
 
 
 
The Grand Challenge  
of Managing the Petascale Facility

ANL/MCS-07/5

 

Mathematics and Computer Science Division



Availability of This Report
This report is available, at no cost, at http://www.osti.gov/bridge. It is also available  
on paper to the U.S. Department of Energy and its contractors, for a processing fee, from:

  U.S. Department of Energy

  Office of Scientific and Technical Information

  P.O. Box 62

  Oak Ridge, TN 37831-0062

  phone (865) 576-8401

  fax (865) 576-5728

  reports@adonis.osti.gov

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States 

Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express 

or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 

product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific  

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply 

its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of 

document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, 

Argonne National Laboratory, or UChicago Argonne, LLC. 

 

About Argonne National Laboratory 
Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC  
under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago,  
at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne,  
see www.anl.gov.



A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

 
 
 
The Grand Challenge  
of Managing the Petascale Facility

ANL/MCS-07/5

 

by 
R.J. Aiken
aiken@mcs.anl.gov
Mathematics and Computer Science Division, Argonne National Laboratory

December 2006



 ii 

 

 

 



 
Contents 

 
 
 Preface          vii 
 
 Acknowledgments         viii 
 
 I.            Executive Summary          1 
 

II.           Introduction          6 
 

  II.1   Scope of the Petascale Facility                    6 
  II.2   Performance, Predictability, and Usability       7 
  II.3   Complexity                     7 
  II.4   Productivity and Workflow        8 
  II.5   Petascale Management                     8  

II.5.1   Grand Challenge of Management                 9 
             II.5.2   Local and Global Management      9 
                        II.5.3   Management Areas        9 
                        II.5.4   New Management Models     10 
             II.5.5   Instrumentation and Monitoring    10 

            II.5.6   Appropriate Use      11 
            II.5.7   Security       12 

             II.5.8   Morphable Infrastructure     12 
             II.5.9   Naming       13 
                        II.5.10 Object-based Infrastructure     13 

  II.6   Summary        13 
  II.7   Structure of the Report       14 

 
III.        Challenges and Research Opportunities       16 

  
  III.1      Scaling of the Petascale Facility and Metafacility     16 
  III.2      Virtualization, Virtual Organizations, Virtual Facilities,  

    and Grids          17 
  III.3       Architectures, Systems, Facilities, and Metafacilities    19 
  III.4       Networks          22 
  III.5       Data Management         26 
  III.6       Workflow          28 
  III.7        Security          31 
  III.8        Visualization and Analytics        31 
  III.9        Morphable Networks and System       31 
 

 iii



 
IV.      Recommendations           33 
 
 IV.1      Integrated Management        33 
      IV.1.1   New Program for Petascale Facility Management   33 
      IV.1.2   Performance-driven, Predictable, and Usable 
          Resource Management System       34 
      IV.1.3   Data Management                34 
      IV.1.4   Workflow          34 
      IV.1.5   Object-based Infrastructure       35 
      IV.1.6   Naming and Addressing        35 
      IV.1.7   Dynamic and Adaptable Infrastructure      35  

  IV.2      Initial Steps          36 
IV.3      SciDAC Petascale Projects as Enabling Prototypes     36 

   
Appendix AI.       Petascale Computing and Facilities       38 
 

  AI.1   Leadership Capability Systems        38 
  AI.2   Petascale-class Experimental Facilities      40 
  AI.3   Capacity Computing         41 
  AI.4   Petascale Storage and Data Management      41 
  AI.5   Petascale Networks         42 
  AI.6   Petascale Analysis and Visualization       43  
  AI.7   Petascale Facility and Metafacility       43 
 

Appendix AII.    Trends in Scientific Research       44 
 
 AII.1   One-of-a-Kind Facilities        44 
 AII.2   Computational Science and Simulation      45 
 AII.3   Data Fusion and Integration        46 
 AII.4   Integration of Scientific Databases and Data Management    47 
      AII.4.1 Data Location        47 
      AII.4.2 Data Searching and Analysis      48 
          AII.4.3 Data Provenance        48 
                     AII.4.4 Policy         49 
                    AII.4.5 Object-based File Systems       49 
 AII.5   Interdisciplinary Teams         49 
 AII.6   Virtualization          50 
 AII.7   Visualization          52 
 AII.8   Workflow          53 
 AII.9   Dataflow and Data Management       56 
 AII.10 Persistence, Ubiquitous Computing, Nomadicity, and Remote  

  Access          59 
 AII.11 Summary of Trends in Scientific Research      60 

 iv



 
Appendix AIII.      DOE Facilities: Current and Future       61 
 
 AIII.1     SciDAC          61 
 AIII.2     NITRD and HEC Roadmap        61 
 AIII.3     Current and Planned Leadership-class Capability, Capacity,  

      and Cluster Systems        62  
       AIII.3.1  Capability Systems       62 

                     AIII.3.2  Capacity Systems       63 
 AIII.4      Storage and Data Management       64 
 AIII.5      Petascale Experiments        66 
 AIII.6      Networks          69 
 AIII.7      Infrastructure         69 
 AIII.8      Grids          70 
  
Appendix AIV.      Trends in Technology        71 

 
  AIV.1     Technology Churn         71 
  AIV.2     Computing and Moore’s Law        72 
  AIV.3     Storage          74  

       AIV.3.1  Challenge of Data Storage       74 
              AIV.3.2  Tape Storage        74 
              AIV.3.3  Disk Storage        75 
                 AIV.3.4  Parallel I/O, File Systems, and Data Formats    76 
              AIV.3.5  Summary        77 
  AIV.4     Interconnect Area Networks        77 
  AIV.5      Networks          79 
               AIV.5.1  Dark Fiber and Waves        80 
          AIV.5.2  IAN, CAN, SAN, LAN, MAN, and WAN    80 
          AIV.5.3  10 Gbs Building Blocks      81 
                     AIV.5.4  IP and Routing        81 
            AIV.5.5  Optical Networking       82 
          AIV.5.6  Transport Protocols       84 
          AIV.5.7  Multimode Networks       85 
          AIV.5.8  Hybrid Networks       85 
  AIV.6      Security          85 
  AIV.7      Architectures and Systems        87 
  AIV.8      Visualization         87 
  AIV.9      Naming and Addressing        88 
  AIV.10    Virtualization         88 
  AIV.11    Programming Environments       89 
 

References            90 

 v



 vi 



 vii 

 

Preface 

 
This report is the result of a study of networks and how they may need to evolve to 

support petascale leadership computing and science. As Dr. Ray Orbach, director of the 

Department of Energy’s Office of Science, says in the spring 2006 issue of SciDAC 

Review, “One remarkable example of growth in unexpected directions has been in high-

end computation.” In the same article Dr. Michael Strayer states, “Moore’s law suggests 

that before the end of the next cycle of SciDAC, we shall see petaflop computers.” Given 

the Office of Science’s strong leadership and support for petascale computing and 

facilities, we should expect to see petaflop computers in operation in support of science 

before the end of the decade, and DOE/SC Advanced Scientific Computing Research 

programs are focused on making this a reality.  

 

This study took its lead from this strong focus on petascale computing and the networks 

required to support such facilities, but it grew to include almost all aspects of the 

DOE/SC petascale computational and experimental science facilities, all of which will 

face daunting challenges in managing and analyzing the voluminous amounts of data 

expected. In addition, trends indicate the increased coupling of unique experimental 

facilities with computational facilities, along with the integration of multidisciplinary 

datasets and high-end computing with data-intensive computing; and we can expect these 

trends to continue at the petascale level and beyond. Coupled with recent technology 

trends, they clearly indicate the need for including capability petascale storage, networks, 

and experiments, as well as collaboration tools and programming environments, as 

integral components of the Office of Science’s petascale capability metafacility. 

 

The objective of this report is to recommend a new cross-cutting program to support the 

management of petascale science and infrastructure. The appendices of the report 

document current and projected DOE computation facilities, science trends, and 

technology trends, whose combined impact can affect the manageability and stewardship 

of DOE’s petascale facilities. 

  

This report is not meant to be all-inclusive. Rather, the facilities, science projects, and 

research topics presented are to be considered examples to clarify a point.  
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I.  Executive Summary  
 

A recent report published in Nature by a number of well-known computer scientists, 

computational sciences, and biologists discusses projections for the state of science by 

2020. The report indicates major changes in the way science will be conducted, including 

intelligent interaction and information discovery, semantics of data, transformation of 

scientific communication, computational thinking, new kinds of virtual communities, 

synergy between biology and computer science, and the integration of sciences. The 

authors also note the development of new conceptual and technology tools such as 

prediction machines, “artificial scientists,” molecular machines, and new software models 

[1]. Many of these trends are already evident in multidomain and combined 

computational and experimental sciences and have their grass roots in the techniques, 

tools, and architectures currently used or identified in roadmaps by the Department of 

Energy Office of Advanced Scientific Computing Research (ASCR) for the INCITE and 

SciDAC programs, as well as other Office of Science flagship science programs. 

Petascale science, computers, experiments, data management, and infrastructure are key 

components for enabling the next generation of science.     

 

Pressures on Infrastructure and Science 

 

Cutting-edge science often takes its pioneers into new and challenging areas. Within a 

few years scientists supported by the Department of Energy’s Office of Science 

(DOE/SC) will be using petaflops capability computers. Petabyte-scale experimental 

science and data-intensive science are becoming the norm, and their integration with 

petascale computing not only will increase over time but will be required as the trend 

continues toward more multidisciplinary, multisite, multi-institutional, multiresearcher 

science.  

 

The Spallation Neutron Source (SNS), for example, is planning to tightly couple 

capability computing and theoretical simulation with petascale experiments, both for 

model validation and for real-time to quasi-real-time steering of the experiments, thereby 

enabling more effective use of costly facilities and reducing the time needed to analyze 

the results. Similarly, Advanced Photon Source experiments are considering the coupling 

of experimental and computational facilities. Observational and experimental science 

projects such as KamLAND [2], the Supernova Factory [3], and the Large Hadron 

Collider [4] are further examples of the need for the coupled use of high-end computing.  

 

We are entering a new era of science that will require metafacility interfaces and 

standards to better enable interfacility collaboration and the movement of the data and 

codes from one site to another. This top-down science trend is occurring simultaneously 

with a bottom-up technology trend toward more parallelism aimed at moving beyond the 

limits of Moore’s law (e.g., parallel file systems, application-specific integrated circuits, 

multicore processors). Another technology trend is the virtualization of systems, 

networks, services, and organizations. The combination of these bottom-up and top-down 
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trends will only increase the challenges that scientists will encounter as they move into 

the petascale level and beyond.  

