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ABSTRACT 
In the current work, two-dimensional spectral element 

simulations are used to investigate the heat transfer and fan 
power performance of the developing regions of finite-length, 
grooved channel passage arrays, including the accelerating and 
decelerating flows entering and exiting the arrays.  The 
performance of the grooved channel arrays is compared with 
that of flat passage arrays with the same average wall center-to-
center spacing for Reynolds numbers ranging from 1000 to 
3000.  The simulations show that unsteadiness develops after a 
number of groove lengths and results in enhanced heat transfer.  
The unsteadiness improves the overall heat transfer compared 
with a flat passage array of equal average channel height by a 
factor of 1.46 at Re = 1000 and a factor of 2.75 at Re = 3000.  
The grooves also cause an increase in the required fan power by 
a factor of 8.56 at Re = 1000 and a factor of 18.10 at Re = 
3000.  Since past simulations have shown that three-
dimensional simulations are necessary to accurately predict 
heat transfer and fan power performance in transversely 
grooved passages, the current two-dimensional results will be 
used as a starting point for a three-dimensional model that will 
ultimately be used to predict heat transfer and friction factor 
performance in developing grooved channel flows. 

 
 
 

 
 

INTRODUCTION 
Enhanced heat transfer surfaces are used frequently in a 

variety of practical devices, such as electronics, power plant 
condensers, and heating, ventilation and air conditioning 
devices [1].  Some of these enhancements use fins to extend 
surface areas or offset strips to promote thin boundary layers.  
In the past, researchers have considered passage configurations 
that enhance mixing and heat transfer by triggering flow 
instabilities.  Transversely grooved channels [2-4], passages 
with eddy promoters [5,6], and communicating channels [7] all 
contain features whose sizes are roughly half the channel wall-
to-wall spacing.  These features promote inflections in the 
passage velocity profile.  Kelvin-Helmholtz instabilities of 
these inflected profiles project energy onto normally damped 
Tollmien-Schlichting waves, resulting in two-dimensional 
traveling waves at moderately low Reynolds numbers. 

Representative papers by the current authors have 
presented studies on flow destabilization in rectangular cross-
section channels with transverse grooves cut into the walls [3,8-
14].  Visualizations in a range of passage geometries with fully 
developed flow show that the critical Reynolds number, Rec, 
where two-dimensional waves first appear decreases as the 
spacing between grooves decreases.  For a sawtooth-shaped 
wall with no spacing between grooves, two-dimensional waves 
first appear at Rec = 350, followed by a transition to three-
dimensional mixing at Reynolds numbers greater than 500 [9]. 

Numerical and experimental investigations using air in a 
fully developed flow show that both the Nusselt number and 
friction factor are greater than the corresponding values for a 
flat channel with the same minimum wall-to-wall spacing 
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[3,14].  Three-dimensional numerical simulations for Re ≤ 2000 
give results that are in good agreement with experimental 
measurements [10,11].  However, two-dimensional simulations 
were inadequate for capturing the transport processes in these 
configurations for Reynolds numbers greater than Re = 570 
[10]. 

In recent years, researchers have given attention to other 
groove shapes or surface additions that limit the pressure drop 
within the channel.  Studies have shown that semispherical 
dimples impressed on the surface of parallel-plate passages 
produced significant heat transfer augmentation with relatively 
small pressure drop [15,16].  The addition of curved vanes to 
grooved passages has also shown a reduction in pressure drop 
for Reynolds numbers of less than 400 [17,18].  The current 
work, however, returns to the sawtooth-geometry 
corresponding to the slowest decaying Tollmien-Schlichting 
waves [9]. 

Previous analyses focused on heat transfer augmentation 
with fully developed flow.  However, air passage lengths in 
some practical heat transfer devices are less than fifty times the 
wall center-to-center spacing in order to take advantage of the 
heat transfer coefficients associated with developing flow.  
These configurations indicate that developing flow is important 
in practical passages and that the flow experiences significant 
acceleration at the channel entrance (due to the wall thickness 
and shape) and deceleration at its exit.  Furthermore, since 
these devices use arrays of parallel passages, the interaction of 
the entrance and exit regions of neighboring grooved passages 
must be examined, which to our knowledge has yet to be done. 

