become standardized. A few examples are described

below.

RAID0 Data is spread over multiple disks without adding any redundancy. A single failure

results in data loss.

RAID1 Data is replicated on one (or more) additional drives. Up to n − 1 (assuming n

devices) can fail without resulting in data loss.

RAID2 Data is protected by using an ECC. For RAID2, each byte is spread over different

devices, and a hamming code is applied to corresponding bits. The resulting ECC

bits are stored on a dedicated device.

RAID3 and RAID4 These are like RAID2, but instead of on a bit level, RAID3 and

RAID4 use byte granularity for error correction. XOR is used as error correction

code. RAID3 and RAID4 differ in how the data is partitioned (block versus stripe).

RAID5 This is like RAID4, but the parity data is spread over multiple devices.

RAID6 This is like RAID5 but with two parity blocks. Therefore, RAID6 can tolerate

two failed physical devices.

When a failure is detected, the failed device needs to be replaced, after which the array

will regenerate the data of the failed device and store it on the new device. This is referred

to as rebuilding the array. Because of the difference in increases in bandwidth and capacity

for storage devices, a rebuild can take a fairly long time (hours). During this time, all RAID

levels except for RAID6 are vulnerable as they offer no protection against further failures.

As is the case with memory, many RAID arrays employ a form of scrubbing to detect failure

before errors can accumulate.

10



m
1

m
2

m
3

m
4

P
0

P
1

P
2

Figure 1: Consistent vs. inconsistent checkpoints

3 System Software Features for Resilience

In this section, we discuss fault resilience techniques used in various system software li-

braries, including communication libraries, task-based models, and large data models. We

start by describing checkpointing, which is used in many programming models, then describe

techniques used for specific programming models.

3.1 Checkpointing

Checkpointing is a fault-tolerance mechanism where the state of a system running an appli-

cation is recorded in a global checkpoint so that, in the event of a fault, the system state can

be rolled back to the checkpoint and allowed to continue from that point, rather restart-

ing the application from the beginning. System-level checkpointing is popular because it

provides fault-tolerance to an application without requiring the application to be modified.

A global checkpoint of a distributed application consists of a set of checkpoints of indi-

vidual processes. Figure 1 shows three processes (represented by horizontal lines) and two

global checkpoints (represented as dotted lines) consisting of individual checkpoints (rep-

resented as rectangles). The global checkpoint on the left is consistent because it captures

a global state that may have occurred during the computation. Note that while the global

state records message m2 being sent but not received, this could have occurred during the

computation if the message was sent and was still in transit over the network. The second

global checkpoint is inconsistent because it captures message m3 as being received but not

11



sent, which could never have occurred during the computation. Messages such as m3 are

known as orphan messages.

Checkpointing protocols use various methods either to find a consistent global checkpoint

or to allow applications to roll back to inconsistent global checkpoints by logging messages.

3.1.1 System-Level Checkpointing

In [26], Elnozahy et al. classify checkpoint recovery protocols into uncoordinated, coordi-

nated, communication-induced and log-based protocols.

In uncoordinated checkpoint protocols, processes independently take checkpoints with-

out coordinating with other processes. By not requiring processes to coordinate before

taking checkpoints, a process can decide to take checkpoints when the size of its state is

small, thereby reducing the size of the checkpoint [68]. Also because processes are not forced

to take checkpoints at the same time, checkpoints taken by different processes can be spread

out over time thereby spreading out the load on the filesystem [48]. When a failure occurs,

a consistent global checkpoint is found by analyzing the dependency information recorded

with individual checkpoints [15]. Note, however, that because checkpoints are taken in an

uncoordinated manner, orphan messages are possible and may result in checkpoints taken

at some individual process that are not part of any consistent global checkpoint. In which

case that process will need to roll back to a previous checkpoint. Rolling back that process

can produce more orphan messages requiring other processes to roll back further. This is

known as cascading rollbacks or the domino-effect [53] and can result in the application

rolling back to the its initial state because no consistent global checkpoint exists.

Coordinated checkpoint protocols [20][41] do not suffer from cascading rollbacks because

the protocol guarantees that every individual checkpoint taken is part of a consistent global

checkpoint. Because of this feature, only the last global checkpoint needs to be stored.

Once a global checkpoint has been committed to stable storage, the previous checkpoint

can be deleted. This also eliminates the need to search for a consistent checkpoint during

the restart protocol. Coordinated checkpoints can be blocking or nonblocking. In a blocking

12



protocol, all communication is halted, and communication channels are flushed while the

checkpointing protocol executes [62]. This ensures that there are no orphan messages. In

a nonblocking protocol, the application is allowed to continue communicating concurrently

with the checkpointing protocol. Nonblocking protocols use markers sent either as separate

messages or by piggybacking them on application messages. When a process takes a check-

point, it sends a marker to every other process. Upon receiving a marker, the receiver takes

a checkpoint if it hasn’t already. If the markers are sent before any application messages

or if the marker is piggybacked and therefore processed before the application message is

processed, then orphan messages are avoided.