 

For effective petascale science, more than just an evolutionary approach will be needed. 

An innovative approach must be formulated that integrates local and global facilities 

whereby theory and computation are melded and tightly coupled with experimentation, 

observation, and data-intensive sciences.  

 

Program Integration and a New Scientific Discipline 

 

The DOE/SC ASCR high-end computing (HEC) programs are focused on the 

development and use of leadership capability computing. However, in order to better 

move DOE/SC science into the petascale era and beyond, a complementary program is 

needed to integrate observation, experimental, and data-intensive science (OEDIS) 

facilities as part of an overall DOE/SC petascale metafacility.  

 

Some steps to better integrate OEDIS and HEC through SciDAC and other science-

driven programs have already been initiated; however, they are mainly separate focuses 

(see Fig. I.1). The tight coupling of an OEDIS program to the HEC program in a 

complementary fashion is essential for the success of each. Together they will enable the 

next generation of science (see Fig. I.2).  

  

                                                         
                                                Figure  I.1   Separate OEDIS and HEC programs       

 

                                                                

                                                        

 

 

 

 

 

 
    Figure I.2   Complementary and Integrated OEDIS and HEC programs  

 

Both the HEC and OEDIS programs need to include a new focus on developing a 

computing systems management science (CSMS), similar to the development of 

computational science in the 1990s. This new science would combine systems operations, 

data management, distributed systems, networks, workflow systems, fault tolerance and 

autonomic computing, services, security, and computing sciences. The goal of the new 
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science would be to develop systems, standards, and tools to support the DOE petascale 

metafacility. Research and development in many of these areas has already been initiated 

in programs such as the Open Science Grid, MonALISA, Globus, Condor, and TeraGrid 

and in other workflow and distributed systems. DOE’s proven leadership in integrating 

leading-edge science experiments, computing, and computational science (e.g., in 

SciDAC and INCITE) makes DOE/SC/ASCR an obvious choice to take the lead in 

developing this computing systems management science program. For example, 

DOE/SC/ASCR could prototype CSMS postdoctoral and graduate school opportunities at 

their capability petascale facilities, helping to build a talent pool for future high-energy 

computing.  

 

Petascale Metafacility 

 

The DOE/SC petascale metafacility is a combination of the leadership-class capability 

computers at Oak Ridge National Laboratory and Argonne National Laboratory, the 

capacity computing facilities at Lawrence Berkeley Laboratory/NERSC, petabyte-scale 

experiments such as the Large Hadron Collider and the Spallation Neutron Source, 

petabyte-scale to exabyte-scale storage systems, terabit networks capable of supporting 

petascale facilities, and petabyte-scale data management and analysis facilities. Operating 

systems, programming and scripting languages, programming development 

environments, middleware, Grids, workflow systems, system management architectures, 

and security are all crucial components of the petascale metafacility.  

 

It is imperative that DOE treat all of these facilities and components as a metasystem 

with significantly more focus on their secure integration from a programmatic 

perspective, including the concurrent support of production and experimental/research 

infrastructure capabilities. Only in this way will researchers be able to migrate among the 

DOE/SC petascale facilities as their science requires.  

 

Challenge of Scale and Complexity 

 

Petascale computing facilities and systems will be made up of hundreds of thousands to 

millions of processor nodes. As the complexity of components and systems increases, so 

too do the probability of error and the difficulty in using the resources effectively. 

Moreover, the increased complexity introduced by combining a number of facilities into 

a metafacility increases the chances of security holes and opportunities for attacks. 

Combining one or more of these complex high-end computing systems with any other 

petascale storage, networks, and experiments—all of which are going through their own 

explosive virtualization and parallel growth—makes the challenge of securely managing 

these resources even more daunting. In addition, current systems and system software 

support static and coarse-grained allocation; to fully utilize these unique resources will 

require more dynamic and adaptive configuration and management.  
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Computing Systems Management  

 

The term “management” in this report refers to the interaction and integration of 

processes (such as end-to-end security, monitoring, auditing, data analysis, visualization, 

workflow, data movement, and dynamic resource allocation), techniques (such as 

naming, object management techniques, schemas, autonomic computing, and the testing, 

benchmarking, verification, and integration of software, services, systems, and 

hardware), and components (such as instrumentation). The goal is not to develop a single 

management system; rather, it is to develop the ability to dynamically build virtual 

petascale facility and metafacility architectures and managements systems from a 

common set of standards-based management systems, subsystems, and core components 

to better support the next generation of science.  

 

Recommendations 

 

ASCR should create a program that integrates observation, experimental, and data-

intensive science (OEDIS) with high-end computing (HEC) facilities. The combined 

program should foster the development of a new computing systems management science 

(CSMS) that integrates the architectures, systems, protocols, instrumentation, and tools 

necessary for the secure management of DOE’s petascale facilities and metafacility.  

 

This program should identify and develop the key architectural elements, services, 

systems, and management capabilities needed to enable the SciDAC, INCITE, and other 

flagship applications of the future. The program should leverage and codify advances 

made in the SciDAC program and combine them into an overall architectural vision and 

roadmap suitable for supporting science of the future.  

 

To this end, ASCR should select a program lead and enlist a team of experts to evaluate 

existing architectures, tools, and technologies and to identify research and development 

efforts needed to address shortcomings in the current state of the art. ASCR should 

convene a workshop to further refine the proposed OEDIS/HEC program and to 

determine an implementation plan. The program should then fuse and evolve the best 

components, coupled with relevant computer and computational research, into a secure 

management capability that melds both local and global architectures and perspectives 

and that provides for the appropriate combinations of subsets of management systems 

relevant to specific science disciplines and resources.  

 

An aggressive roadmap would be as follows: 

 

• Definition of a program within twelve months, 

• A potential curriculum and graduate-level laboratory-based opportunities within 

three years,  

• An overarching management and data management framework and system fully 

implemented by 2011, and 

• An advanced, combined OEDIS/HEC petascale infrastructure by 2016. The 

infrastructure would allow for the secure and manageable plug-and-play 
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combination of individual standards-based management systems and components 

at both the local and global level into one or more virtual integrated management 

systems, to support the application researcher and the supporting systems 

scientists.  
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II.  Introduction  
 

DOE/SC/ASCR facilities are currently operating in the terascale range. Leadership-class 

computing centers at Argonne and Oak Ridge National Laboratories are scheduled to 

break into the petascale computing level within the next few years and into the exascale 

and yottascale level with respect to data in 10 to 20 years. Moreover, since researchers 

typically develop, test, and debug a code first on a smaller system before porting the code 

to a leadership-class computer, DOE/SC will need to use the full continuum of 

computational and experimental facilities as an integrated metafacility in order to 

successfully support science at the petascale level and beyond. Much as a race car’s very 

powerful engine needs to be complemented by racing-caliber transmissions, suspension 

systems, and tires, the leadership-class systems need to be complemented by capability-

level networks, storage, data management, I/O, and programming environments. Ignoring 

any one component may well make that component a gating factor that could impede the 

effective utilization of individual petascale facilities or the metafacility and the data 

generated.   

 

II.1  Scope of the Petascale Facility 

 

The 2004 Federal Plan for High-End Computing report notes that a major goal is to make 

high-end computing easier and more productive to use: 

 

Emphasis should be placed on time to solution, the metric of value for the high-

end computing users. Time to solution includes: time to cast the physical problem 

into algorithms suitable for high-end computing; time to write and debug the 

computer code that expresses these algorithms; time to optimize the code to the 

computer platforms being used; time to compute desired results; time to analyze 

those results; and time to refine the analysis into improved understanding of the 

original problem that enables scientific or engineering advances. 

 

The HEC Task Force [5] limited its scope to the top high-end computing systems and 

noted that “networking, grid computing, visualization, general security issues, and 

applications-specific software were considered outside the scope of this planning effort.” 

DOE/SC, however, does not have the luxury of treating these as individual and disjoint 

programs. As DOE/SC plans for the deployment and management of its petascale and 

leadership-class facilities, it will need to address the fact that data, specialized software, 

and one-of-a-kind computing and experimental facilities will need to be integrated to 

support future petascale science endeavors.  

 

Such integration will mean that what is included in the DOE/SC metafacility is far more 

than just a petaflop machine. This fact does not diminish the importance placed on 

leadership-class capability computer systems. Rather, it acknowledges the reality that 

such systems generate large amounts of data and that the researchers collaboratively use 

these and other facilities from many different time zones and geographic locations. In 

addition, the state-of-the-art capability systems of today are expected to become the 
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capacity systems of tomorrow; and therefore a full continuum of computer, storage, and 

network facilities will continue to exist as new technologies and architectures churn their 

way through the continuum.   

 

II.2  Performance, Predictability, and Usability  

 

The DOE research community has excelled at taking leading-edge, and sometimes 

bleeding-edge, technologies and integrating them into productive science systems. The 

community also has excelled at developing powerful and effective software and hardware 

when such was not commercially available. The goal has been to ensure access to 

systems that concurrently provide performance, predictability, and usability (PPU). This 

same goal will need to be addressed in the petascale era, especially as part of the “time to 

solution” issue identified by the HEC committee. The scaling and management issues 

associated with moving to the petascale will be challenging.   

 

II.3  Complexity  

 

Two trends in science and technology are evident. The first trend is the extensive and 

increasing use of parallelism to address the challenges of scaling as we approach the 

limits of Moore’s law for processing and other computing-related functions. Increments 

in capability and speed are not keeping pace processor gains. The second trend is the 

strong movement toward virtualization at the technology, resource, systems, science and 

organizational level. The dynamic creation and configuration of processors into a virtual 

machine or system, virtual packet and lambda networks, virtual routers, virtual science 

projects, virtual facilities, and virtual organizations all contribute to increased 

infrastructure complexity.   

 

This move to parallelism and virtualization in all aspects of technology will bring with it 

a large rise in the complexity of doing business with respect to the use, management, and 

proper stewardship of these resources. Moreover, the move to massive component-based 

software systems further increases the probability of system failure. Paul Horn, IBM 

director of research, has said, “The obstacle [to the next era of computing] is complexity. 

…Dealing with it is the single most important challenge facing the IT industry.” 

