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We suggest a probabilistic method for comparing the topological features of large phylogenetic trees. Using this method,
we demonstrate that a stochastic grammar can generate three influenza-subtype (A H1, A H3, and B) hemagglutinin trees
used in an earlier study, with statistically similar parameters. The proposed methodology is applicable to a broad class of
problems that require comparison of the topological properties of various dendrograms.

Introduction

Phylogenetic trees reconstructed from alignments of
viral proteins often vary drastically in their general appear-
ance. Some trees are wide/bushy and short (acacialike),
whereas others are slim and extended (cactuslike). (If
two rooted trees are of different shape but have the same
number of leaves, the longest path from root to a leaf in
the cactus tree will be longer than in the acacia tree.) Fur-
thermore, it appears that some trees have mostly short
edges, whereas others tend to have longer edges. For
surface-exposed viral proteins, such variation in the tree
shape may reflect differences in the dynamics of interaction
between viral-coat proteins and the host immune system.
For example, differences in shape of trees reconstructed
from alignments of hemagglutinin 1 protein of several sub-
types (A H1, A H3, and B) of influenza virus recently led a
group of researchers to postulate that these viral subtypes
evolve differently (Ferguson, Galvani, and Bush 2003) (see
Figure 1).

To explain the observed differences across these
viral trees, Ferguson, Galvani, and Bush (2003) built an
extensive model of dynamics of amino acid replacement
in viral-coat proteins, taking into account human population
structure, virus—host interactions, and temporal dynamics
of a viral pandemy. The resulting complex model of viral
evolution had quite a few parameters that were not readily
estimable from the viral protein sequences or from the viral
tree data and, therefore, had to be obtained elsewhere. We
suggest an additional necessary step in their analysis: test-
ing whether the tree topologies for different subtypes are
indeed significantly different. For the purpose of imple-
menting such a test, we developed a simple probabilistic
model belonging to a class of stochastic context-free gram-
mars that are frequently used in linguistics and computer
science. Our model describes generation of each viral tree
with a six-parameter stochastic process. Mathematically,
the model that we consider here is analogous to a model
of a multitype continuous-time branching process in pop-
ulation genetics (e.g., Harris 1963; Athreya and Keiding
1975; Lange and Fan 1997; Athreya and Ney 2004).
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Materials, Methods, and Results

In a nutshell, a grammar is a mathematical model that
allows generation of a set of strings (each string is a sen-
tence, and their collection is a language) through a series of
substitutions. A subset of permitted symbols that appear
only in the final strings are terminal symbols, whereas sym-
bols that appear only in the intermediate substitutions are
nonterminal. In addition to allowed symbols, each grammar
comes with a set of substitution rules (production rules) that
can be probabilistic or deterministic. To illustrate the con-
cept, let us consider a toy grammar with nonterminal sym-
bols {S, Y}, terminal symbols {a, b}, and the following
production rules (the probability of each rule is shown in
parentheses).

S — YY (1.0)
Y — ab (0.1)
Y — ba (0.9)

The grammar starts to generate sentences with symbol S,
substitutes yy for S (the first production rule) and then equi-
probably substitutes either ab or ba for each y, generating a
language that comprises just four sentences (the probability
of each sentence is shown in parentheses): abba (0.09),
baab (0.09), abab (0.01), and baba (0.81).

A hierarchy of formal grammars, suggested by Chom-
sky (1956, 1959), comprises regular, context-free, context-
sensitive, and unconstrained grammars, which we list here
in order of increasing complexity. Each of the grammars in
the list is a special case of all the grammars that follow it in
the list. (For a detailed description of Chomsky’s hierarchy,
see e.g., Manning and Schiitze [1999].) The computational
cost of applying formal grammars rises quickly, from linear
for regular grammars, to polynomial for context-free gram-
mars, to exponential for more complex (context-sensitive
and unrestricted) grammars. The context-free grammars
are often used in practical applications because they are
not only more powerful than regular grammars but also
are less prohibitively expensive, in terms of computation,
than the more complex grammars.