In communication-induced checkpointing [34][54][45], processes independently decide

when to take a checkpoint, similar to uncoordinated checkpoints, but also take forced check-

points. Processes keep track of dependency information of messages by using Lamport’s

happen-before relation. This information is piggybacked on all application messages. When

a process receives a message, if, based on its dependency information and the information

in the received message, it determines that processing the application message would result

in an orphan message, then the process takes a checkpoint before processing the application

message.

Log-based protocols [38][37][61][30] require that processes be piecewise deterministic,

meaning that given the same input, the process will behave exactly the same every time

it is executed. Furthermore, information on any nondeterministic events, such as the con-

tents and order of incoming messages, can be recorded and used to replay the event. In

pessimistic logging, event information is stored to stable storage immediately. While this

can be expensive during failure-free execution, only the failed process needs to be rolled

back, since all messages it received since its last checkpoint are recorded and can be played

back. In optimistic logging, event information is saved to stable storage periodically, thus

reducing the overhead during failure-free execution. However, the recovery protocol is com-

plicated because the protocol needs to use dependency information from the event logs to

determine which checkpoints form a consistent global state and which processes need to be

13



rolled back.

3.1.2 Complete vs. Incremental Checkpoints

A complete system-level checkpoint saves the entire address space of a process. One way to

reduce the size of a checkpoint is to use incremental checkpointing. In incremental check-

pointing unmodified portions of a process’s address space are not included in the checkpoint

image. In order to determine which parts of the address space have been modified, some

methods use a hash over blocks of memory [2]; other approaches use a virtual memory

system [35][66].

Page-based methods use two approaches. In one approach, the checkpointing system

creates an interrupt handler for page faults. After a checkpoint is taken, all of the process’s

pages are set to read-only. When the application tries to modify a page, a page-fault is

raised and the checkpointing system will mark that page as having been modified. This

approach has the advantage of not requiring modification of the operating system kernel;

however, it does have the overhead of a page fault the first time the process writes to a page

after a checkpoint. Another approach is to patch the kernel and keep track of the dirty bit

in each pages page table entry in a way that allows the checkpointing system to clear the

bits on a checkpoint without interfering with the kernel. This has the benefit of not forcing

page faults, but it does require kernel modification.

Incremental checkpoints are typically used with periodic complete checkpoints. The

higher the ratio of incremental to complete checkpoints, the higher the restart overhead

because the current state of the process must be reconstructed from the last complete

checkpoint and every subsequent incremental checkpoint.

3.2 Fault Management Enhancements to Parallel Programming Models

While checkpointing has been the traditional method of providing fault tolerance and is

transparent to the application, nontransparent mechanisms are becoming popular. Non-

transparent mechanisms allow the application to control how faults should be handled.

14



Programming models must provide features that allow the application to become aware of

failures and to isolate or mitigate the effects of failures. We describe various fault-tolerance

techniques appropriate to different programming models.

3.2.1 Process-Driven Techniques

In [27], Fagg and Dongarra proposed modifications to the MPI-2 API to allow processes to

handle process failures. They implemented the standard with their modification in FT-MPI.

An important issue to address when adding fault-tolerance features to the MPI standard

is how to handle communicators that contain failed processes. A communication operation

will return an error if a process tries to communicate with a failed process. The process

must then repair the communicator before it can proceed. FT-MPI provides four modes in

which a communicator can be repaired: SHRINK, BLANK, REBUILD, and ABORT. In

the SHRINK mode, the failed processes are removed from the communicator. When the

communicator is repaired in this way, the size of the communicator changes and possibly

the ranks of some processes. In the BLANK mode, the repaired communicator essentially

contains holes where the failed processes had been, so that the size of the communicator and

the ranks of the processes don’t change, but sending to or receiving from a failed process

results in an invalid-rank error. In the REBUILD mode, new processes are created and

replace the failed processes. A special return value from MPI Init tells a process whether

it is an original process, or it has been started to replace a failed process. In the ABORT

mode, the job is aborted when a process fails.

Another important issue is the behavior of collective communication operations when

processes fail. In FT-MPI, collective communication operations are guaranteed to either

succeed at every process or to fail at every process. In FT-MPI, information about failed

processes is stored on an attribute attached to a communicator, which a process can query.

It is not clear from the literature how FT-MPI supports MPI one-sided or file operations.

The MPI Forum is working on defining new semantics and API functions for MPI-3

to allow applications to handle the failure of processes. The current proposal (when this

15



chapter was written) is similar to the BLANK mode of FT-MPI in that the failure of a

process does not change the size of a communicator or the ranks of any processes. While

FT-MPI requires a process to repair a communicator as soon as a failure is detected, the

MPI-3 proposal does not have this requirement. The failure of some process will not affect

the ability of live processes to communicate.