 

Increased complexity has the potential of adversely affecting the performance, 

predictability, and usability of petascale facilities if it is not addressed appropriately as 

part of a well-managed and designed infrastructure. Highly available and predictable 

resources, along with fault-tolerant software and hardware systems, will require the 

intelligent engineering and architecture of supporting infrastructures and services, in 

addition to the development and deployment of adaptive and autonomic systems [6] (i.e., 

intelligence embedded throughout the infrastructure). Many efforts in this area, 

sometimes competing and uncoordinated, are being pursued. However, there remains the 

need for developing an overall secure management framework based on standardized 

protocols, management, tools, systems, and services. Equally important is an object- and 

attribute-based infrastructure with a unified and ubiquitous name space that can support 
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the creation of virtual management systems comprising diverse management systems and 

subcomponents to support the petascale systems of the future. 

 

II.4  Productivity and Workflow 

 

In order to enable science at the petascale and beyond, not only must we support the 

concept of “time to solution” as defined in the Federal Plan on HEC [5], but we must go 

one step farther and support this concept from the metafacility workflow level all the way 

to individual systems. DOE/SC has a continuum of computing, networking, and data 

management resources that can be used to enable a streamlined “time-to-solution” 

environment. To fully exploit these resources, however, we need to develop a secure 

virtual management system that integrates workflow, dataflow, data management, I/O, 

file/object and storage management, program development environments, collaboration 

environments and tools, petascale experiment management and steering, and network 

management, all as a metasystem (i.e., at both the local and global level). DOE/SC’s top 

applications are very demanding with respect to infrastructure and can provide the 

mission-driven focus in defining a flexible architecture that leverages current tools and 

systems as well as support the R&D for the next generation of petascale architectures.    

 

II.5  Petascale Management 

 

In the FY2007 NITRD Supplement to the President’s Budget, benchmarking and 

performance modeling are identified as areas of focus to enhance the productivity of 

high-end computing systems. Given the current trends toward the integration of science 

domains and databases, the integration of experimental and computational facilities, and 

the international distributed nature of science facilities, it is imperative that we develop, 

enhance, and integrate management capabilities—not only for leadership-class 

computers, but also for the overall workflow, data, data management, data-intensive 

computing, and metafacility that support petascale research.  

 

The term “management” in this context refers to the overall management of a petascale 

facility and metafacility and to the especially large challenge of distributed and integrated 

petascale facilities with respect to resource management as a system (i.e., processor, 

storage, network, etc.), including policy, priority, security, data integrity, reliability, 

availability, instrumentation, auditing, analysis, management data analysis, monitoring 

tools, scheduling, (de)allocation, pre-emption, addressing, and naming. It also includes 

the macroscopic-level management commonly seen in various workflow and dataflow 

architectures and systems. An ancillary yet important dimension of the petascale 

computing and experimental facilities will be the responsibility of ensuring the 

appropriate provenance and management of data and information as well as ensuring 

appropriate access to the data by both the public and science community. 

 

Achieving this objective will require an enhanced and evolutionary approach, as well as 

setting the bar high for a long-term science infrastructure to better enable science at the 

petascale and exascale levels and beyond. Areas worth investigating include a unified and 

simplified name space and a secure, distributed, object-based architecture. 
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II.5.1  Grand Challenge of Management 

 

During the evolution of supercomputer centers over the past few decades, we have 

developed the expertise, tools, and techniques to manage advanced computing facilities. 

However, we are now approaching a stage and level of computation and experimentation 

(i.e., at the petascale level with rampant parallelism and virtualization and the increased 

use of large numbers of software components and services) that will sorely tax our 

abilities to effectively manage these facilities. The grand challenge of petascale 

management is the management of the interactions and interdependencies at the software 

and hardware level and on both a local and global scale. The overall petascale 

infrastructure, much like the major experimental facilities, needs management systems 

that can integrate individual components, systems, and facilities into metafacilities by 

means of virtual management systems built from a common foundation of standards-

based management systems and components. Effective management must ensure that the 

facilities perform at acceptable levels and that the availability and use of these facilities is 

predictable.   

 

II.5.2  Local and Global Management  

 

Management includes the management of resources ranging from individual local 

facilities to global metafacilities. Local systems (e.g., local clusters, leadership-class 

computers, I/O, and storage systems) are often located on the same floor in one building, 

or sometimes on a couple of floors within one building. Global metafacilities are 

normally located in separate buildings, sites, nations, or even continents. The challenge of 

managing these systems includes the integration of local and global facilities—a sort of 

unified field theory of facility and system management—along with the overarching 

issues of security, policy, resource management and scheduling, workflow, dataflow, and 

data management, which intersect, integrate, and aggregate all of the relevant individual 

facilities and system components into a multipolicy virtual metafacility, depending on the 

requirements of the researchers. 

 

II.5.3  Management Areas  

 

Management encompasses the following major areas, often on a multidomain, multisite, 

and multidisciplinary basis:  

 

Management of research programs 

e.g., MICS, BER, BES, FES, HEP, and NP 

Management of experimental facilities theoretical programs 

e.g., LHC, SNS, EMSL, CEBAF, RHIC, NERSC, and ESnet   

Management of physical hardware and systems  

e.g., LCCCs, NERSC, ESnet, storage, networks, and experiments  

Management of software  

e.g., operating systems, file/storage systems, I/O systems, and networks  

Management of data 
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e.g., provenance of data, metadata, analysis, transformation,  

reduction, integrity, security, and making scientific results  

readily available to the public and science community.  

Management of facilities  

 e.g., Argonne’s and ORNL’s leadership-class facilities,  

ESnet, and LHC 

Management of the multidomain metafacility  

e.g., the integration of leadership-class computers, experiments, capacity  

computing, data-intensive computing, data management, visualization servers, 

and networks 

Management of the management architecture and tools themselves 

  

All of these areas must be capable of being integrated into virtual management systems to 

provide the researcher—who will most likely be part of a virtual distributed research 

team—with the performance, predictability, and usability of the required facilities and 

systems in a secure fashion. 

 

II.5.4  New Management Models 

 

Many large physical experiments, such as ITER and SNS, have multiple programs and 

committees to oversee the development, deployment, operation, and management of the 

experiments. As we move into the reality of unique computational facilities, experimental 

facilities, metafacilities, and virtual facilities, as well as the integration of the individual 

petascale facilities into a metafacility in a Gridlike fashion, we may need to explore how 

to enhance or create new management approaches at the programmatic level to ensure 

that these facilities are responsive to the requirements of the DOE/SC science programs, 

especially for petascale science.  

 

Just as important, however, or maybe even more important, is management at the 

technical level and the need for the development and implementation of a common 

standards-based management framework from which virtual end-to-end management 

systems can be built and combined with the appropriate tools and capabilities necessary 

to manage the OEDIS and HEC individual facilities as well as their integration into 

global metafacilities or virtual facilities. The issue of power management for HEC 

capability systems at the local system level, as well as their inclusion as a key component 

of the metafacility, needs to be addressed.  

 

An ancillary yet important management issue is the responsibility by the one-of-a-kind 

facility or its science community for ensuring the availability and publication of scientific 

results to both the public and colleagues.  

 

II.5.5  Instrumentation and Monitoring 

 

As steward of these unique and costly leadership resources, the DOE/SC needs to 

develop systems, architectures, and tools that will enhance the current levels of protection 

against attacks such as denial of service, hijacking, and other security threats, as well as 
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enhance the accountability associated with the use of petascale facilities and resources. 

Specifically needed is the capability to instrument, monitor, audit, analyze, and manage 

the facilities, components, services, and codes that run on the facilities. The objective is 

not only to enhance the containment and treatment of unintentional errors but also to 

provide better insight into the use and management of the systems, codes, software 

components, and services, as well as their integration with experiments and simulation. 

Both security and system management systems focus on tracking resource usage and 

identifying anomalies. These capabilities will need to be enhanced and merged to 

determine “good” versus “bad” agents, codes, services, and “bots.” Many current systems 

have some form of management and monitoring capabilities, including checkpointing and 

deadlock prevention; however, management systems need to span all metafacility 

resources at a workflow level. As an example, deadlock can occur at the workflow or 

dataflow level depending on the high-level workflow and the integration of databases and 

global resources as part of the program flow and allocation of resources. Another aspect 

of management that requires a metalevel approach is the integrity of data as it is moved 

across networks, stored, and manipulated, especially when integrating multidomain, 

multidiscipline, and petascale resources, databases, and facilities.   

 

System management and the codes that run on petascale facilities need to become smarter 

and more aware of the metafacility or virtual facility in which they reside. Achieving this 

goal will require appropriate middleware and APIs, as well as integrated monitoring, 

auditing, analysis, and management systems that work on an end-to-end basis from the 

application to the network and to the most sophisticated computational or experimental 

facility. Many individual monitoring and management systems currently exist on a per 

system basis, and work in under way on developing tools for the management of 

distributed, collaborative, integrated facilities and Grid resources, as evidenced in 

Condor, Globus, MonALISA, TeraGrid, and others. Many of these are still under 

development, however, and there is no de facto system—although use of Globus 

components and services is fairly common. There still exists the need for a DOE/SC 

consensus-based set of standard components and capabilities from which multiple virtual 

management systems can be built and can support the integration of the multiple set of 

services (e.g., disk, file, network, data movement) and management services into an easy-

to-use and appropriately instrumented virtual management system that can securely 

combine local systems as well as the various metafacility, workflow, and data 

management systems. Moreover, the management of local resources needs to be more 

tightly coupled and integrated as part of global metafacility virtual management systems.  

 

II.5.6  Appropriate Use 

 

Management also includes the appropriate use of petascale facilities, not only to ensure 

that only authorized personnel and users have access to them, but also to ensure that the 

jobs are matched to the appropriate computational facilities. Effective management will 

include the dynamic configuration and (de)allocation of processors, I/O, networks, and 

other resources to a job. To do any of these tasks well will require a more detailed 

understanding of how petascale applications and codes interact. Much of what we know 

today with respect to code and the use of resources at both a local and global level will 
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most likely not be sufficient as we move into an era of leading-edge metafacility and 

petascale computation-based science.   

 

II.5.7  Security 

 

Security has often been a challenging aspect of advanced infrastructures and computing 

facilities. Because of the visibility of the DOE leadership-class computing facilities and 

metafacilities, they may become targets for hackers; therefore, security must be an 

important and effective component of the management system, without undue cost or 

impediment. The trend of multiresearcher, multisite, multifacility, multidataset science, 

the growing number of virtual institutions, the increased use of “bots” and agents in 

workflow systems, the coupling of OEDIS and HEC facilities, dynamic configuration and 

autonomic computing, and numerous naming systems and data units will increase the 

challenge of providing a secure end-to-end environment for science. The recent TeraGrid 

security attack occurred even after the TeraGrid had integrated security into its 

architecture. Enhanced security capabilities are needed in firewalls, intrusion and 

anomaly detection, sitewide authorization, access control, and auditing as integral 

components of an overall management architecture and system. Object-based 

architectures and data systems, coupled with policy-based attributes and capabilities, may 

provide some help in this area. But these will, in turn, require R&D to develop the right 

architectures, management systems, and granularity at which to implement security 

features, as well as a manageable number of naming and associated resource location, 

management, and security systems.       