The current work is a numerical investigation of heat and 
momentum transport in an array of finite-length continuously 
grooved passages with developing flow.  For Reynolds numbers 
ranging from 1000 to 3000, the average Nusselt number and fan 
power required to move the air through the arrays are 
calculated and compared with arrays with flat passages of equal 
wall center-to-center spacing.  Arguably, three-dimensional 
simulations predict the pressure gradient and heat transfer in 
grooved passages much more accurately than do two-
dimensional calculations [10,12].  The current two-dimensional 
simulations, however, offer an opportunity to learn more about 
this flow, while using less computational resources, and will 
provide guidance for future three-dimensional simulations. 

NOMENCLATURE 
𝑎        Groove length, Figure 1 
𝑏        Groove depth, Figure 1 
𝑐𝑝       Fluid specific heat 
𝐷𝐻       Hydraulic diameter, 2𝐻𝐴 
𝐻𝐴       Average channel height, Figure 1 
𝐻𝑀      Minimum channel height 
𝑘         Fluid thermal conductivity 
𝐿         Channel array length, 30 grooves 
𝐿𝐸       Exit region length, Figure 1, 25 grooves 
𝐿𝐼        Inlet region length, Figure 1, 2.5 grooves 
𝑀        Channel depth normal to page 

𝑁𝑢𝐿      Average Nusselt number at 𝑥𝐺 = 30 
𝑁𝑢𝑥      Average Nusselt number between inlet and location x 
𝑃          Pressure 
𝑃𝑟        Fluid molecular Prandtl number, 0.70 
𝑅𝑒        Reynolds number,   𝑢0(2𝐻𝑚)/𝜐 
𝑅𝑒𝑐      Critical Reynolds number 
𝑇          Temperature 
𝑇0         Inlet temperature, Figure 1 
𝑇𝑤        Wall temperature 
𝑢          Axial velocity 
𝑢0        Inlet axial velocity, Figure 1 
𝑉          Volume 
𝑤          Wall thickness, Figure 1 
𝑥𝐺          Groove coordinate,  𝑥/𝑎 
 
Greek 
𝛼           Thermal diffusivity 
𝜌            Fluid density 
𝜐            Fluid kinematic viscosity 
𝛷𝐿          Non-dimensional fan power at 𝑥𝐺 = 50 
𝛷𝑥          Non-dimensional fan power at location x 

NUMERICAL METHOD 
 
Computational Domain 

In the current work, a two-dimensional spectral element 
model was developed using the Nek5000 solver and mesh 
generator.  Nek5000 is a mature DNS/LES computational fluid 
dynamics solver developed at the Mathematics and Computer 
Science Division at Argonne National Laboratory [19].   

Figure 1 shows the two-dimensional spectral element mesh 
used in the current work to study an array of grooved passages.  
A simulated flow of air with Prandtl number 0.7 enters the left 
side of the entrance region (length of region is 𝐿𝐼) with a 
uniform dimensionless axial speed of 𝑢0 = 1 and dimensionless 
temperature of 𝑇0 = 0.  The flow then encounters a pair of 
grooved channels (one above the other) at location 𝑥 = 0 with 
length 𝐿.  The passage walls are marked on Figure 1 with bold 
black lines and are modeled by using no-slip conditions and a 
uniform dimensionless temperature of 𝑇𝑤 = 1.  The flow exits 
the channel array into an exit region of length 𝐿𝐸.  Because of 
domain size, Figure 1 shows a break in the channel array and in 
the exit region.  Periodic boundary conditions are applied to the 
top and bottom edges of the inlet and exit regions to model an 
infinite number of channels stacked above and below the 
computational domain (the zigzag shape of the region 
boundaries are used for convenience, but flat boundaries would 
be equivalent).   

In Figure 1, the groove depth normal the flow direction is 
𝑏, length in the flow direction is 𝑎, the wall thickness normal to 
the flow direction is 𝑤, the average wall center-to-center 
spacing is 𝐻𝐴, and the minimum wall-to-wall spacing within the 
grooved channel is 𝐻𝑀.  Previous studies have shown that the 
ratio 𝑎/𝐻𝑀 = 2.4  is  compatible  with the most slowly decaying  
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Tollmien-Schlichting wave [4].  The dimensionless geometric 
parameters are 𝑎/𝑏 = 2, 𝑎/𝐻𝐴 = 0.925, 𝑏/𝐻𝐴 = 0.465, a/𝐻𝑀 = 
2.4, 𝑤/𝐻𝐴 = 0.150, and 𝐻𝑀/𝐻𝐴 = 0.385.  The length of the inlet 
region, channel, and exit region are, respectively, 𝐿𝐼 = 2.5𝑎, 𝐿 = 
30𝑎, and 𝐿𝐸 = 25𝑎.  Each groove length has 32 spectral 
elements. 