Because of this approach, wildcard receives (i.e., receive operations that specify MPI

ANY SOURCE as the sender) must be addressed differently. If a process posts a wildcard

receive and some process fails, the MPI library does not know whether the user intended the

wildcard receive to match a message from the failed process. If the receive was intended to

match a message from the failed process, then the process might hang waiting for a message

that will never come, in which case the library should raise an error for that receive and

cancel it. However, if a message sent from another process can match the wildcard receive,

then raising an error for that receive would not be appropriate. In the current proposal,

a process must recognize all failed processes in a communicator before it can wait on a

wildcard receive. So, if a communicator contains an unrecognized failed process, the MPI

library will return an error whenever a process waits on a wildcard receive, for example,

through a blocking receive or an MPI Wait call, but the receive will not be canceled. This

approach will allow an application to check whether the failed processes were the intended

senders for the wildcard receive.

The proposal requires that collective communication operations not hang because of

failed processes, but it does not require that the operation uniformly complete either suc-

cessfully or with an error. Hence, the operation may return successfully at one process,

while returning with an error at another. The MPI Comm validate function is provided to

allow the MPI implementation to restructure the communication pattern of collective op-

erations to bypass failed processes. This function also returns a group containing the failed

processes that can be used by the process to determine whether any processes have failed

since the last time the function was called. If no failures occurred since the last time the

function was called, then the process can be sure that all collective operations performed

16



during that time succeeded everywhere. Similar validation functions are provided for MPI

window objects for one-sided operations and MPI file objects to allow an application to

determine whether the preceding operations completed successfully.

Process failures can be queried for communicator, window, and file objects. The query

functions return MPI group objects containing the failed processes. Group objects provide a

scalable abstraction for describing failed processes (compared to, e.g., an array of integers).

Another problem for exascale computing is silent data corruption (SDC). As the number

of components increases, the probability of bit flips that cannot be corrected with ECC or

even detected with CRC increases. SDC can result in an application returning invalid

results without being detected. To address this problem, RedMPI [28] replicates processes

and compares results to detect SDC. When the application sends a message, each replica

sends a message to its corresponding receiver replica. In addition a hash of the message

is sent to the other receiver replicas so that each receiver can verify that it received the

message correctly and that if SDC occurred at the sender, it did not affect the contents of

the message. Using replicas also provides tolerance to process failure. If a process fails, a

replica can take over for the failed process.

3.2.2 Data-Driven Techniques

Global Arrays [46] is a parallel programming model that provides indexed array-like global

access to data distributed across the machine using put, get and accumulate operations.

In [3], Ali et al. reduce the overhead of recovering from a failure by using redundant

data. The idea is to maintain two copies of the distributed array structure but distribute

them differently so that both copies of a chunk of the array aren’t located on the same

node. In this way if a process fails, there is a copy of every chunk that was stored on

that process on one of the remaining processes. The recovery process consists of starting a

new process to replace the failed one, and restoring the copies of the array stored at that

process. Furthermore, because the state of the array is preserved, the nonfailed processes

can continue running during the recovery process. This approach significantly reduces the

17



recovery time compared with that of checkpointing and rollback.

3.2.3 Task-Driven Techniques

Charm++ [39] is a C++-based. object-oriented parallel programming system. In this

system, work is performed by tasks, or chares, which can be migrated by the Charm++

runtime to other nodes for load balancing. Charm++ provides fault tolerance through

checkpointing and allows the application to mark which data in the chare to include in the

checkpoint image, thus reducing the amount of data to be checkpointed. There are two

modes for checkpointing [40]. In the first mode, all threads collectively call a checkpointing

function periodically. In this mode, if a node fails, the entire application is started from

the last checkpoint. In order to reduce the overhead of restarting the entire application,

checkpoints can be saved to memory or local disk as well as to the parallel filesystem. Thus,

nonfailed processes can restart from local images, greatly reducing the load on the parallel

filesystem.

The other checkpointing mode uses message logging so that if a process fails, only that

process needs to be restarted. When a process fails, it is restarted from its last checkpoint

on a new node. Then the process will replay the logged messages in the original order.

When a node fails, the restarted processes need not be restarted on the same node, but can

be distributed among other nodes to balance the load of the restart protocol.

CiLK [16] is a thread-based parallel programming system using C. CiLK-NOW[17] was

an implementation of CiLK over a network of workstations. The CiLK-NOW implementa-

tion provided checkpointing of the entire application if critical processes failed but also was

able to restart individual threads if they crashed or the nodes they were running on failed.

4 Application or Domain-Specific Fault Tolerance Techniques

While hardware and systems software techniques for transparent fault tolerance are conve-

nient for users, such techniques often impact the overall performance, system cost, or both.

Several computational science domains have been investigating techniques for application or

18



domain-specific models for fault tolerance that utilize information about the characteristics

of the application (or the domain) to design specific algorithms that try to minimize such

performance loss or system cost. These techniques, however, are not completely transparent

to the domain scientists.

In this section, we discuss two forms of fault tolerance techniques. The first form is

specific to numerical libraries, where researchers have investigated approaches in which

characteristics of the mathematical computations can be used to achieve reliability in the

case of node failures (discussed in Section 4.1). The second form is fault resilience techniques

utilized directly in end applications (discussed in Section 4.2); we describe techniques used

in two applications: mpiBLAST (computational biology) and Green’s function Monte Carlo

(nuclear physics).