 

II.5.8  Morphable Infrastructure 

 

Another challenge facing the DOE/SC community as it moves into petascale computing 

and beyond is that it will require new technologies, capabilities, and architectures at both 

the local system and metafacility level. Advanced technology churn occurs on a recurring 

two- to three-year cycle. An infrastructure is needed that enables the programmer and 

researcher to “test drive” new technologies while keeping some part of the environment 

at production quality so that, if a problem arises through the use of the new technology, 

the researcher can revert to a safe production system. The concept for this type of an 

infrastructure was initially identified in MORPHnet (1997) and has since been 

incorporated as a basic premise of the National Lambda Rail and other networks, as well 

as being integrated as a major tenet of the Internet 2’s next-generation network.  

 

This concept of morphing resources and systems between research and production modes 

needs to be extended not only into the local area, cluster, and storage area networks but 

also into the end systems themselves, including storage systems, I/O systems, and the 

computers. The ability to use a dynamically morphable infrastructure will be crucial for 

accelerating scientific use and the evolution of petascale facilities and beyond, through 

the introduction of new technologies and architectures to better match the needs of 

science. The management of such an adaptable and morphable system is itself a research 

challenge; but, if successfully tackled, it will accomplish much by rapidly moving 

computational science into petascale and even exascale environments and beyond.  
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II.5.9  Naming  

 

Another challenge facing the successful management of petascale systems is the naming 

and management of objects. We currently deal with a plethora of naming domains, 

architectures, and systems as found in the networks, operating systems, workflow 

systems, dataflow systems, and file systems. The ideal goal, albeit most likely 

unattainable, is to have one naming and addressing system that covers the whole facility 

and metafacility, from memory and disk blocks to network packets and object-based file 

systems. Given the grand challenge of management facing DOE with respect to its 

petascale facilities, this may be the time to revisit the notion of building the future 

metafacility on the basis of objects and attributes or capabilities as the building blocks, 

albeit focused on high-end scientific use, with a single global and scalable name space 

upon which one can add metadata and attributes to any component of the metafacility 

including subcomponents such as processors or ports, as well as file systems and whole 

systems of hardware, software, and data. Such a system would further enable better 

security, monitoring, and management of the resources.  

 

II.5.10  Object-based Infrastructure 

 

A recent trend in the scientific community has been the use of object-based 

infrastructures and services. The secure management of the petascale system and 

metafacilities will be enhanced by having at least the major components of the systems 

identified as unique objects with relevant metadata and attributes associated with the 

system objects to control access to the components, as well as support other security, 

policy, and management functions Examples of relevant system-level objects are files, 

processors, nodes, network ports, disks, tape drives, firewalls, services, software 

components, and file systems. Other examples include packets, lambdas, virtual 

networks, virtual routers, virtual firewalls, multicomponent objects and files, and blocks 

of memory or storage. An object-based system needs to be able to express relationships 

among objects, pedigree, level of assurance, and other relevant interobject attributes, as 

well as a unified standards-based naming system. Such a system would better enable the 

addition of attributes for security, auditing, context, and other relevant metadata 

necessary for the management of the metafacility and its subcomponents, as well as the 

data. 

 

II.6  Summary  

 

DOE/SC’s long-term goal for petascale, exascale, and yottascale computing and science 

should be a smartly instrumented, secure, performance-focused, predictable, usable, 

adaptive, morphable, and autonomic metafacility in 15 years. The roadmap should 

establish a program and associated budget within DOE/SC/ASCR to initiate a new focus 

on the area of management, to include data management, visualization, data-intensive 

computing, and the proactive and dynamic management of resources, as well as 

management of the integration of observational and experimental facilities with 

computational facilities and metafacilities. A crosscutting program aimed at managing 
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petascale facilities should leverage the monitoring and management work started by 

Globus, MonALISA, Condor, TeraGrid, OSG, and other workflow and management 

systems.  

 

An initial step would be for DOE/SC to sponsor one or more workshops with experts 

from all relevant fields to focus on this grand challenge. The workshop participants 

would identify the best processes, architectures, and tools for managing and processing 

the resulting scientific data and results. The participants would also identify current 

activities that can be used as a base for starting the evolution toward a smarter set of 

management architectures and systems for supporting petascale facilities and the 

petascale metafacility. In addition, the workshop participants would identify longer-term 

computer science research (e.g., object-based petascale architectures and systems) needed 

to support the goal of petascale science and beyond.  

 

ASCR should also consider creating a computing systems management sciences program 

and discipline focused on developing and supporting HEC systems and their integration 

with each other, as well as with leading-edge petascale and exascale observational, 

experimental, and data-intensive science facilities in a secure and manageable manner. 

 

 

II.7  Structure of the Report 

 

Part I is the executive summary. 

 

Part II is the introduction and overview of a petascale facility, related challenges, and the 

definition of management with respect to petascale facilities.. 

 

Part III is a compilation of relevant challenges associated with the petafacility of the 

future, along with potential relevant research areas.  

 

Part IV contains recommendations for a DOE/SC program on managing petascale 

facilities and identifies high-level research areas. 

 

Appendix AI is a brief description and definition of the terms for leadership computing, 

storage, networking, and experiment facilities as used in this report. 

 

Appendix AII provides an overview of trends in scientific research, which in turn affect 

both current and projected supporting infrastructure based on these requirements, 

especially at the petascale level. 

 

Appendix AIII provides a brief overview of current and future DOE petascale facilities, 

highlighting their capabilities and requirements and the impact on supporting 

infrastructure and computer science research. 

 

Appendix AIV provides an overview of technology trends in processor, computing 

architectures, storage, I/O, file systems, and networking, with the focus on potential 



 15 

impact of future petascale systems and metafacilities. 
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III.  Challenges and Research Opportunities  
 

The old Chinese saying “May you live in interesting times” is applicable to today’s 

computing environments. The move into petascale computing will only make the times 

more interesting.  

 

III.1  Scaling of the Petascale Facility and Metafacility  

 

As the age of petascale science arrives, we will need to address the challenges of scaling, 

supporting, using, and managing petascale facilities in order to ensure their productive 

use by researchers. Current techniques, architectures, and tools for monitoring and 

managing these facilities will most likely not scale, and today’s resource allocation and 

management systems are just beginning to be developed and deployed.  

 

In addition to the move into petascale facilities, there are an increasing number of 

multisite collaborations combining both computation and experimentation, all of which 

require a secure workflow and distributed computing infrastructure. More and more 

researchers are collaborating on a single research project is increasing, and research 

projects are becoming more international. Consequently, a better understanding of the 

evolving social science organization mechanisms, along with the evolving technical 

OEDIS and HEC facilities, is needed in order to develop, engineer, and architect an 

enabling infrastructure. As the scale and complexity of the petascale facilities and 

components increase, there will be an increased rate of use of smart “agents,” “bots,” and 

“actors” as part of a workflow and management system. For this type of autonomic 

computing and facility support to become a reality and provide added value, further 

development and implementation are needed focusing on next-generation monitors and 

instrumentation at the component, system, facility, and metafacility level. 

 

With the growing trend toward service-oriented architectures, an increasingly important 

component of a management system is the definition and characterization of the various 

services that make up a facility and metafacility, so that such services can be combined, 

scheduled, and used as part of the researcher’s workflow and job management process. 

As an example, movement of data will most likely include a local storage service at both 

the source and sink sites (i.e., disk systems and file systems), a data-generating 

experiment or capability computer, (potentially) a visualization service, and the various 

network services (WAN, MAN, LAN, etc.), each of which has different characteristics 

with respect to latencies, jitter, and bandwidth and each of which may have different 

management, naming, and security policies.  

 

The metafacility is really just one type of a service-oriented architecture; and each of the 

services just noted needs to be characterized and instrumented such that a metafacility 

resource management system at the workflow level can determine whether the 

appropriate resources and services can be made available and combined to accomplish 

the function requested. An example of a metasystem tool that could be useful is a 

systemwide “ping” and traceroute for tracking the flow of the data on an end-to-end basis 

(i.e., memory or storage block to memory or storage block) across a network. Initial work 
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toward this end has been done by the SciDAC Scientific Data Management Center based 

on timed syslogs for file transfers, and other “pings” exist at the distributed system level. 

These systems and concepts need to be expanded and evolved. 

 

Another example of the trend toward a service-oriented architecure and the outsourcing 

of services is ESnet. An experimental prototype process is being supported by ESnet 

where the ownership and management of a wavelength-based “layer one” network are 

being outsourced to another R&E organization. This may be the first step of outsourcing 

the other layers of networking (e.g., the support of multiple IP and policy networks on 

separate lambdas) and may even portend the outsourcing of other scientific infrastructure. 

Amazon, Sun, and others are already offering capacity storage and computing services. 

The important relevant issue with these trends is that, in order to demonstrate appropriate 

stewardship of DOE/SC-supported infrastructure and resources, especially with 

outsourced services, considerably more effort will need to be expended in the definition 

of observable and enforceable service level agreements,which in turn requires better 

characterization and instrumentation of the infrastructure, along with appropriate 

monitoring, verification, auditing, and analysis tools.  

 

All of the individual and metafacility management and analysis systems will require a 

solid base of instrumentation, monitoring, analysis, management, and application of 

policy in order to ensure the proper stewardship of these petascale capability and 

metafacility resources. 

  

A major challenge in the evolution to petascale computing and beyond will be balancing 

the need to reduce the complexity and overabundance of systems with the wish to 

encourage a Darwinian R&D approach to the evolution of these same critical 

technologies and architectures, where one can continue to experiment with new 

technologies and techniques.  

 

In summary, all of these trends require a full-scale effort focused on a new program for 

the management of infrastructure and facilities for petascale science and beyond. The rest 

of this chapter further delineates some of the research challenges and opportunities in 

various technical areas that are relevant as part of this recommended program on 

management. Each subsection identifies technologies, middleware, and architectures 

directly related to the functioning of the petascale facility and metafacility.   