Because of finite passage wall thickness, the cross section 
available for flow within the channels is smaller than that in the 
region.  Figure 1 shows that the upper passage begins in a 
converging portion of a groove, while the lower one starts with 
a diverging section.  The passages are an integer number of 
groove lengths long (30), so Figure 1 shows the upper passage 
ending in a converging section, while the lower ends with a 
diverging section. 

The flow exits the domain using special outflow boundary 
conditions in the last vertical column of elements that avoids 
realization of reversed flow.  The exit region is long to allow 
the unsteady flow exiting from the grooved channel to decay to 
a steady flow before it exits the domain.  This allows the 
pressure recovery that takes place as the air decelerates 
(diffuses) outside the channel array to be calculated. 

 

 
 

Figure 2 Spectral element mesh of inlet region and 
channel entrance for flat passage array. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2 shows the inlet region of a flat passage array used 

as a comparison with the grooved channel.  The wall center-to-
center spacing of these channels 𝐻𝐴 is the same as the average 
wall center-to-center spacing of the grooved passage.  The wall 
thickness in the direction normal to the flow direction, 𝑤, is 
also the same.  As a result, the volume of the walls for the two 
configurations is also the same. The surface area of the grooved 
channel is √2 times larger than that of the flat passage.   
 
The Spectral Element Method 

In the spectral element method, the velocity, data, and 
geometry are expressed as tensor-product polynomials of 
degree N in each of K quadrilateral spectral element, 
corresponding to a total grid point count of roughly KN2 [20].  
Numerical convergence is achieved by increasing the spectral 
order N.  The present calculations were carried out at a base 
resolution of K = 4120, N = 7 (Fig. 1 shows some spectral 
elements but not the KN2 grid points).  Resolution tests were 
performed for Re = 1000 and Re = 3000 at N = 7 and N = 11.  
The present simulations use consistent approximation spaces 
for velocity and pressure [21].  The momentum and pressure 
equations are advanced by first computing the convection term, 
followed by a linear Stokes Helmholtz and Poisson solve for 
the velocity and pressure terms, correspondingly.  The 
characteristics-based operator-integration-factor splitting 
scheme used allows for Courant-Fredrichs-Lewy number as 
large as 2.5 while maintaining third-order accuracy in time.  
Full details of the method can be found in [20-24]. 

RESULTS 
In this work, the hydraulic diameter is defined as follows. 
 

𝐷𝐻 =
4𝑉
𝐴𝑝

=
4𝐿𝑀(2𝐻𝐴)

4𝐿𝑀
= 2𝐻𝐴 

 
Here, 𝑉 is the passage volume, AP is the projected wetted area, 
and 𝑀 is the length of the domain in the direction normal to   
the   page.     In   previous  studies,  the  hydraulic diameter was 

Figure 1  Computational domain and spectral element mesh.  
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(a) 
 
 
(b) 
 
 
 
(c) 
 
 
 
 
 
 
 
 
 
 
defined using the minimum wall-to-wall spacing.  The use of 
the average wall center-to-center spacing offers a direct 
comparison to smooth passage arrays.  The Reynolds number is 
defined as follows. 
 

𝑅𝑒 =
𝑢0(2𝐻𝐴)

𝜐
=

2
𝜐
� 𝑢 𝑑𝑦
𝑇

𝐵
 

 
Here, 𝜐 is the fluid kinematic viscosity, and 𝑢 is the axial 
component of the velocity.  The integration is performed at a 
given x-location, from the bottom (B) to the top (T) of the 
domain.  Since the flow rate is steady and the fluid is modeled 
to be incompressible, the integral is the same at all axial 
locations 𝑥 and times 𝑡 even though the flow is unsteady. 

Figure 3 shows contour plots of fluid vorticity that are 
intended to help visualize the flow field.  Figure 3a shows the 
entire computational domain for a flat passage array at Re = 
3000.  Figures 3b and 3c show a blowup focusing on the 
grooved channel arrays at Re = 1000 and 3000, respectively.  
Each contour is at an instant in time after the simulation has 
reached steady-state conditions.   