4.1 Algorithmic Resilience in Math Libraries

The fundamental idea of algorithm-based fault tolerance (ABFT) is to utilize domain knowl-

edge of the computation to deal with some errors. While the concept is generic, a large

amount of work has been done for algorithmic resilience in matrix computations. For in-

stance, Anfinson and Luk [36] and Huang and Abraham [7] showed that it is possible to

encode a hash of the matrix data being computed on, such that if a process fails, data cor-

responding to this process can be recomputed based on this hash without having to restart

the entire application. This technique is applicable to a large number of matrix operations

including addition, multiplication, scalar product, LU-decomposition, and transposition.

This technique was further developed by Chen and Dongarra to tolerate fail-stop fail-

ures that occurred during the execution of high-performance computing (HPC) applications

[21, 22] (discussed in Section 4.1.1). The idea of ABFT is to encode the original matrices

by using real number codes to establish a checksum type of relationship between data, and

then redesign algorithms to operate on the encoded matrices in order to maintain the check-

sum relationship during the execution. Wang et al. [67] enhanced Chen and Dongarra’s

work to allow for nonstop hot-replacement based fault recovery techniques (discussed in

19



Section 4.1.2).

4.1.1 Fail-Stop Fault Recovery

Assume there will be a single process failure. Since it’s hard to locate which process will

fail before the failure actually occurs, a fault-tolerant scheme should be able to recover the

data on any process. In the conventional ABFT method, it is assumed that at any time

during the computation the data Di on the ith process Pi satisfies

D1 + D2 + · · ·+ Dn = E, (1)

where n is the total number of processes and E is data on the encoding process. Thus, the

lost data on any failed process can be recovered from Eq. (1). Suppose Pi fails. Then the

lost data Di on Pi can be reconstructed by

Di = E − (D1 + · · ·+ Di−1 + Di+1 + · · ·+ Dn). (2)

In practice, this kind of special relationship is by no means natural. However, one

can design applications to maintain such a special checksum relationship throughout the

computation, and this is one purpose of ABFT research.

4.1.2 Nonstop Hot-Replacement-Based Fault Recovery

For the simplicity of presentation, we assume there will be only one process failure. How-

ever, it is straightforward to extend the results here to multiple failures by using multilevel

redundancy or regenerating the encoded data. Suppose that at any time during the com-

putation, the data Di on process Pi satisfies

D1 + D2 + · · ·+ Dn = E. (3)

If the ith process fails during the execution, we replace it with the encoding process E

and continue the execution instead of stopping all the processes to recover the lost data

Di. Note that this kind of transformation can be effective only when there is an encoding

relationship among the data.

20



From the global view, the original data is

D = (D1 · · ·Di−1DiDi+1 · · ·Dn), (4)

and the transformed data (after replacement) is

D′ = (D1 · · ·Di−1EDi+1 · · ·Dn). (5)

We can establish a relationship between the transformed data and the original data as

D′ = D × T, (6)

and T can be represented as an n× n matrix in the form

T =



1 1

. . .
...

1 1

1

1 1

...
. . .

1 1



, (7)

where the elements omitted in the diagonal and the ith column are all 1 and the other

elements omitted are 0. We can see that T is a nonsingular matrix. If operations on

the data are linear transformations (e.g., matrix operations such as decomposition), the

relationship D′ = D × T will always be kept. At the end of computation, the original

correct solution based on D can be recomputed through the intermediate solution based on

D′. And this recomputation is actually a transformation related to T .

One can see that the encoding relationship D′ = D× T cannot be maintained under all

HPC applications. However, for a class of them, including matrix computations involving

linear transformations (e.g., matrix decomposition, matrix-matrix multiplication, and scalar

product), the encoding relationship can be maintained.

21



Query

Database

Scatter

Search

Gather

Output

Figure 2: High-level algorithm of mpiBLAST

4.2 Application-Level Checkpointing

In this section, we present case studies for two application-specific fault tolerance techniques:

sequence alignment with mpiBLAST and Green’s function Monte Carlo.

4.2.1 Sequence Alignment with mpiBLAST

With the advent of rapid DNA sequencing, the amount of genetic sequence data available

to researchers has increased exponentially [6]. The GenBank database, a comprehensive

database that contains genetic sequence data for more than 260,000 named organisms, has

exhibited exponential growth since its inception over 25 years ago [14]. This information is

available for researchers to search new sequences against and infer homologous relationships

between sequences or organisms. This helps in a wide range of projects, from assembling

the Tree of Life [25] to pathogen detection [29] and metagenomics [32].

Unfortunately, the exponential growth of sequence databases necessitates faster search

algorithms to sustain reasonable search times. The Basic Local Alignment Search Tool

22



(BLAST), which is the de facto standard for sequence searching, uses heuristics to prune

the search space and decrease search time with an accepted loss in accuracy [4, 5]. BLAST

is parallelized by mpiBLAST using several techniques, including database fragmentation,

query segmentation [23], parallel input-output [42], and advanced scheduling [65]. As shown

in Figure 2, mpiBLAST uses a master-worker model and performs a scatter-search-gather-

output execution flow. During the scatter, the master splits the database and query into

multiple pieces and distributes them among worker nodes. Each worker then searches the

query segment against the database fragment that it was assigned. The results are gathered

by the master, formatted, and output to the user. Depending on the size of the query and the

database, such output can be large. Thus, for environments with limited I/O capabilities,

such as distributed systems, the output step can cause significant overheads.