 

III.2  Virtualization, Virtual Organizations, Virtual Facilities, and Grids 

 

The trend toward multisite, multidiscipline, multifacility, multidataset, multiresearcher 

science is a reality. Virtual organizations (VOs) arose as a result of this trend. People 

who are part of a VO, whether or not they are of the same science or discipline, are 

working on the same project and research. There is also a trend toward the development 

of the virtual facility (VF) (called a metafacility in this report and often referred to as a 

Grid). The virtual facility is a combination of some subset of experimental and 

computational facilities, or any combination of computational, experimental, data 

intensive computing, storage, visualization, and networking facilities. The location and 
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placement of facilities and resources may become dynamic in the future to better support 

the research being undertaken. For example, data storage and caching services could be 

located in the network or spread across numerous sites. These types of virtualization will 

require an enhanced ability to identify and define the resources as well as track and 

manage them in a secure and usable manner. Since there will be many dynamic and 

virtual overlay architectures, organizations, systems, and facilities, there will be the need 

to support multiple integrated virtual management systems. These management systems 

should be derived from a varied set of standards-based management services and 

components, with appropriate application-accessible control points and interfaces to 

enable the management of multiple systems and services.   

 

A researcher needs to be able to locate, request, and use facilities at multiple sites and 

administrative domains. Grid and workflow systems of today, much like the job control 

systems of yesteryear, are trying to address these requirements; yet today there remains a 

plethora of naming systems, services, and domains that a researcher has to navigate 

across all systems. The result often is confusion, and the potential for error is high. An 

ideal goal would be a single, unified naming system and object-based architecture upon 

which one can attach attributes and capabilities for the appropriate and secure matching 

of codes and data to resources. A more realistic approach would, at the very least, involve 

reduction of the naming domains and systems to a small, manageable number. Initial 

techniques and services applicable to the location, allocation, and monitoring of use of 

distributed resources are being investigated now as part of the Grid work in Globus, 

Condor, MonALISA, TeraGrid, and other such systems. Many of these are still in 

development and will require more support, investigation, and development to provide 

for a robust and flexible management system that securely integrates and manages the 

local site resources, as well as the metafacility workflow level, with the appropriate level 

of instrumentation, monitoring, auditing, and analysis. Of particular interest for VO and 

VF security and stewardship is the area of intersite and interdomain policy definition and 

enforcement. This includes the integration of local and metalevel resource allocation, 

management, and monitoring systems. Initial work in this area, along with attribute-based 

access control, is being undertaken by Globus Toolkit 4 (GT4) and other distributed 

access control and authorization services.    

 

Specific trends in technology virtualization include the use of parallel WAN network 

transfers acting as one (e.g., GridFTP), the use of multiple network switches acting as one 

switch (load balancing), the use of virtual private networks at layers 2 and 3, extending 

cluster area networks (e.g., Infiniband, Ethernet, fiber channel) across an IP-based WAN, 

parallel I/O acting as one transfer, and striping I/O over multiple devices. Virtualization 

on commercial routers includes the deployment and support of virtual and logical routers 

complete with their own policy and routing databases. Virtualization on computing 

systems includes the ability to configure the number of compute and I/O nodes on a per 

run basis, as well as supporting multiple OS images.  

 

The challenge of managing these virtual components, especially the transient nature of 

many virtual facilities, will grow as the speed of these components and the number of 

systems grows. A major challenge in managing petascale virtual systems will be 
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determining the right type, scale, placement, granularity, and frequency of the 

instrumentation and monitoring tools, to better understand and manage the resources 

without adversely affecting the individual system or metafacility.  

 

Early work in sensor networks and ad hoc networks explored the use of an adaptable and 

morphable set of monitoring systems and resources that dynamically determines what it 

needs to monitor and where to enhance the manageability of networks. This concept 

should be investigated to see whether it can be extended to virtual facility and systems 

management. In addition, research is needed on the feasibility of applying lessons learned 

from the human immune system and biological networks to the dynamic placement, 

monitoring, and analysis of petascale facilities and metafacilities..  

 

III.3  Architectures, Systems, Facilities, and Metafacilities 

 

The secure management and analysis of petascale facilities (leadership-class computers 

and petascale experiments) present a daunting task; but the integration and use of 

multiple scientific datasets, the coupling of simulation and experimentation, and the 

general distributed collaborative nature of international science make the challenge even 

greater, especially as administrative and scientific provenance boundaries are crossed. 

 

The term “management” in this case not only refers to the instrumentation, monitoring 

and analysis associated with managing data, systems, and components but also includes 

the security associated with the use of these facilities, as well as the secure identification, 

location, allocation, accounting, auditing, and management of individual resources. In 

addition, more work needs to be done on generating consensus on a common set of 

taxonomies and ontologies for describing petascale resources. For instance, the term 

“network” can refer to a system backplane interconnect, cluster interconnects, LANs, 

MANs, WANs, VPNs, and more. The term “global address space” is often used to mean 

the address space that covers the thousands of processors and memory found within a 

leadership-class computer, yet “global” is also used to describe distributed resources 

located in many different countries. The Grid Laboratory Unified Environment (GLUE) 

schema work for system elements is a good beginning for a facility schema.  

 

The interagency Large Scale Networking committee noted in the NITRD Report the goal 

of “end-to-end network performance monitoring and measurement” [7]. Given that the 

network is much more than the WANs, MANs, and LANs normally envisioned when 

using the term networks—it also includes cluster area networks (CANs) and storage area 

networks (SANs)—a combined management approach needs to address the end-to-end 

integrity, movement, and management of data across all types of networks: memory to 

memory, application to application, and storage to storage (disk to disk).    

 

Many monitoring and management systems exist for storage, file systems, high-

performance computers, and the various types of network. In addition, many efforts are 

under way to develop workflow and Grid-level metafacility processes, data management, 

and monitoring capabilities. Python, GRAM, MonALISA, Kepler, SRM, INCA, and 

other Grid and workflow-related systems are all positive moves toward a usable 
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heterogeneous scientific programming environment. However, the wide variety of such 

management systems and subsystems, along with their associated security models and 

naming systems at both the local and global level, makes it challenging for anyone trying 

to administer or use these resources. A major focus is needed to identify and develop a 

suite of standards-based core management capabilities and services, along with interfaces 

and control points, which can be combined to create a virtual end-to-end management 

system to support the petascale facilities and metafacilities. These monitoring and 

management systems also need to support easy-to-use, secure APIs for monitoring long-

running codes, which often span petascale facilities and administrative domains. This 

type of support, along with checkpointing and recovery mechanisms, needs to be an 

integrated part of both individual facilities and the metafacility.  

 

Another growing trend is the insertion of more intelligence into the networks, systems, 

storage, file systems, and workflow systems. With advances in ASICs and FPGAs, as 

well as multicore multipurpose nodes, we can expect this trend to continue and will need 

to address the challenges associated with it. However, the adoption and use of these 

technologies and capabilities as part of an overall management plan may also provide 

some of the help necessary to support a “smart petascale facility” and “smart 

metafacility.” More research is needed on how to leverage the work in nanotechnology, 

ASICS, and FPGAs for use in the instrumentation of and monitoring of facility 

components and services (e.g., I/O and storage) for the purposes supporting efficient 

resource allocation, striping, and autonomic computing. 

  

Increasingly, “agents,” “bots,” and “actors” are being deployed as part of metafacility and 

Grid management systems, as well as autonomic facilities, at both the local and global 

level. Many of these are specifically designed to support the parallelization and 

virtualization of resources. The trend to larger and larger numbers of processors, network 

interfaces, I/O interfaces, and components at all levels of the petascale facility and 

metafacility will bring with it an increased probability of component failure; therefore, 

more focus is needed on the design and architecture of an overall system to achieve high 

availability. An integrated monitoring and management system is needed that goes 

beyond single leadership-class systems and includes support for metafacilities, workflow, 

dynamically configured facilities, virtual architectures, autonomic self-monitoring and 

self-healing systems, and self-describing programs (i.e., identify hardware and software 

resources the program requires, much like the old JCL days), which can then trigger 

appropriate monitoring and allocation systems. 

 

A major challenge facing petascale researchers and computer scientists will be 

developing a better understanding and control of the resources in individual facilities, 

metafacilities, and virtual facilities. Such an understanding is paramount for effective 

system performance tuning and monitoring, system benchmarking and analysis, detection 

of system anomalies, application performance tuning, and the dynamic allocation and 

configuration of resources. Research into providing dynamic configuration and use of 

resources (e.g., morphable compute and I/O nodes or dynamically allocating I/O and 

network pipes) will better address the researchers’ requirements to tune, debug, and run 

codes efficiently and effectively, as well as enabling experimentation with new hardware 
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and software capabilities. For example, Fermilab has instrumented its disk-based storage 

system and built a monitoring system to better understand and manage the use of its 

storage system. This type of capability needs to be coupled with appropriate middleware 

and management systems to integrate information about disk, storage systems, computer 

systems, and networks to support end-to-end resource management and allocation.  

 

A major aspect of managing any facility and infrastructure is ensuring its integrity, 

availability, and security. “Integrity” refers to the integrity of the data, the facilities, and 

all of the components and subcomponents. “Availability” covers the availability of 

resources from an allocation and scheduling perspective as well the detection of resource 

failure and recovery. “Security” includes authentication, authorization, access control, 

intrusion detection, and prevention of denial of service. Security, resource management, 

and system management all need to be integral components of the petascale facility 

management system. 

 

Another major challenge facing the designer, administrator, or user of these complex, 

distributed, and often heterogeneous facilities is the need for an integrated policy 

management system that incorporates the security, network, workflow, system, and 

facility management into one system such that the facilities are secure and yet enable the 

researcher to pursue their science without being impeded by conflicting and competing 

policies or overly constraining the use and performance of the facilities. The management 

of the sometime conflicting policies of security, QoS, VPNs, load balancing, resource 

allocation, resource schedulers, and system management plays an important factor in the 

availability and integrity of resources. The policy system needs to address who controls 

and can modify resources, in addition to when and where.  

 

Given the current trend toward higher levels of complexity in high-end computing 

facilities and the e-science workflow trend to integrate and combine various types of 

capability and capacity computing, storage, and networking systems, it is imperative to 

develop new and evolve current techniques and metrics for benchmarking and analyzing 

systems and facilities. Enhanced information and analysis of infrastructure capabilities 

will help us measure utilization and identify bottlenecks associated with I/O, file system, 

CANs, and network systems and services. As the need for parallel I/O at all levels 

increases, so will the need for better monitoring tools and architectures, data analysis 

tools, metrics, and techniques.   