The original purpose of the formal grammars was gen-
erating sentences of a human language (such as English, see
Chomsky [1956,1959]). Thus, we can think of the viral trees
generated by our stochastic grammar as languages or dialects.

Assumptions

Two different rooted trees are perceived as having dif-
ferent shapes for two reasons. First, in the cactus tree, if we
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imagine how it grows, starting at the root, many lineages
have one or no descendants. In contrast, in the growing aca-
cia tree, most lineages have one or two descendants. Sec-
ond, the cactus and acacia trees may have dissimilar
distributions of branch length. For example, branches lead-
ing to nodes with offspring may be longer than branches
leading to childless nodes in acacia tree but not in the cactus
tree. Therefore, we make the following assumptions about
the process that we are modeling:

The tree that we are generating is rooted (in the case of viral
trees, we know the position of the root with certainty).

The branches of the tree have two different distributions:
short branches are terminal (the node ending the short
branch died out), whereas the long terminal branches
lead to nodes that could have continued to produce off-
spring if the process had run longer.

The lengths of short and long branches come from two dif-
ferent stochastic distributions (which we assume to be
either lognormal or gamma), with the mean value of short
branches not exceeding the mean value of long branches.

Generation of Tree-Encoding Strings

The model that we describe here is suitable for gen-
erating any of numerous currently available tree formats.
For the sake of descriptive simplicity, we have chosen to
represent trees in the Newick format (Archie et al.
1986), which is itself an extension of a tree encoding sug-
gested by the nineteenth-century English mathematician
Arthur Cayley. For example, a three-species tree, shown
in figure 2A, is represented in the Newick format as
“((1:1,2:1):1,3:0.45)1"°. The topology of the tree is
encoded as “‘((1,2),3),”” indicating that species 1 is grouped
with species 2, and species 3 is attached to the 1-2 cluster.
Furthermore, branches of the tree (of lengths 1, 1, 1, 0.45,
and 1) are encoded with the set of species corresponding to
them—1, 2, and 3 for the leaves of the tree, and (1, 2) for the
only interior branch of the tree that has the cluster 1, 2
beneath it. This encoding allows us to combine in a single
string information about the tree topology and the branch
lengths. The length of each branch is specified right after
the encoding that corresponds to the cluster underneath that
branch. In our tree-generating algorithm, we start by spec-
ifying the value of N—the size of the tree—where the size
is defined as the length of the longest direct path through
the tree starting at the root, or as the number of leaves
minus 1.

Our context-free stochastic grammar has the following
components.

Nonterminal symbols: {G, S, L, #},

Terminal symbols: {1, 2, 3, 4, 5, 6, 7, 8, 9, 0,
‘(s”)a’,::a”,s.s}'

Production:

G—u>(G:L, G:L) (ancestor produces two descendants)
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FiG. 2.—Hypothetical trees. (A) A tree for three species. (B) A tree
corresponding to the Newick string generated by our grammar (see text
for more information). (C) Two trees that represent the difference in tree
topology that can be captured by our grammar: acacialike tree (C) and cac-
tuslike tree (D).

GZ—B>(G:L, #:S) or (#:S,G:L) (ancestor produces one
descendant)

G#Z—ﬁ—»(#:s, #:S) (lineage goes extinct)

# — numbers (1:N)

Note that we treat (G:L,#:S) and (#:S,G:L) as indistin-
guishable configurations, which is equivalent to assuming
that the order within each pair of sister nodes is undefined.
We considered two alternative forms of the probability den-
sities.

L w20}
o, V2T

filx) = ; (1)

and

1 ai—1 _—(x/b;)
. =" i 2
76 = g ©)

where i = 1, 2. These equations represent a lognormal and a
gamma probability density, respectively. Therefore, we

Fic. |.—Hemagglutinin trees of viral subtypes A H1, A H3, and B. These trees were analyzed first by Ferguson, Galvani, and Bush (2003). We
recreate the trees using PAUP* (Swofford 1996) and visualized using TreeExplorer program written by Koichiro Tamura (http://evolgen.biol.

metro-u.ac.jp/TE/TE_man.html).


http://evolgen.biol.metro-u.ac.jp/TE/TE_man.html
http://evolgen.biol.metro-u.ac.jp/TE/TE_man.html
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FiG. 3.—Analysis of viral trees under the lognormal-density with 6-parameters. Arrowheads indicate a posterior mean for different data sets.

have two versions of a six-parameter model, with param-
eters {a7 B’ ul» Oy, PQ, 627} and {a’ Ba ap, b17 as, bZ}’
respectively.