One of the characteristics of sequence alignment with mpiBLAST is that the computa-

tion and output associated with each query sequence is independent. Thus, splitting the

query sequences into multiple independent executions and combining the output in a post-

processing step would not affect the overall outcome of the application. This behavior is

true even with the database itself. That is, for each query sequence, mpiBLAST searches

for the “best matching” sequence in the database. Thus, as long as these best matching

sequences are available, even deleting some of the other sequences in the database does not

affect the overall outcome. In order to take advantage of such application characteristics,

the ParaMEDIC framework was developed [10, 11, 13, 12, 9]. Though initially designed

for optimizing the I/O requirements of mpiBLAST, the ParaMEDIC framework allows the

application to work through system faults. Specifically, if a part of the computation fails

because of a system fault, that part of the computation is discarded and recomputed. This

approach allows the overall final output of the application to not change based on interme-

diate faults.

23



4.2.2 Green’s Function Monte Carlo

The quantum Monte Carlo code developed by Steven C. Pieper and coworkers at Argonne

National Laboratory [50, 43] uses the Green’s function Monte Carlo (GFMC) method. The

GFMC code is part of the SciDAC Universal Nuclear Energy Density Functional (UNEDF)

effort to understand the physics of light nuclei. The fundamental computation involved in

quantum Monte Carlo is a 3N -dimensional integral—where N is the number of nucleons—

evaluated by using Monte Carlo methods. In the first step of the calculation, variational

Monte Carlo, a single integration is performed to get an approximation to the ground-

state eigenvector. In the second step, GFMC uses imaginary-time propagation to refine the

ground-state solution. Each step in the propagation involves a new 3N -dimensional integral,

and the entire calculation corresponds to an integral of more than 10,000 dimensions. GFMC

is parallelized by using a master-worker programming model called ADLB [43].

GFMC initially relied on system-level checkpointing, as discussed in Section 3.1, for fault

tolerance. However, given that GFMC is memory intensive, the amount of I/O required for

each checkpointing operation was tremendous and was growing rapidly with the problem

size. To address this concern, GFMC developed its own application-specific checkpointing

approach that utilizes application knowledge to write only a small part of critical data to

the disk, instead of the entire memory space of the application.

To explain this approach, we first describe the overall parallelism structure of GFMC.

Specifically, in GFMC, the application processes are distributed into three segments:

1. Master: This process reads input, makes initial distribution of work, receives results

(energy packets), averages them, and writes averaged results to disk and stdout.

2. Walker nodes: These each manage a group of GFMC configurations. They control

the propagation of these configurations but the actual work is done on worker nodes by

using ADLB. The walker nodes do branching, which kills or replicates configurations,

and do load balancing, which redistributes configurations to other walker nodes to

keep the number of configurations equal on the walkers.

24



3. Worker nodes: These accept work packages from ADLB and return results. They

have no long-term data.

Most of the checkpointing in GFMC is handled by the walker nodes. The walker nodes

receive all the starting configurations from the master. They then go into a loop doing prop-

agation time steps. Each configuration is put into ADLB as a propagation work package.

The walker processes loop, getting propagation answers and possibly accepting propagation

work packages. If the time step is not the next branching step, the work package is put

back into ADLB for another time step. Every few time steps, branching is done that can

increase or decrease the total number of configurations.

The walker nodes have the current status of all the configurations. This is the only infor-

mation needed to resume the calculation in case of a failure. Thus, every few time steps, the

walker nodes coordinate and dump the current status of the configurations to a checkpoint

file. In order to avoid failures while the checkpoint is ongoing, multiple checkpoint files are

maintained.

5 Summary

With system sizes growing rapidly, faults are increasingly becoming the norm, rather than

the exception. To handle such faults, researchers are working on various techniques, some

of which are transparent to the end users, while others are not. But each class of fault

tolerance techniques has its own pros and cons.

In this chapter, we described various fault tolerance techniques, broadly classified into

three categories. The first category deals with hardware fault tolerance, which is fully

transparent to the user. These are handled by hardware redundancy and other related

techniques. The second category deals with resilient systems software, which is not trans-

parent to the software stack on the machine but is handled mostly by expert users developing

systems software stacks such as MPI or operating systems. Therefore, in some sense, it is

still hidden from computational domain scientists developing end applications. The third

25



category deals with application or domain-specific fault tolerance techniques that utilize

application-specific knowledge to achieve fault tolerance. This category requires changes to

the applications and thus is, obviously, not transparent to the end user.

References

[1] Cray XT5 Compute Blade. http://wwwjp.cray.com/downloads/CrayXT5Blade.pdf.

[Online; accessed 20-November-2011].