 

The interagency HEC team is supporting development of enhanced benchmarking 

capabilities and tools for leadership-class computers. This is a good first step; but more 

attention needs to be focused on overall system-level and workflow-level benchmarking 

and analysis with a focus on time to solution and wall clock time, even if the initial step 

is to develop better benchmarks, metrics, and analysis tools for each facility subsystem 

(e.g., I/O, file system, storage, interconnects, cluster area networks) and then combine 

these systems into an integrated virtual system. To do so may require a new definition of 

metrics and resource units as well as service definition models for networks, storage and 

other facilities. Service definition work has been started as part of the Global Grid Forum, 
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Condor, and other Grid and workflow architectures and needs to be continued and 

evolved. 

 

An aggressive goal would be to have a standards-based core set of management systems 

capabilities by 2016, that is, local and global systems that could be combined to form 

virtual management systems capable of monitoring, auditing, managing, resource 

(de)allocation, securing, and using any and all of the DOE/SC-supported petascale 

facilities and metafacilities.   

   

III.4  Networks  

 

Networks are the glue that interconnects all types of scientific components and facilities 

into a metafacility. Such networks will become even more important for petascale 

science. The dependence on high-performance, predictable, and usable networks is 

increasing; yet our ability to manage and control the networks has not evolved much 

since their inception over 20 years ago. Many of today’s network monitoring capabilities 

and tools are fairly crude; for example, SNMP, ping, and traceroute are used for 

debugging and monitoring. Some of the active network performance tools such as 

PerfMon inject traffic into the network and thus can affect the system they are trying to 

measure. In addition, given the nature of a best-effort IP network, the most recently 

acquired network status may not be valid by the time an application chooses to make use 

of the resource. This challenge of determining network status will only get worse as the 

speed and bandwidth of the networks get faster, the parallelism increases, and 

virtualization takes hold. DOE/SC needs to focus effort on next-generation network 

allocation, monitoring, management, and analysis tools.   

Although vendors are making 40 Gbs ports and links and are testing 100 Gbs clear 

channel optics in the labs, and the IEEE committees are already engaged in 40 Gigabit 

Ethernet and 100 Gigabit Ethernet standards development, the “economic sweet spot” for 

networks for at least the next four to five years will be at the 10 Gbs level. Anything 

above 10 Gbs will most likely be short-range optics or will be accomplished by 

integrating multiple 10 Gbs waves into a chip or running parallel striped 10-gigabit links. 

Subsequently, there will be a need to develop mechanisms for the allocation, 

management, and monitoring of these striped networks, which will be used to move large 

amounts of scientific data. Challenges exist for developing open source passive 

monitoring capabilities that can be used as part of a management system for networks at 

the 10-gigabit level and above. OC-48 mon, an evolution of OC-3 mon and OC-12 mon, 

was developed to provide monitoring capabilities on research networks. It is no longer 

supported because of the move to 10 Gbs networks. The National Science Foundation has 

just instructed the National Laboratory for Applied Network Research (NLANR [8]) to 

disperse with the old OC-3 mon and OC-12 mon equipment.  

Work is being done on an OC-192 monitor; but at the current time it is not funded at the 

level necessary to achieve success in the near future. Even more important is the need to 

have capabilities for both OC-x and 10 Gigabit Ethernet monitoring to enable the analysis 

of networks on an end-to-end basis (i.e., LAN, WAN, and MAN). NLANR and other 
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researchers are investigating the use of lambdaMONs for passive network monitoring of 

dense wavelength division multiplexed (DWDM) optical networks. These monitors are 

architected to enable the collection and real-time analysis of IP packet data from any one 

of the wavelength carriers on a DWDM optical network.  

DOE/SC should support the development and deployment of network-based instruments, 

monitors, and capabilities that could be used to gather information with respect to the use 

of networks on an end-to-end basis. DOE/SC also should support the integration of 

relevant network monitoring and security tools with tools for the management, analysis, 

and visualization of the data generated by such a management system. These tools and 

capabilities will be crucial for supporting the proper stewardship and accountability for 

services, such as the outsourced network services envisioned for ESnet and its ancillary 

Science Data Network.  

The NITRD Report [7] specifies end-to-end agile networking as one of its goals. It also 

specifies QoS and GMPLS as important capabilities at the network level to support the 

requirements of the sciences. Many challenges need to be addressed to enable such agile 

networks. End to end really needs to be application to application, which means that any 

management and allocation system deployed needs to integrate cluster area networks, 

storage area networks, local area networks, metro area networks, and wide area networks. 

A crucial first step is for better instrumentation in the networks, coupled with more 

powerful APIs for both the applications and middleware to gather information about the 

network. CAIDA [9] and its predecessor NLANR both focused on network analysis, 

mainly with respect to peering points and attached storage for WANs. However, more 

R&D needs to be supported to better understand the true end-to-end network traffic, 

especially as we move toward the use of virtual networks and hybrid networks that 

support both packets and circuits.  

 

The second challenge for enabling an agile end-to-end network is the integration of the 

network as an equal resource into an overall secure metafacility and workflow 

management system. This integration will require defining attributes and characteristics 

(e.g., component and system metadata), along with implementing the appropriate 

instrumentation, for networks ranging from cluster area networks through wide area 

networks. In an ideal world this would also include interconnect area networks, 

backplanes, and I/O nodes..  

 

The lure of lambdas and the recent trend toward the use of circuit-based wavelength 

services has occurred mainly from the perception that they are a more predictable and 

deterministic network resource than “best-effort IP” (BEIP) networks, where the link is 

often shared with other applications. Current BEIP networks have been cited as not being 

well adapted to the efficient movement of large datasets and flows often associated with 

the sciences. There also exist the challenges of BEIP-related latency and jitter. These are 

challenges in today’s terascale science support networks and will only get worse as 

scientific applications move into the petascale. Even when used on circuit-based and 

dedicated wavelength services, traditional TCP and its sliding windows algorithms can 

often impede the full optimal use of the circuit by large scientific flows. As a result, many 
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science projects that routinely ship large amounts of data look to use circuit-based 

wavelength services and alternatives to TCP as a transport protocol. TCP and derivative 

transport protocols such as FAST, XCP, and HS-TCP address some of these 

shortcomings, even at 10 Gbs. However, continued research is needed to ensure effective 

evolution of TCP and IP for high-speed networks.    

 

Hybrid networks generally refer to those that incorporate BEIP and circuit-based 

wavelengths in one infrastructure, albeit currently in a parallel and not an integrated 

manner. ESnet is pursuing this model and is augmenting its IP network with a 

wavelength-based circuit network called the Science Data Network (SDN). These circuits 

are initially planned to be statically set up in parallel. The initial SDN deployment 

consists of dedicated circuits between a small number of high energy physics applications 

for the purpose of supporting the large volumes of data that will be moved as part of the 

LHC experiment. The objective is to provide network services with scalable cost. Once 

the other DOE/SC science programs also start generating and moving petabytes of data, 

ESnet will need to support a fairly dense mesh of dedicated wave circuits to the DOE/SC 

supported sites and laboratories or will need to delve more deeply into the dynamic 

management of layer 2 and lambda-based circuits. Plans for future generations of ESnet 

call for additional waves; but the determination of the required density of the mesh to 

support all science requirements is not yet clear. Financing a full “n by n” mesh is most 

likely not going to happen. Such a solution will require more than the current GMPLS 

protocols and reservation systems currently being developed and prototyped by the 

network community. Further research, development, and experimental deployments are 

needed in this area, especially to support multidomain management; such efforts will 

need to leverage and integrate the concepts of policy-based resource management 

developed as part of the original timesharing operating systems with respect to priority, 

preemption, allocation, and time division multiplexing. This work will need to include 

the concepts of prescheduling, dynamic scheduling, and preemption of network resources 

based on policies and priorities developed by the DOE/SC ASCR office and its 

community. Moreover, this work will need to integrate programmatic oversight of 

allocations as well as interdomain policy servers and resource managers. 

 

DOE/SC should support the development and use of a dynamic hybrid network that 

would concurrently support BEIP services, wave circuit and layer 2 circuit services for 

large dataflows, and a network tailored for low latency and jitter to support visualization 

and collaboration-intensive research. The initial implementation could start as a wave 

dedicated to each of these types of network service (i.e., each site has three wavelengths 

or subwavelengths) and a policy server and resource manager that would take requests 

from client applications, where the application states which type of services it desires. 

Alternatively, the network could monitor the traffic and dynamically select the type of 

network circuit based on attributes or metadata associated with the data objects being 

transmitted.   

 

Another interesting R&D area in networking involves the scope and use of the optical 

plane versus the router plane, as well as their interaction and coexistence. Research is 

needed on the current trend to move the intelligence of wave management out of the 
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optical switch and optical control plane and place it in a router via a router blade and 

integrated layer 1 and layer 3 control plane; the optical switch acts as a dumb optical 

mux/demux, and “alien waves” are managed through these at the request and control of 

the router. In addition, more research is needed to enhance IP over DWDM (e.g., the 

alien waves) with respect to issues of latency and jitter at the IP router level, mainly with 

respect to buffering, queuing, and nonblocking flow control. DOE/SC should support the 

investigation, development, and deployment of these different types of architectures and 

technologies and develop the appropriate instrumentation and monitoring capabilities to 

better understand which will scale to support the requirements of petascale science. 

 

Both the federal HEC Plan and the NITRD/LSN reports identify as a long-term goal the 

development of optical interconnects. At the cluster, site, and distributed levels the 

Optiputer [10] project is combining multiple sites with an IP over optical switch. The 

Optiputer can dynamically (de)allocate 10 Gbs waves to applications. DOE/SC should 

investigate Optiputer and other optical switch-based architectures to be integrated as 

components of its petascale infrastructure. DARPA is supporting the development of all 

optical data routers to run at greater than 100 Tbs. UCSB has demonstrated 40 Gbs and is 

expecting to demonstrate 100 Gbs by the end of the decade. DOE/SC will need to 

evaluate how to integrate and manage this new class of optical data routers as part of its 

overall petascale metafacility architecture.   

 

Given the trend toward convergence and merging of interconnect area networks, cluster 

area networks, and local area networks as they evolve to the 10 Gbs level and beyond, as 

well as the trend to more offload processing for IAN (e.g., TCP offload engines, aka 

TOE) and CAN protocols, it is important that DOE/SC understand the impact on 

applications with respect to latency and jitter, so that one can map appropriate 

technologies to codes and encourage standards-based solutions. DOE/SC should 

experiment with, benchmark, and better understand how the various IAN, CAN, and 

LAN protocols interact and affect the efficiency and capabilities of petascale facilities 

and metafacilities. To this end, DOE/SC should support a multisite institute focused on 

the evaluation of IAN, CAN, LAN, and WAN protocols, along with their tunneled 

counterparts such as IB over IP and E-RDMA, so that the appropriate network 

technologies can be used to support the applications. 