We then suggest the following six-step algorithm, which
generates a string.

Step 1. Choose a value of N and begin with the string **S;”’
Step 2. For i = 1,N repeat

Apply one of the four production rules to a randomly
chosen symbol G, selecting rules with probabilities speci-
fied by parameters o andf; replace only one symbol G at
each iteration.

If there are no more symbols G remaining, proceed to
step 4.

End

Step 3. If the string has symbols G, do replacement; G — #.
(Else, skip to step 4.)

Step 4. Assign j = 1.

While there are symbols # in the string

Find the leftmost symbol # in the string and substitute for it
number ;.

Increment j by 1.

End

Step 5. While there are symbols S in the string
Find the leftmost symbol S.

Sample a real number x from distribution f;(x).
Substitute symbol S with number x.

End

Step 6. While there are symbols L in the string
Find the leftmost symbol L.

Sample a real number y from distribution f5(y).
Substitute symbol L with number y.

End
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Fic. 4—Analysis of viral trees under the gamma-density six-parameter model. Arrowheads indicate the a posteriori mean for different data sets.

As an example, we show the generation of a tree of
height 3 (see figure 2B).

We start with a string “‘G;”’ (step 1 of the algorithm).
G;
Apply substitution G 2—ﬁ>(G:L, #:S) or (#:S,G:L) (step2)
(G:L,#:8);
Again, substituting G N (G:L, #:S) or (#:S,G:L)(step 2)
((G:L,#:8):L,#:8);
Apply one more substitution corresponding to step 2
(remember that, G——(#:S,G) and G——(G,#:S)
are indistinguishable)
(((#:8,G:L):L,#:S):L,#:S);
Because the target depth 3 has been reached, apply substi-
tution G — # (step 3 of the algorithm).

(((#:S,#£:L):L,#:S):L,#:S);

Substitute symbols # with consecutive integers (step 4).

(((1:S, 2:L):L,3:S):L.,4:S);

Substitute symbols S with real numbers sampled from f;
(using a lognormal distribution, step 5).

(((1: 1.000, 2:L):L,3:0.989):1.,4:0.987);

Substitute symbols L with real numbers sampled from f>
(using a lognormal distribution, step 6).

(((1: 1.000, 2:1.453):1.641,3:0.989):1.511,4:0.987);

Our Newick tree string is ready to be visualized (see
figure 2B). The advantage of using the Newick format is that
we can apply directly various programs to convert the tree
string into a tree picture. To illustrate application of this
algorithm, let us consider two trees that were generated
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FiG. 5.—Branch length densities estimated under gamma (A) and
lognormal (B) models with three parameters.

by two grammars and that are different in only the values of
parameters o andf3 (see figure 3): The values of o approach-
ing 1 tend to produce short, bushy trees (see figure 2C),
whereas values of B approaching 0.5 tend to produce tall,
skinny trees (see figure 2D).

Calculating Likelihood

First, we must go through the list of interior nodes of
the tree. For this application, the viral tree must be rooted.
This constraint is usually not a problem, because when viral
strains are collected during successive epidemics, each viral
strain comes with the exact date it was collected, so the root
often can be placed to the edge leading to the strain that was
collected the earliest. For each interior node, we can iden-
tify two incidental braches of the tree: the right branch of
length e;, and the left branch of length e;,. It is important
only that we distinguish two branches; the labels that we use
are irrelevant.