[2] S. Agarwal, R. Garg, M. S. Gupta, and J. E. Moreira. Adaptive incremental check-

pointing for massively parallel systems. In Proceedings of the 18th annual International

Conference on Supercomputing, ICS ’04, pages 277–286, New York, 2004. ACM.

[3] N. Ali, S. Krishnamoorthy, N. Govind, and B. Palmer. A redundant communica-

tion approach to scalable fault tolerance in PGAS programming models. In Parallel,

Distributed and Network-Based Processing (PDP), 2011 19th Euromicro International

Conference on, pages 24–31, February 2011.

[4] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local

alignment search tool. J. Mol. Biol., 215(3):403–410, October 1990.

[5] S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J.

Lipman. Gapped BLAST and PSI–BLAST: A new generation of protein database

search programs. Nucleic Acids Res., 25:3389–3402, 1997.

[6] S. F. Altshul, M. S. Boguski, W. Gish, and J. C. Wootton. Issues in searching molecular

sequence databases. Nat. Genet., 6(2):119–29, 1994.

[7] J. Anfinson and F. T. Luk. A linear algebraic model of algorithm-based fault tolerance.

IEEE Trans. Comput., 37:1599–1604, 1988.

26



[8] JL Autran, P. Roche, S. Sauze, G. Gasiot, D. Munteanu, P. Loaiza, M. Zampaolo, and

J. Borel. Altitude and underground real-time SER characterization of CMOS 65 nm

SRAM. IEEE Trans. Nuclear Science, 56(4):2258–2266, 2009.

[9] P. Balaji, W. Feng, J. Archuleta, and H. Lin. ParaMEDIC: Parallel Metadata En-

vironment for Distributed I/O and Computing. In Proceedings of the IEEE/ACM

International Conference for High Performance Computing, Networking, Storage and

Analysis (SC), Reno, Nevada, November 2007.

[10] P. Balaji, W. Feng, J. Archuleta, H. Lin, R. Kettimuttu, R. Thakur, and X. Ma.

Semantics-based distributed I/O for mpiBLAST. In Proceedings of the ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming (PPoPP), Salt Lake

City, Utah, February 2008.

[11] P. Balaji, W. Feng, and H. Lin. Semantics-based distributed I/O with the ParaMEDIC

framework. In Proceedings of the ACM/IEEE International Symposium on High Per-

formance Distributed Computing (HPDC), Boston, Massachusetts, June 2008.

[12] P. Balaji, W. Feng, H. Lin, J. Archuleta, S. Matsuoka, A. Warren, J. Setubal, E. Lusk,

R. Thakur, I. Foster, D. S. Katz, S. Jha, K. Shinpaugh, S. Coghlan, and D. Reed.

Distributed I/O with ParaMEDIC: Experiences with a worldwide supercomputer. In

Proceedings of the International Supercomputing Conference (ISC), Dresden, Germany,

June 2008.

[13] P. Balaji, W. Feng, H. Lin, J. Archuleta, S. Matsuoka, A. Warren, J. Setubal, E. Lusk,

R. Thakur, I. Foster, D. S. Katz, S. Jha, K. Shinpaugh, S. Coghlan, and D. Reed.

Global-scale distributed I/O with ParaMEDIC. International Journal of Concurrency

and Computation: Practice and Experience (CCPE), 22(16):2266–2281, 2010.

[14] D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, and D. L. Wheeler. Gen-

Bank. Nucleic Acids Res, 36(Database issue), January 2008.

27



[15] B. Bhargava and S.-R. Lian. Independent checkpointing and concurrent rollback for

recovery in distributed systems-an optimistic approach. In Proceedings of the Seventh

Symposium on Reliable Distributed Systems., pages 3–12, October 1988.

[16] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and

Y. Zhou. CiLK: An efficient multithreaded runtime system. SIGPLAN Not., 30:207–

216, August 1995.

[17] R. D. Blumofe and P. A. Lisiecki. Adaptive and reliable parallel computing on networks

of workstations. In Proceedings of the annual conference on USENIX Annual Technical

Conference, pages 10–10, Berkeley, California, 1997. USENIX Association.

[18] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N. Seizovic,

and W. K. Su. Myrinet: A gigabit-per-second local area network. IEEE Micro ’95,

15:29–36.

[19] L. Borucki, G. Schindlbeck, and C. Slayman. Comparison of accelerated DRAM soft

error rates measured at component and system level. In Proceedings of the International

Reliability Physics Symposium, 2008., pages 482–487. IEEE, 2008.

[20] K. M. Chandy and L. Lamport. Distributed snapshots: determining global states of

distributed systems. ACM Trans. Comput. Syst., 3:63–75, February 1985.

[21] Z. Chen and J. Dongarra. Algorithm-based checkpoint-free fault tolerance for parallel

matrix computations on volatile resources. In Proceedings of the 20st IEEE Interna-

tional Parallel and Distributed Processing Symposium, page 76, 2006.

[22] Z. Chen and J. Dongarra. Algorithm-based fault tolerance for fail-stop failures. IEEE

Transactions on Parallel and Distributed Systems, 19(12), December 2008.