In the flat passages, the vorticity contours are essentially 
parallel with the walls for all Reynolds numbers, indicating the 
flow is essentially parallel to the walls and is steady (the current 
two-dimensional simulations cannot model the three-
dimensional instabilities that lead to turbulent flow in flat 
passages at Re > 2800  [25] ).   

Figure 3b shows that at Re = 1000, unsteadiness appears 
near the end of the grooved channels, roughly 24 groove 
lengths from the entrance (𝑥 = 24𝑎) in the upper channel and 
26 groove lengths from the entrance (𝑥 = 26𝑎) in the lower 
channel.  Figure 3c shows that at Re = 3000, unsteadiness 
appears near the channel entrance, roughly two groove lengths 
from the entrance in the upper channel and three groove lengths 
from the entrance in the lower channel.  Arrows indicate these 
locations in Figures 3b and 3c.  This onset location of 
oscillatory flow is different  in each channel for  four out of five 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Reynolds numbers investigated and moves upstream with an 
increasing Reynolds number. 

The solid diamonds in Figure 4 show the observed onset 
location of oscillatory flow versus x/DH from the current 
simulations based on the vorticity contour plots.  Horizontal 
error bars indicate the difference in onset location between the 
upper and lower channels.  These onset locations are highly 
qualitative and were determined based the observed change in 
fluid stream from steady to oscillatory.  Only the simulation at 
Re = 2200 had the same axial onset location for the upper and 
lower channels.  The onset location moves upstream with an 
increase in Reynolds number.  For comparison, the onset 
location determined from experimental flow visualization data 
from a passage with one grooved and one flat wall is included 
from Greiner et al. 1990 [4].  The numerical results agree with 
experimental data at Re =1000.  The experimental data also 
show that the onset location moves upstream with increasing 
Reynolds numbers.  For Re > 1000 the experimental onset 
locations are further upstream than those from the current 
simulations.  The level of unsteadiness entering the simulated 
channel is very low and may be higher in the experiments.   

 
Figure 4  Observed onset location of oscillatory flow. 
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Figure 3  Fluid vorticity contour plots:  (a) full domain flat passage at Re = 3000;  
(b) channel array at Re = 1000;  (c) channel array at Re = 3000. 
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Future simulations may consider the effect of small levels of 
unsteadiness entering the channel to evaluate its effect on the 
onset location as well as three-dimensional effects. 

In this work the average Nusselt number for a region 
between the inlet of the channel array and axial location x is 
defined as follows. 

 

𝑁𝑢𝑥 =
ℎ𝑥𝑥
𝑘

=
𝑄�(𝑥)

𝐴𝑝𝑥(𝑇𝑤 − 𝑇0)
𝑥
𝑘

=
𝜌𝑐𝑝𝑀 ∫ (𝑢𝑇����)𝑥 𝑑𝑦

𝑇
𝐵

4𝑀𝑥(𝑇𝑤 − 𝑇0)
𝑥
𝑘

 

 

=
∫ (𝑢𝑇����)𝑥𝑑𝑦
𝑇
𝐵

4𝛼
 

 
The over bar �  denotes an average over time after the system 
has reached steady state, and the subscript ()𝑥 indicates a value 
at the axial location x.  In this definition, 𝑄�(x) is the total heat 
transfer from all four walls to the fluid from between the 
entrance to location x, 𝐴𝑝𝑥 = 4xM is the total projected surface 
area for both sides of the two walls from the entrance to x, and 
the temperature difference between the inlet gas and uniform 
temperature walls is 𝑇𝑤 – 𝑇0 = 1 – 0 = 1.  The fluid specific 
heat, density, thermal conductivity and thermal diffusivity are, 
respectively, 𝑐𝑝, 𝜌, 𝑘 and 𝛼 = 𝑘/𝜌𝑐𝑝. 

Figures 5a and 5b show the average Nusselt number, 𝑁𝑢𝑥, 
versus groove coordinate, 𝑥𝐺  = 𝑥/𝑎, for Re = 1000 and Re = 
3000, respectively.  Each plot includes the grooved passage 
average Nusselt number for both lower (N=7) and higher 
(N=11) resolution grids and flat passage average Nusselt 
number (for N=7).  Solid lines are used for the grooved channel 
heat transfer, while dashed lines are used for the flat passage 
results.  For both Re = 1000 and 3000, the N = 7 and N = 11 
results are nearly identical, indicating that the results are 
essentially grid independent. 

𝑁𝑢𝑥 increases with 𝑥𝐺  within the channel array because 
heat is transferred to the fluid in that region.  It does not change 
upstream or downstream of the channels because there is no 
heat transfer outside of the channels.   