Assuming that our tree has M interior nodes, the like-
lihood (the probability of the data given the model and the
model parameters) of our tree under our model can be writ-
ten in the following way:

M

L©|T,e)= [[Plewreu)-

i=1

(3)

To explain how to compute probability (3), let us
introduce notations, P(x<«f;) and P(x<f>), which stand
for the ‘“‘probability that x is sampled from distribution
f1”’ and ‘‘probability that x is sampled from distribution
/>, respectively. Then, the likelihood value for each
pair of edges can be written in the following way. If
both the right and left branches are terminal, the likelihood
is

P(ei,mei‘,l) = uP(ei.r ‘_fl)P(eu ‘_fl)
+ BP(e;, —fi)P(ei 1)
+ BP(ei, —f2)P(e—fi)
+ (1 — o —2B)P(e;, —fo)Ple; < f).

If only one branch is terminal but the other one is not,
we have

(4)

P(ei1T7 ei,N) = Otp(eij ~fi )P(ei.N ‘_fl)
+ BP(ei,T —fi )P(ei.N ‘_fz),

where subscripts T'and N refer to terminal and nonterminal
branches, respectively.

Finally, if both branches are nonterminal, the expres-
sion reduces to

(5)

P(ei,, ei) = oP(ei, —fi)P(ei—h). (6)

Equation (4) has four terms because, when we work
with a real tree, we do not know with certainty the actual
production rule used to generate a pair of terminal tree
branches, and, therefore, we have to sum through the
probabilities that the forklike topological motif would be
generated, using all possible productions for nonterminal
symbol G.

The information provided in the preceding paragraphs
should be sufficient to allow anyone proficient in com-
puter programming to implement model analyses with
the maximum-likelihood method. Such analyses would
produce point estimates of the parameter values. In addition
to these estimates, we would like to compute credible inter-
vals (Bayesian equivalents of confidence intervals in clas-
sical statistics [e.g., see Howson and Urbach {1993}]).
This computation would allow us to make statements
about the significance of the difference in parameter esti-
mates for different viral trees. Alternatively, we could
use estimates of the information matrix at the point of
the maximum likelihood to determine approximate confi-
dence intervals. This second method, however, is known
to produce liberal confidence intervals and is based on
a frequently violated assumption, for real-life sample sizes,
of the approximate normality of the likelihood function.

Thus, to determine Bayesian credible intervals, we
would like to estimate the posterior density P(® | data).



Table 1
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A Posteriori Mean Estimates and 95% Credible Intervals for Parameter Values of the Six-Parameter Model with Log-Normal

Distribution of Branch Lengths

o B My Gy H2 G2
A.hl: AM 0.40 0.26 —5.56 7.35 1.17 0.68
A.hl: 95% CI [0.29 0.52] [0.20 0.32] [—6.89 —4.25] [6.53 8.32] [0.98 1.36] [0.55 0.82]
A.h3: AM 0.39 0.26 —5.40 7.13 0.88 0.65
A.h3: 95% CI [0.33 0.45] [0.22 0.29] [—6.09 —4.72] [6.68 7.61] [0.79 0.97] [0.59 0.71]
B: AM 0.38 0.25 —5.71 7.33 1.02 0.64
B: 95% CI [0.30 0.46] [0.21 0.29] [—6.63 —4.80] [6.75 7.99] [0.90 1.13] [0.56 0.72]

Note.—Bold typeface indicates parameter estimates that are significantly different for different data sets. AM = a posteriori mean; CI = credible interval.

Calculation of Posterior Densities Using Markov Chain
Monte Carlo

We compute the posterior density using the Bayes’
theorem:
P(data | ®)P(0)
P(data)
P(data | ®)P(0®)
P(data | ©®)P(©)d(©)’

admissible values of
0

P(® | data) =

(7)

@ = (O£7 B7 l’lla Gla Hza 62) or
@ = (Ol, B7 a17b17a27b2)‘

To use equation (7), we have to specify the prior distribu-
tion of parameter values. As people often do in such cases,
we can assume that no prior information is available about
the parameter values, except that

a+2p =<1,
a=0,
p=0,
Qs sQ (8)
0<o0 =Q,
0=<a=Q,
0<h =Q.

where Q is a large positive number that is less than positive
infinity. Then, we can use uniform prior distributions for all
parameters subject to constraints (8). Given a sufficient vol-
ume of data, the results of the computation of the posterior
distribution under weakly informative priors would be sim-
ilar to those under uninformative ones. As long as the prior

Table 2

distributions occur both in the numerator and denominator
of equation (7) and are uniform, they cancel out and our
only concern is computing the likelihood function.