 

The recent development of virtual and logical routers, if they are appropriately 

instrumented and managed, can help support the efficient and effective use of network 

resources, as well as provide for individually managed virtual networks by the user or 

program. Research on the management of these virtual resources is needed, as well as 

R&D with respect to monitoring tools and data gathering and analysis tools for both real 

and virtual network systems and resources.    

 

IAN, CAN, LAN, MAN, and WAN protocols each have their own naming and 

addressing systems and techniques for addressing latencies and jitter. An ideal goal, 

albeit probably a holy grail, would be to have one network protocol data unit (PDU) that 

could be used on an end-to-end basis across these networks. Minimizing the number of 

protocols supported in these networks would help reduce some of the complexity of the 
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system. Each time a PDU is “touched,” examined, or managed, there is an increase in the 

consumption of power and the generation of heat in each device involved. An ideal goal 

would be to reduce the number of times the data or PDU is “touched,” as opposed to 

switched or routed, and thus reduce the complexity of the system, the potential of error 

for every transformation or handling, and the power consumed and the heat generated.  

 

In addition to the naming and PDU challenges associated with the current plethora of 

network protocols, another unmet need is a systemwide “ping” and traceroute that could 

navigate and traverse the varied technologies and protocols across the various networks.  

 

III.5  Data and Information Management 

 

Data management will remain one of the top challenges in managing the petascale 

facility. The NITRD Report [11], page 11) identifies the need for a new focus on data 

management and revolutionary file systems. The DOE/SC Data Management Report [12] 

not only outlines the many challenges facing the scientific community with respect to the 

management of scientific data but also identifies multiple areas where additional R&D 

needs to be supported. Given that this report is only two years old and had forecast the 

movement of science into the petascale area, we will not duplicate that work here. 

Instead, we will briefly reference those definitions, references, and recommendations 

where appropriate to reinforce the need for DOE/SC to support the report’s 

recommendations. 

 

Petascale to exascale I/O, storage, and file systems will be required to support petascale 

capability computing, petascale experiments, and petascale data management facilities. 

To this end, petascale I/O and file systems need to scale and work both within local 

onsite facilities and at a metafacility distributed level. The trend of integrated databases 

and sciences does not lend itself technically, strategically, or politically to all of the 

petascale capability resources being collocated in one place. Consequently, petascale 

science infrastructure will need to address the issues of naming, locating, accessing, and 

managing file and object systems on a truly global scale. NERSC already has in 

production the NERSC Global Filesystem (NGF), a high-performance parallel global file 

system that is accessible from all of its multivendor computing systems; Argonne 

National Laboratory is continuing the development of the Parallel Virtual File System 

(PVFS [13]); and other file systems for high-end computing systems are under 

development. A golden opportunity exists for DOE/SC to take the lead in defining and 

implementing a petascale capability metafacility-wide file system that is capable of 

supporting all of the requirements of the various DOE/SC science program requirements 

and sites.   

 

In addition to file systems, more effort is needed to develop the parallel I/O and parallel 

network synchronization necessary to support a petascale facility. Another ancillary 

challenge is being able to effectively move data from the leadership-class computers and 

experiments to storage. Data management encompasses data provenance, placement, 

transformation, movement, transmission, storage (temporal, long term, archival), 

reduction, analysis, location, query, and access. More analysis and research are needed in 
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support of the dynamic allocation of I/O and network systems and nodes as well as 

protocols and architectures, in addition to morphable and dynamic I/O and striping 

architectures.  

 

Challenges and opportunities in the management of data for petascale science are 

bountiful. They include data movement via the use of networks and I/O (transmission, 

switching, routing), the merging of movement and storage functions (i.e., caching , RAM 

disks, optical disks, optical networks as temporal storage), distributed storage systems, 

the intelligent and timely staging of data in hierarchical storage, intelligent data reduction 

and transformation, compression, indexing, location and search, the annotation of the 

data itself (commonly captured in the term metadata), and the overall movement and 

management of data as incorporated in files/object systems, visualization systems, 

dataflow and integration, and workflow systems. Security is an essential component for 

all of these. In summary, petascale science will require systems that can ensure that the 

data arrives at the right place, at the right time, secure and intact, and that it can be easily 

used by the researcher. 

 

The challenges associated with the transmission and movement of data are tightly 

coupled with the challenges associated with the combined use of naming systems, 

file/object systems, networks, and I/O. Other research areas include the integration of 

intelligence at diverse levels, from storage device, I/O and network device, to system, in 

order to handle “on the fly” analysis, annotation, transformation, and storage of data. An 

area that has not been well addressed is the architecting and engineering of autonomic, 

intelligent, dynamic, adaptable, and network-based data management and movement 

systems. 

 

Additional development and effort in the area of metadata schemas and global naming 

systems would also help establish a manageable and usable infrastructure. Rather than 

one single schema or preferred way of defining relevant metadata, a small number of 

science domain-specific schemas and techniques should be identified. In addition, 

research is needed on the treatment and management of data from the perspective of 

object management. Most data management systems currently work with files. Often, 

hundreds to thousands of files and associated names are used for one job. The successful 

support for evolving and enabling an object-based storage system (e.g., LUSTRE) to 

address the DOE/SC science requirements would enhance the ability to manage and 

analyze petascale datasets. 

 

The appropriate annotation of data and data subcomponents, coupled with the use of 

policy and security attributes attached to data objects, infrastructure elements, and 

systems, could better aid the management of data. Naming is an important aspect of data 

and system management. A unified object-based naming system (e.g., one based on the 

Digital Object Identifier system) applied to the networks and file/storage/data 

management systems could enable a more secure system. The long-term goal for 

facilities and metafacilities at the petascale and beyond should be an infrastructure based 

on objects (services, hardware components, software, data, packets, blocks, metadata, 

files, ports, processors, memory, etc.). Achieving this goal would enable a higher level of 
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integrated and securely managed programming environments for the user, with the 

combined benefit of a unified name space and interdomain public key system.  

 

The term “object based” also includes the concept of large-scale objects such as the 

component-oriented architecture [14] framework developed at LLNL. The infrastructure 

should be focused on the principle of movement, computation, storage, analysis, 

switching/routing of objects, with the lower-level embedded systems having the 

intelligence and ability to deal with the slicing and dicing of bits, bytes, blocks, packets, 

and circuits. The use of objects needs to remain at a high enough level to avoid impeding 

performance or introducing an overly cumbersome granularity. A research challenge is 

determining the “sweet spot” of definition for an object-based infrastructure, that is, the 

appropriate granularity for the definition of objects at the data, device, service, system, 

and facility level to enhance functionality. 

 

A long-term R&D program with respect to data management should be focused on 

developing an end-to-end object-based network and data management/file/storage 

system. The network would route, switch, and move the data objects based on the 

attributes and metadata associated with the data and relevant system and infrastructure 

elements, which would subsequently enable more intelligent policy-based infrastructures 

with the potential for automated use of parallel resources (e.g., an object-based SRM), 

path and QoS selection of transmission, and the appropriate level of caching, reuse, 

placement, and storage of data. An opportunity exists to develop a science-focused object 

file system complete with a consensus-based set of infrastructure taxonomies and 

ontologies.  

 

III.6  Workflow  

 

Workflow is a superset of scheduling and management systems associated with each of 

the facilities and its subcomponents (i.e., operating systems, file systems, and networks). 

The DOE/SC research community needs to develop a set of capabilities for an advanced 

secure and effective management system and framework that integrates capability and 

capacity systems, both production and experimental infrastructures, local- and global-

level systems, policy management, a unified field theory of naming and addressing, job 

control and scheduling, and both the static and dynamic (de)allocation of resources. The 

ideal goal would be to provide the researcher with a standard management control plane 

system, protocols, tools, and infrastructure that would enable use of the capability and 

capacity petascale facilities, without dealing with a plethora of competing or 

complementary models, systems, protocols, or the like. 

 

Workflow systems have has been under development by the Global Grid Forum, 

MonALISA, TeraGrid, and others. A Storage Resource Manager [15] has been developed 

by the Scientific Data Management [16] team (Figure III.6.1) as part of a SciDAC 

project. It focuses on dynamic space and file management at a metafacility and Grid level 

to enable the smart movement of data as part of an overall workflow system. 
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    Figure III.6.1 Storage Resource Manager 

     (courtesy of LBNL SDM website)  

 

Figure III.6.2, included from the Data Management Report [12], depicts a generic science 

workflow system. The report notes many R&D gaps and opportunities with respect to 

dataflow and workflow systems. One example is the need to address the scalability 

limitations of graphical representations of control and dataflow in scientific workflows as 

the number of components becomes large. Another example is the need to define a 

scientific workflow language that can describe inputs and outputs for each component, 

workflow metadata, granularity of tasks and subworkflows, task invocation, and the 

human tasks of notifications and alerts, dataflow streaming granularity, and performance 

expectations. The study also notes the need for more research into the analysis of 

workflows and workflow patterns similar to the effort done in the past for software 

patterns on single systems.  
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 Figure III.6.2 Anatomy of a scientific workflow-management. 

Control Flow Layer – execution ordering of tasks by using different views of 

sequencing, branching – different constructors that permit flow of execution control; 

Application & Software Tools Layer – invoked applications and software tools used by 

the workflow tasks; I/O System Layer– the I/O systems that allow efficient read and 

write operations by the applications (predicted data volumes and their characteristics can 

also be described in this layer); Storage and Network Resource Layer – information 

about physical devices used by the tasks during their executions (e.g., required data 

transfer rates). 

 

With regard to the handling of security in the workflow management system, the report 

makes two recommendations. The first recommendation is that the workflow 

management system “provide access controls to the scientists and their collaborators that 

limit access to the scientists’ specific workflow. Only the collaboration group should be 

able to create, modify, and monitor their workflow.” The second recommendation is that 

the workflow be able to “hold the credentials of one or more of the collaborators to 

enable the various workflow components to access the necessary resources. The 

workflow management system will need to protect the credentials while they are in the 

custody of the system.” These recommendations require the deployment and support of 

an interdomain, federated, trust-based public key infrastructure. 

 

Other areas of workflow requiring more investigation and research include the 

monitoring and management of long running codes and jobs, especially across multiple 

facilities and metafacilities; self-registration and request of resources by applications as a 

means to better ensure resource availability and handle error recovery; management 

system seamlessly working across local and global facilities including system, storage, 

networks, interconnects, cluster area networks, and file systems; use of intelligent and 

directed prefetch and caching of data at the workflow level; the availability and use of 

resources based on priority; deterministic and schedulable movement of data; the 

management and monitoring of the workflow systems management systems themselves 
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such as workflow level check pointing and restart/recovery; and end-to-end 

benchmarking (e.g., wall clock time and time to solution). Many efforts are under way at 

the individual system and metafacility level (e.g., GARA, GRAM, MonALISA, Condor, 

TeraGrid), which need to be leveraged and extended.  