[23] A. E. Darling, L. Carey, and W. Feng. The Design, Implementation, and Evaluation of

mpiBLAST. In ClusterWorld Conference & Expo and the 4th International Conference

on Linux Cluster: The HPC Revolution, 2003.

28



[24] T. J. Dell. A white paper on the benefits of Chipkill-correct ECC for PC server main

memory. Technical report, IBM Microelectronics Division, November 1997.

[25] A. C. Driskell, C. Ané, J. G. Burleigh, M. M. McMahon, B. C. O’Meara, and M. J.

Sanderson. Prospects for building the tree of life from large sequence databases. Sci-

ence, 306(5699):1172–1174, November 2004.

[26] E. N. (Mootaz) Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A survey of

rollback-recovery protocols in message-passing systems. ACM Comput. Surv., 34:375–

408, September 2002.

[27] G. E. Fagg and J. Dongarra. FT-MPI: Fault tolerant MPI, supporting dynamic ap-

plications in a dynamic world. In Proceedings of the 7th European PVM/MPI Users’

Group Meeting on Recent Advances in Parallel Virtual Machine and Message Passing

Interface, pages 346–353, London, UK, 2000. Springer-Verlag.

[28] D. Fiala. Detection and correction of silent data corruption for large-scale high-

performance computing. In International Symposium on Parallel and Distributed Pro-

cessing Workshops and Ph.D. Forum (IPDPSW), 2011, pages 2069–2072, May 2011.

[29] J. D. Gans, W. Feng, and M. Wolinsky. Whole genome, physics-based sequence align-

ment for pathogen signature design. In 12th SIAM Conference on Parallel Processing

for Scientific Computing, San Francisco, California, February 2006. (electronic version

unavailable).

[30] A. Guermouche, T. Ropars, E. Brunet, M. Snir, and F. Cappello. Uncoordinated check-

pointing without domino effect for send-deterministic message passing applications. In

Proceedings of the International Parallel and Distributed Processing Symposium, 2011.

[31] R. W. Hamming. Error detecting and error correcting codes. Bell System Technical

Journal, 29(2):147–160, 1950.

29



[32] S. L. Havre, B.-J. Webb-Robertson, A. Shah, C. Posse, B. Gopalan, and F. J. Brockma.

Bioinformatic insights from metagenomics through visualization. Proceedings of the

Computational Systems Bioinformatics Conference, pages 341–350, 2005.

[33] P. Hazucha and C. Svensson. Impact of CMOS technology scaling on the atmospheric

neutron soft error rate. Nuclear Science, IEEE Transactions on, 47(6):2586–2594, 2000.

[34] J.-M. Hélary, A. Mostefaoui, and M. Raynal. Preventing useless checkpoints in dis-

tributed computations. In Proceedings of the 16th Symposium on Reliable Distributed

Systems, SRDS ’97, Washington, D.C., 1997. IEEE Computer Society.

[35] J. Heo, S. Yi, Y. Cho, J. Hong, and S. Y. Shin. Space-efficient page-level incremental

checkpointing. In Proceedings of the 2005 ACM Symposium on Applied computing,

SAC ’05, pages 1558–1562, New York, 2005. ACM.

[36] K. H. Huang and J. A. Abraham. Algorithm-based fault tolerance for matrix opera-

tions. IEEE Transactions on Computers, C-33(6):518–528, June 1984.

[37] D. B. Johnson. Distributed system fault tolerance using message logging and check-

pointing. PhD thesis, Rice University, Department of Computer Science, 1989.

[38] D. B. Johnson and W. Zwaenepoel. Sender-based message logging. In Digest of Papers,

FTCS-17, Seventeenth Annual International Symposium on Fault-Tolerant Computing,

pages 14–19, 1987.

[39] L. V. Kalé and S. Krishnan. CHARM++: A portable concurrent object oriented

system based on C++. SIGPLAN Not., 28:91–108, October 1993.

[40] L. V. Kalé and G. Zheng. Charm++ and AMPI: Adaptive runtime strategies via

migratable objects. In M. Parashar, editor, Advanced Computational Infrastructures

for Parallel and Distributed Applications, pages 265–282. Wiley-Interscience, 2009.

[41] T. H. Lai and T. H. Yang. On distributed snapshots. Inf. Process. Lett., 25:153–158,

May 1987.

30



[42] H. Lin, X. Ma, P. Chandramohan, A. Geist, and N. Samatova. Efficient data access

for parallel BLAST. In IPDPS, 2005.

[43] E. Lusk, S. Pieper, and R. Butler. More scalability, less pain. SciDAC Review, 17:30–37,

2010.

[44] D. Milojicic, A. Messer, J. Shau, G. Fu, and A. Munoz. Increasing relevance of memory

hardware errors: a case for recoverable programming models. In Proceedings of the 9th

workshop on ACM SIGOPS European workshop: beyond the PC: new challenges for

the operating system, pages 97–102. ACM, 2000.

[45] R. H. B. Netzer and J. Xu. Necessary and sufficient conditions for consistent global

snapshots. IEEE Trans. Parallel Distrib. Syst., 6:165–169, February 1995.