For large trees, equation (7) is too cumbersome for
exact analytical treatment, and researchers commonly use
an approximation to the integral. An estimate of an integral
of a function can be obtained with a Monte Carlo integra-
tion. In its simplest version, the Monte Carlo integration
involves generation of random points within a hypercube
that encapsulates a surface of interest (the surface corre-
sponds to the function under the integral sign). By estimat-
ing the proportion of points under the surface to the total
number of randomly generated points and by knowing
the volume of the hypercube, we can estimate the volume
under the surface with arbitrarily high precision.

The Markov chain Monte Carlo MCMC) algorithm is
a more computationally efficient version of a stochastic
integration (Metropolis et al. 1953; Hastings 1970; Gilks,
Richardson, and Spiegelhalter 1996). It is based on the
observation that Markov chains of the class called *‘positive
ergodic Markov chains,”” have the important property of
converging to their stationary distribution starting at an
arbitrary point in state space. Thus, we can start a time-
reversible Markov process at an arbitrary point of the
parameter space, then let it run for a large number of iter-
ations. In this application, we used 100,000 iterations of full
update of the parameter values after MCMC reached statio-
narity. Eventually, the stochastic process will reach the con-
dition where all states will be visited in proportion to the
stationary distribution of the chain. Therefore, if we can
design a time-reversible Markov chain that has the required
probability distribution as a stationary distribution (in our
case this is P(a., B, Ly, O1, L, 02 | data) to estimate the dis-
tribution, we need only to compute the frequency
with which each state of the Markov chain occurs in a long
simulation.

A Posteriori Mean Estimates And 95% Credible Intervals for Parameter Values of the Six-Parameter Model with a Gamma

Distribution of Branch Lengths

ol B a; b/ as bz
A.hl: AM 0.64 0.16 0.15 16.29 4.86 1.01
A.hl: 95% CI [0.47 0.81] [0.08 0.25] [0.12 0.17] [10.32 25.86] [2.17 11.01] [0.37 2.01]
Ah3: AM 0.63 0.18 0.16 10.23 4.11 0.79
A.h3: 95% CI [0.54 0.72] [0.13 0.22] [0.15 0.18] [8.13 12.85] [2.85 6.33] [0.51 1.10]
B: AM 0.62 0.16 0.15 13.82 6.20 0.62
B: 95% CI [0.51 0.74] [0.11 0.23] [0.13 0.17] [10.24 18.70] [3.27 11.72] [0.30 1.05]

Note—AM = a posteriori mean; CI = credible interval.
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Table 3

A Posteriori Mean Estimates and 95% Credible Intervals for
Parameter Values of a Three-Parameter Version of the Model
with a Gamma Distribution of Branch Lengths

Y a b
Ahl: AM 0.99 0.18 15.54
A.hl: 95% CI [0.96 1.] [0.15 0.20] [10.73 22.66]
A.h3: AM 0.997 0.19 10.04
Ah3:95% CI [0.989 1.] [0.18 0.21] [8.33 12.16]
B: AM 0.995 0.19 1291
B: 95% CI [0.982 1.] [0.17 0.20] [10.11 16.50]

NoTte.—AM = a posteriori mean; CI = credible interval.

More specifically, given the current values of param-
eters ©®, we need to define a probabilistic way to sample
new parameter values ®*. We chose ¢(O* | ®) as a uni-
form one-dimensional probability function that is symmet-
rical when parameter values are far from the boundary of
the admissible values for the parameter and asymmetrical
when its values are close to the boundary. We updated
the parameters in a stepwise fashion, such that ® differed
from ®* by the value of a single parameter. We computed
the probability of accepting the new parameter values @*
given old values O in the following way:

L(©%)¢(O | %)

We made the actual decision whether to accept the
new state by generating a random value of a uniformly dis-
tributed random variable; if the generated value was smaller
than A(® *, ®), we accepted the new state. L(®) in equa-
tion (9) stands for the likelihood value computed for param-
eter values Q.