For the flat passage arrays, the slope of the average Nusselt 
number decreases as the distance from the channel inlet 
increases.  This rate of decrease is caused by the growth of the 
boundary layer.  For the grooved passage arrays, the rate of 
decrease is less than that for the flat passages.  Near the channel 
entrance, 𝑁𝑢𝑥 is the same for both grooved and flat models but 
diverge after several groove lengths.  This divergence location 
moves nearer the channel entrance with an increase in Reynolds 
number, similar to the behavior of the instability onset location.  
A slight change in curvature can be seen in the 𝑁𝑢𝑥 versus 𝑥𝐺  
plots for grooved passages at Re = 1000 and 3000.  The 
locations of these changes are indicated by arrows.  The 
location of the change in curvature is plotted versus 𝑥/𝐷𝐻  in 
Figure 5 using open triangles.  At each Reynolds number, this 
location  is  very  close  to  the onset of unsteady flow locations 
described earlier (diamonds in Figure 4).  This suggests that the 

 

 
 
Figure 5 Average Nusselt number versus groove 
coordinate: (a) Re = 1000;  (b) Re = 3000. 
 

 
slight curvature changes are caused by the onset of unsteady 
flow. 

The full channel average Nusselt number, 𝑁𝑢𝐿, is the value 
of 𝑁𝑢𝑥 at 𝑥𝐺  = 30, and it characterizes the total heat transfer to 
the gas.  Figure 6 shows the full channel average Nusselt 
number for both the grooved passages, 𝑁𝑢𝐿,𝐺, and flat 
passages, 𝑁𝑢𝐿,𝐹, versus Reynolds number.  The heat transfer 
enhancement for a grooved array over a flat array increases 
with Reynolds number from a ratio of 1.46 at Re = 1000 to a 
ratio of 2.75 at Re = 3000.  The dashed line marked √2 𝑁𝑢𝐿,𝐹 
shows the level of enhanced heat transfer that would be 
expected due to the area increase alone.  It can be seen that 
most all of the enhancement is due to area increase at Re = 
1000, and this is consistent with the onset of unsteady flow 
being near the channel exit at that Reynolds number (Figure 
3b).  Figure 6 shows that enhancement due to flow unsteadiness 
increases for  Reynolds numbers greater than 1000.     Figure  6 
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Figure 6  Average full channel Nusselt number versus 
Reynolds number. 
 
 
also includes the data from the N = 11 simulations at Re = 1000 
and 3000.  These are represented by open circles, and the 
values are nearly equal to the N = 7 results. 

The dimensionless fan power or power required to move 
the gas against drag in the channel from its entrance at x = 0 to 
another x-location is defined as follows. 

 

Φ𝑥 =
1

𝜌𝑢02𝜐
�� (𝑢𝑃����)𝑥=0𝑑𝑦

𝑇

𝐵
− � (𝑢𝑃����)𝑥𝑑𝑦

𝑇

𝐵
� 

 
Here, 𝑃 is the pressure.  Φ𝑥 is similar to an area-average 
pressure drop between pressure at x = 0 and axial location x. 
Figure 7 shows the non-dimensional fan power versus 𝑥𝐺  for 
Re = 1000, 1600, 2200, 2500 and 3000 for both grooved and 
flat passages.  On the scale of this plot, the flat passage fan 
powers are very close to each other and only the upper (Re = 
3000) and lower (Re = 1000) curves are marked.  For all 
locations and Reynolds numbers the grooved passage flows 
require a significantly higher fan power than in the flat channel.  
For the grooved passage array at Re = 3000, the fan power 
exhibits a sharp increase at the channel entrance where the flow 
accelerates into the channel array.  This acceleration is caused 
by blockage from the grooved wall’s thickness and shape.  The 
air must accelerate around this blockage as it enters the 
passage.  Some of the pressure is recovered in the first few 
grooves as the velocity field becomes established.  Further 
downstream, the fan power continues to increase due to drag 
within the channels.  The fan power within the channel array 
oscillates as the flow accelerates and decelerates in the 
converging and diverging sections of the channel.  The fan 
power decreases as the flow decelerates into the exit region 
where the pressure increases.  The fan power and pressure 
reach their final values at roughly 𝑥𝐺  = 45, which is 15 groove 
lengths downstream of the channel exit. 
       At lower Reynolds numbers, the fan power exhibits a 
similar behavior with a sharp increase at the channel entrance, 
small recovery, increase due to drag within the  channel  array,  