[46] J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease, and E. Aprà. Advances,

applications and performance of the global arrays shared memory programming toolkit.

Int. J. High Perform. Comput. Appl., 20:203–231, May 2006.

[47] N. Oh, P. P. Shirvani, and E. J. McCluskey. Error detection by duplicated instructions

in super-scalar processors. IEEE Transactions on Reliability, 51(1):63–75, March 2002.

[48] R. A. Oldfield, S. Arunagiri, P. J. Teller, S. Seelam, M. R. Varela, R. Riesen, and P. C.

Roth. Modeling the impact of checkpoints on next-generation systems. In Proceedings

of the 24th IEEE Conference on Mass Storage Systems and Technologies, pages 30–46,

Washington, D.C., 2007. IEEE Computer Society.

[49] D. A. Patterson, G. Gibson, and R. H. Katz. A case for redundant arrays of inexpensive

disks (RAID). AXM SIGMOD Record, 17(3):109–116, June 1988.

[50] S. C. Pieper and R. B. Wiringa. Quantum Monte Carlo calculations of light nuclei.

Annual Review of Nuclear and Particle Science, 51(1):53–90, 2001.

31



[51] E. Pinheiro, W. D. Weber, and L. A. Barroso. Failure trends in a large disk drive popu-

lation. In Proceedings of the 5th USENIX conference on File and Storage Technologies,

pages 2–2, 2007.

[52] Moinuddin K. Qureshi, Onur Mutlu, and Yale N. Patt. Microarchitecture-based intro-

spection: A technique for transient-fault tolerance in microprocessors. International

Conference on Dependable Systems and Networks, 0:434–443, 2005.

[53] B. Randell. System structure for software fault tolerance. IEEE Trans. Software

Engineering, 1:220–232, 1975.

[54] D. L. Russell. State restoration in systems of communicating processes. IEEE Trans.

Software Engineering, SE-6(2):183–194, March 1980.

[55] A. M. Saleh, J. J. Serrano, and J. H. Patel. Reliability of scrubbing recovery-techniques

for memory systems. IEEE Trans. Reliability, 39(1):114–122, April 1990.

[56] B. Schroeder and G. A. Gibson. Disk failures in the real world: What does an MTTF

of 1,000,000 hours mean to you? In Proceedings of the 5th USENIX conference on File

and Storage Technologies, page 1. USENIX Association, 2007.

[57] B. Schroeder and G. A. Gibson. A large-scale study of failures in high-performance

computing systems. IEEE Trans. Dependable and Secure Computing, 7(4):337–351,

2010.

[58] B. Schroeder, E. Pinheiro, and W. D. Weber. DRAM errors in the wild: A large-

scale field study. In Proceedings of the Eleventh International Joint Conference on

Measurement and Modeling of Computer Systems, pages 193–204. ACM, 2009.

[59] C. Slayman. Whitepaper on soft errors in modern memory technology. Technical

report, OPS A La Carte, 2010.

[60] J. Stone and C. Partridge. When the CRC and TCP checksum disagree. ACM SIG-

COMM Computer Communication Review, 30(4):309–319, October 2000.

32



[61] R. Strom and S. Yemini. Optimistic recovery in distributed systems. ACM Trans.

Comput. Syst., 3:204–226, August 1985.

[62] Y. Tamir and C. H. Séquin. Error recovery in multicomputers using global checkpoints.

In Proceedings of the International Conference on Parallel Processing, pages 32–41,

1984.

[63] IBM Blue Gene Team. Overview of the IBM Blue Gene/P project. IBM Journal of

Research and Development, 52(1/2):199–220, 2008.

[64] Mellanox Technologies. InfiniBand and TCP in the Data-Center.

[65] O. Thorsen, B. Smith, C. P. Sosa, K. Jiang, H. Lin, A. Peters, and W. Feng. Par-

allel genomic sequence-search on a massively parallel system. In ACM International

Conference on Computing Frontiers, Ischia, Italy, May 2007.

[66] C. Wang, F. Mueller, C. Engelmann, and S. L. Scott. Hybrid full/incremental check-

point/restart for MPI jobs in HPC environments. In Proceedings of the International

Conference on Parallel and Distributed Systems, December 2011.

[67] R. Wang, E. Yao, P. Balaji, D. Buntinas, M. Chen, and G. Tan. Building Algorith-

mically Nonstop Fault Tolerant MPI Programs. In IEEE International Conference on

High Performance Computing (HiPC), Bangalore, India, December 2011.

[68] Y.-M. Wang. Space reclamation for uncoordinated checkpointing in message-passing

systems. PhD thesis, University of Illinois at Urbana-Champaign, Champaign, Illinois,

1993. UMI Order No. GAX94-11816.

[69] S. W. Wei and C. H. Wei. A high-speed real-time binary BCH decoder. IEEE Trans.

Circuits and Systems for Video Technology, 3(2):138–147, 1993.

[70] S. B. Wicker and V. K. Bhargava. Reed-Solomon Codes and Their Applications. Wiley-

IEEE Press, 1999.

33