We updated one parameter at a time using the follow-
ing transition function, which, as we mentioned, is symmet-
ric uniform far from boundaries and is asymmetric uniform
at the boundaries of the parameter values.

35-1f(0 < rand 6% < 9),
ﬁ, if (6 > yrand 6* < 0)
or (0 +{ < 0, and 6* > 0),
s — if (0 + \ > 0,,,, and 0* > 0).

2own 07
(10)

q(6* [ 6) =

Parameters s, 0, 6*, and 0,,,,, represent the maximum jump
size, the old value of a parameter, the new value of the
parameter, and the upper limit for the parameter, respec-
tively. (Note that we assume that the boundaries of the
region, 0 and 6., are excluded from the admissible
region.)

Data Analysis

We applied our estimation procedure to the same three
data sets used by Ferguson, Galvani, and Bush (2003). The
data sets A.HI, A.H3, and B contain alignments of 104,
357, and 220 sequences (see figure 1), respectively. Follow-
ing Ferguson, we estimated phylogenetic trees with the

maximum-parsimony method using PAUP* (Swofford
1996). To root the trees, we used as outgroups sequences
X00027_A/USSR/90/77, A/Oita/3/83, and AB027392_B/
Aichi/70/81 for viral subtypes A H1, A H3, and B, respec-
tively. The resulting trees were saved in a Newick format
and analyzed under the model described in the Introduction.
All programs for this analysis were written in MatLab.

The results of our analyses are shown in figures 3-5
and in tables 1 and 2. In a nutshell, parameter estimates for
all three data sets are essentially identical under both ver-
sions of our six-parameter model (all differences are non-
significant). One respect in which two data sets (the A H1
and A H3 subtypes) are different from each other is the
branch length distributions (see figures 3E and table 1).
For the A H1 and A H3 subtypes, the branch-length den-
sities f> have significantly (at the 95% level) different mean
values (see table 1). Note also that, for all three data sets, the
estimated densities f; and f, have significantly different
parameter estimates (see figure 5 and tables 1 and 2); this
difference indicates that the model in which the tree edge
lengths are described by two different distributions agrees
well with the data.

Discussion

It is easy to generalize our approach to fit a wide spec-
trum of problems related to statistical comparison of tree
topologies. For example, we can consider a context-free
grammar where generation of a tree-encoding string
involves production rules that insert a spectrum of larger
““motifs’’ of a tree. Such an approach is potentially appli-
cable to testing arbitrarily complicated hypotheses in com-
parison of frequencies of topological motifs in treelike
structures. There is no particular reason, other than compu-
tational complexity and ease of programming, for demand-
ing that all production rules insert tree fragments of equal
size; rather, we can define a spectrum of fragment sizes.
Furthermore, biological applications may require that tree
edges be sampled from more than two distinct distributions.
We might also need to substitute, for a lognormal (or
gamma) distribution of branch lengths, a different family
of distributions, such as a negative binomial distribution
for discrete data. (Strictly speaking, all edge lengths
estimated with the maximum-parsimony method are
discrete valued; other tree-making methods, such as the
neighbor-joining algorithm [Saitou and Nei 1987], produce
real-valued branch-length estimates.) For example, in our
MCMC experiments, the gamma-density version of our
six-parameter model appeared to fit the data significantly
more closely than did the lognormal version: The average
log-likelihoods under these two models for the same data
set were different by 85 log-likelihood units for the B sub-
type data set. This result suggests that our model might be
improved substantially by a study of alternative model
setups.

The suggested methodology is not limited to viral trees
or even to trees inferred from gene or protein sequences. It
should be applicable to a general class of dendrograms uti-
lized in social and natural sciences. As in the current appli-
cation, the null hypothesis that two or more trees were
generated by the same stochastic grammar is compared with



the hypothesis that the different trees were produced by sig-
nificantly different grammars.