Figure 7 Non-dimensional fan power versus groove 
coordinate for Re = 1000, 1600, 2200, 2500 and 3000. 
 
 
and decrease in the exit region.  However, at lower Reynolds 
numbers the amplitude of the oscillations and the overall slope 
are small in a region near the inlet.  Further downstream, the 
amplitude and slope both increase significantly.  This location 
is marked by an arrow for each Reynolds number, and these 
locations are shown as Fan Power data points in Figure 4 
(marked by open circles).  These locations move upstream with 
an increase in Reynolds number and are in good agreement 
with the locations of the onset of flow unsteadiness and 
location where the Nusselt number exhibits a change in 
curvature.  This suggests that the increase in amplitude and 
slope are caused by the onset of unsteady flow. 

The flat passage fan power curves in Figure 7 exhibit a 
slight increase in the flat passage arrays at the channel entrance 
and a slight decrease at the channel exit.  These changes are 
much smaller than those of the grooved channels because the 
flat passage blockage is much smaller.  Fan power is 
significantly greater in the grooved passage arrays than in the 
flat passage arrays. 
 
 

Figure 8 Non-dimensional fan power versus Reynolds 
number. 
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The full channel non-dimensional fan power, 𝛷𝐿, is the 
value of 𝛷𝑥 at 𝑥𝐺  = 50.  It characterizes the total fan power 
required to accelerate the flow into the array, push the fluid 
through the array, and the recovery after it exits the array.  
Figure 8 shows 𝛷𝐿 versus Reynolds number for grooved (𝛷𝐿,𝐺) 
and flat (𝛷𝐿,𝐹) arrays.  For all Reynolds numbers, the fan power 
is significantly greater in the grooved passage arrays than in the 
flat passage arrays.  The required fan power also increases more 
significantly with Reynolds number in the grooved passage 
arrays than in the flat passage arrays.  The fan power 
requirement for a grooved array over a flat array increases with 
Reynolds number from a ratio of 8.56 at Re = 1000 to a ratio of 
18.10 at Re = 3000.  Figure 8 also includes the data from the 
N=11 simulations at Re = 1000 and 3000, represented by open 
circles.  The values are nearly equal to the N=7 results at Re = 
1000, but slightly lower at Re = 3000. 
        Figure 9 shows NuL versus 𝛷𝐿 for both grooved and flat 
passage arrays at Re = 1000, 1600, 2200, 2500 and 3000.  Heat 
transfer augmentation can be achieved by using grooved 
passage arrays but only with a significant increase in the 
required fan power.  
 

 
Figure 9 Full channel average Nusselt number versus 
non-dimensional fan power. 

SUMMARY 
Two-dimensional simulations of forced convection in an 

array of finite-length, continuously grooved passages with 
developing flow were performed by using the spectral element 
method for Reynolds numbers ranging from 1000 to 3000.  The 
average Nusselt number and fan power were calculated in order 
to analyze performance of a grooved passage array compared 
with a flat passage array. 

Steady-state results show that the addition of transverse 
grooves to the parallel passage arrays introduces unsteadiness a 
number of grooves downstream of the channel entrance.  This 
onset location moves closer to the channel entrance as the 
Reynolds number increases.  The unsteadiness improves the 
overall heat transfer compared with a flat passage array of 

equal average channel height by a factor of 1.46 at Re = 1000 
and a factor of 2.75 at Re = 3000.  The grooves also cause an 
increase in the required fan power by a factor of 8.56 at Re = 
1000 and a factor of 18.10 at Re = 3000.  However, these two-
dimensional results may not adequately capture the entire 
instability and mixing structures that have been seen in 
experiments and three-dimensional simulations.  These results 
will be used as an initial condition for future three-dimensional 
simulations. 

FUTURE WORK 
This paper did not explore the effects of neighboring 

passages on the pressure recovery in the exit region.  A single 
grooved channel mesh with the same groove geometry will be 
used to compare the full channel fan power with the grooved 
channel array.  The effects of an initial unsteadiness entering 
the grooved passage arrays as well as the effect of groove depth 
𝑏 on the onset location of unsteadiness will also be explored.  A 
three-dimensional computational domain will be constructed to 
explore the structures that cannot be seen with two-dimensional 
simulations.  An experimental apparatus is currently under 
construction to benchmark these results. 
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