Our model also bears kinship to the Galton-Watson
trees, where each node in a growing tree can produce k off-
spring (k = 0, 1, 2, 3, ...) with a probability p, that is the
same for all nodes. We can convert our model to a special
case of a Galton-Watson tree by setting p, = o, p; = 2,
and py = 1—p,—p», or, by doing substitution p, = V>, p, =
2v(1—y),po= (1 —y)z, to one-parameter version. The most
common definition of the Galton-Watson trees does not
allow for correlations between topological elements and
edge lengths, such as we have in our model; however, we
can reformulate the Galton-Watson model to account for
edge-length variation. Context-free grammars that add large
fragments of tree topology (e.g., a grammar using the
following production tule G— ((G:L,G:L):L,(G:S,
G:S):S):L) are no longer equivalent to the Galton-Watson
trees.

To exclude the possibility that our model is too
parameter-rich to detect a difference in shape among the
influenza trees, we analyzed a simplified one-parameter
Galton-Watson model as just described, where p, = v,
p1 = 2y(1—y), po = (1—y)?, and assumed that all edges
of the tree were sampled from the same distribution. We
found that this model also failed to detect significant differ-
ences among the trees (see table 3). Therefore, we currently
cannot reject the hypothesis that all three viral trees consid-
ered in this study are identical in terms of overall tree top-
ology (i.e., that they were generated by the same stochastic
grammar).

Acknowledgments

This study was supported by grants from the National
Institutes of Health, the National Science Foundation,
the Department of Energy, and the Defense Advanced
Research Projects Agency to A.R. We thank Dr. N. Ferguson
for providing us with the three sets of aligned hemagglutinin
sequences of human influenza, two anonymous referees,
and Ms. Lyn Dupré, for providing numerous valuable com-
ments that significantly improved the paper.

Comparing Trees with Stochastic Context-Free Grammar 913

Literature Cited

Archie, J., W. H. E. Day, W. Maddison, C. Meacham, F. J. Rolf, D.
Swofford, and J. Felsenstein. 1986. Newick tree format., http://
evolution.genetics.washington.edu/phylip/newicktree.html.

Athreya, K. B., and N. Keiding. 1975. Estimation theory for
continuous-time branching processes. University of Copenha-
gen, Institute of Mathematical Statistics, Copenhagen.

Athreya, K. B., and P. Ney. 2004. Branching processes. Dover
Publications, Mineola, N.Y.

Chomsky, N. 1956. Three models for the description of language.
IRE Trans. Inform. Theory 2:113-124.

. 1959. On certain formal properties of grammars. Inform.
Control 1:91-112.

Ferguson, N. M., A. P. Galvani, and R. M. Bush. 2003. Ecological
and immunological determinants of influenza evolution.
Nature 422:428-433.

Gilks, W. R., S. Richardson, and D. J. Spiegelhalter. 1996.
Markov chain Monte Carlo in practice. Chapman & Hall/
CRC, New York.

Harris, T. E. 1963. The theory of branching processes. Springer,
Berlin.

Hastings, W. K. 1970. Monte Carlo sampling methods using
Markov chains and their applications. Biometrika 57:97-109.

Howson, C., and P. Urbach. 1993. Scientific reasoning : the Baye-
sian approach. Open Court, Chicago.

Lange, K., and R. Z. Fan. 1997. Branching process models for
mutant genes in nonstationary populations. Theor. Popul. Biol.
51:118-133.

Manning, C. D., and H. Schiitze. 1999. Foundations of statistical
natural language processing. MIT Press, Cambridge, Mass.
Metropolis, S. C., A. Rosenbluth, M. Rosenbluth, A. Teller, and
E. Teller. 1953. Equation of state calculations by fast comput-

ing machines. J. Chem. Phys. 21:1087-1092.

Saitou, N., and M. Nei. 1987. The neighbor-joining method: a new
method for reconstructing phylogenetic trees. Mol. Biol. Evol.
4:406-425.

Swofford, D. L. 1996. PAUP*: phylogenetic analysis using parsi-
mony (*and other methods). Sinauer Associates, Sunderland,
Mass.

William Martin, Associate Editor

Accepted December 21, 2004


http://evolution.genetics.washington.edu/phylip/newicktree.html
http://evolution.genetics.washington.edu/phylip/newicktree.html