 

III.7  Security 

 

Security needs to be a major integral component of any petascale facility and 

metafacility. The NITRD Report identifies security as a strategic priority, citing the need 

for high-end computing systems to function as “network-centric multi-domain enterprise 

with ubiquitous secure collaboration.” Security must be extended to the concept of 

workflow and must be built and integrated into all major system, facility, and metafacility 

components.  

 

Areas needing to be addressed as part of the management of a petascale facility and 

metafacility include dynamic configuration of firewalls; location of firewalls as part of an 

overall architecture; federated trust as part of a multidomain, multisite, multinational 

metafacility; high-speed monitoring and intrusion detection systems that can differentiate 

between good and “hostile” agents and bots; scalable security tools and architectures; 

scalable PKI (with revocation of CERTS); integrated security and system management 

monitoring at system, facility, metafacility, and workflow levels; integrated and 

coordinated security, network, and system policies and services; and a coordinated 

auditing and analysis system that integrates logged data all sources and services involved 

in a metafacility. 

 

III.8  Visualization and Analytics  

 

Visualization and analytics is a young area, although one that is often included in the 

term “data-intensive sciences.” The visualization process involves fetching the data 

(which may come from many sources), mapping it, rendering it, and then displaying it. 

This process may be iterative as the researcher uses the visualization services to steer the 

experiment or computation. The research and opportunities associated with visualization 

include the location and integration of visualization servers or services as part of 

petascale research (i.e., many times the visualization server needs to be collocated with 

the capability computer or experiment to ensure the shared use of the file system and low 

latency for computational steering); remote access; enhanced annotation and indexing 

systems to support more efficient access and exploration of the data; and the need to have 

virtual visualization and analytic agents (i.e., virtualize the cognitive processes of 

viewing data and recognizing patterns) to peruse the vast volumes of scientific data .  

 

III.9  Morphable Networks and Systems 

 

Ian Foster is quoted in Nature as noting, “All scientists will be adept at applying existing 

computational techniques, but they will also understand that progress in their own fields 

will require innovation in computing technology.” Application scientists, computer 

scientists, and system administrators will all need the ability to experiment with new 
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technologies, protocols, and architectures as they develop and evolve their codes for the 

petafacility of the future. The NLR network is an example of the concurrent support of 

production and research in a backbone. This network morphability capability needs to be 

extended into the MANs, LANs, and CANs to support an adaptable network on an end-

to-end basis. Current capabilities of nodes to be either I/O nodes or compute nodes might 

be harnessed to dynamically balance the percentage or number of I/O or compute nodes 

based on the dynamic requirements of a program during a run. Research into the 

adaptability and morphability of systems and metasystems needs to be done to better 

make use of these unique and expensive facilities and capabilities and encourage 

researchers to test and adopt new technologies. Just as we moved from statically allocated 

memory partitions and processor allocations to timeshare systems with virtual memory, 

disks, and processing in the 1970s and 1980s, we now need to move to the next level of 

virtualization and adaptable petascale systems. 
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IV.  Recommendations  
 

This section is divided into three parts. The first part presents a new program for 

petascale facility management, highlighting the areas discussed earlier in this report. The 

second part outlines the initial steps needed to make the program a reality. The third part 

briefly discusses the role of SciDAC as a model. 

 

IV.1  Integrated Management 

 

DOE/SC/ASCR has a long and successful history of developing leading-edge systems 

comprising integrated subsystems and components. It is therefore well suited to take the 

lead in addressing the grand challenge of petascale facility management.  

 

IV.1.1  New Program for Petascale Facility Management 

 

“Management” in this case includes the proactive, collective, and integrated management 

of objects and resources and the melding of secure allocation, scheduling. and 

management of resources, along with workflow, data-intensive computing, the 

instrumentation and monitoring of petascale capability computing, storage, data 

management, I/O, visualization, and network facilities—all in the support of the 

predictability, performance, and usability of those resources by the researcher.  

 

A New Program. To address the petascale management situation, ASCR should create a 

new hybrid computer science and infrastructure program that crosscuts all of ASCR’s 

existing research programs, including SciDAC, and integrates relevant petascale research 

and infrastructure areas. To this end, ASCR should work with other programs within 

DOE as well as NITRD agencies. It should also work closely with leading vendors in  

networking, interconnect technologies, system architectures, storage systems, operating 

systems, object and data management systems, visualization systems, data-intensive 

computing systems, security systems and tools, and collaborative middleware tools and 

systems to develop the next generation of management architectures and tools necessary 

to support the petascale facility and metafacility. 

 

A New Discipline. DOE/SC/ASCR should develop and support a computing systems 

management sciences (CSMS) discipline that will integrate the architectures, systems, 

protocols, instrumentation, and tools necessary for the secure integration of observation, 

experimental, and data-intensive science with high-end computational-based facilities.  

 

A New Set of Integrated Management Systems. DOE should investigate the 

development of a new set of integrated management systems comprising management 

components, subcomponents, and interfaces from which virtual management systems can 

be built. At a minimum this set should focus on networks (interconnects, clusters, LANs, 

MANs, WANs), I/O, storage and file systems, computer architectures and models (shared 

memory and message passing), systems and facility integration (including workflow, data 

management, and metafacility management), security (authentication, access control, 
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auditing, identity management, firewalls, etc.), instrumentation and monitoring, error 

detection and recovery (e.g., checkpointing and roll-back capabilities), resource 

scheduling, and the enforcement of multipolicy management systems.  

 

Project Leverage. This management program should leverage the initial work in this 

area by projects and programs such as Globus, Condor, MonALISA, CORBA/OMG, and 

TeraGrid and should focus on the virtualization of these facilities and the workflow and 

data management systems and processes used as underpinnings for such a venture 

 

IV.1.2  Performance-driven, Predictable, and Usable Resource Management System 

 

A performance-driven, predictable, and usable resource management system is crucial to 

the future of petascale science. This includes a focus on the appropriate level of 

instrumentation of facilities, systems, and components; monitoring the facilities, jobs, and 

data; gathering and disseminating data associated with managing these systems and 

facilities; matching appropriate codes to architectures; analyzing local and global systems 

and how their interaction affects workflow and time to solution; and allocating local and 

global resources securely. Also of major importance is the development of an overall 

“capability” system that includes leadership capability computing, storage, I/O, and 

networks.  

 

IV.1.3  Data Management 

 

The management of data, both scientific and systems-related, is a major function of all 

large-scale computing facilities. A concentrated effort in this area is crucial to the 

successful deployment and use of the petascale systems. Areas of data management 

requiring focus are networks (optical, interconnects, hybrids, etc.), I/O, data and 

information provenance, caching, data placement, storage (hierarchical, distributed, etc.), 

analysis, visualization; metadata and schemas, object management, and the workflow and 

dataflow systems associated with the movement and management of data. All of these 

need to be secure and trusted services. This work should leverage the excellent baseline 

of capabilities and challenges noted in the 2004 Data Management Report.  

 

IV.1.4  Workflow 

 

The integration of leadership capability computing systems with capability-level 

experimental facilities for steering and analysis requires the timely synchronization of 

resources, including the allocation of network and data storage and movement facilities. 

Similarly, integration of datasets from various scientific disciplines requires the same 

synchronization of supporting facilities capacity and capability systems. All of these 

“integrations” of facilities and datasets require a secure workflow and dataflow 

management system coupled with a multicontext, multisite policy framework, similar to 

the work started in Globus and MonALISA. A basic component of the workflow system 

is a set of services to support resource and services request management; reaction and 

trending capabilities for workflow systems; and the collection, interpretation, and access 

to the management systems information for better enabling the control plane to do its job.  
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DOE/SC should increase funding and support of network infrastructure, bandwidth, and 

capabilities, in addition to data, information, and workflow systems and middleware, in 

order to properly support the development and use of the distributed petascale-level 

experiments, capability and capacity computing systems, storage, and visualization. 

 

IV.1.5  Object-based Infrastructure 

 

The best current approaches of cobbling systems and components together will become 

even more challenging as we continue our move into the petascale level. The number and 

variety of components and facilities will dramatically increase. This is the time to 

(re)examine the use of objects as the basic building blocks for the petascale facility and 

metafacility. By treating ports, processors, storage devices, I/O nodes, files, data, and 

even packets as objects, we can define and attach policy and security attributes to them to 

enhance the management, secure access, and use of the resources and data, as well as to 

enable better data governance and provenance. 

 

IV.1. 6  Naming and Addressing 

 

In addition to the need to attach attributes to data, facilities, and components for the 

appropriate and responsible management of resources and data, it is important to try to 

reduce the large number of naming and addressing systems used throughout of DOE 

facilities. Every naming system conversion brings with it an increased chance for error or 

security breach, as well as confusion for the user. An ideal goal would be to have a 

unified naming system that could be used in networks, storage systems, computing 

systems and architectures (interconnects, I/O, processors, etc.). The goal should be an 

object-based framework and system that is conducive to petascale science and yet avoids 

the overly prescriptive or overly fine-grained use of objects to the point where it impedes 

performance and usability. 

  

A unified naming system, coupled with an object-based distributed architecture, could 

truly revolutionize the way in which science is carried out. A higher order of abstraction 

may increase usability, reuse, services, monitoring, analysis and the effective use of 

resources. In addition to better enabling the petascale facility and metafacility, this 

approach, much like http and the Web in the early 1990s, could positively change the 

nature of the Internet architecture in general. We should be moving, routing, analyzing, 

computing, and visualizing objects—not packets, bytes, and bits. 

 

IV.1.7  Dynamic and Adaptable Infrastructure 

 

A dynamically adaptable infrastructure will be an important aspect of the petafacility of 

the future. Not only will it be necessary for addressing the R&D and support for the 

autonomic error detection and recovery aspect of the facility, but it will also be necessary 

for matching appropriate resources (e.g., processors or I/O nodes) to the requirements of 

the codes. In addition, to encourage the development of new petascale codes, the 

evolution of current terascale codes to petascale and beyond, and the experimentation 
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with new technologies and architectures by petascale science, researchers must have 

access to production and experimental networks, storage, and computing facilities. The 

amount of virtualization and parallelism already evident in systems will increase, as will 

the need for adaptable infrastructures to utilize and manage them. A MORPHnet-like 

infrastructure [17] that extends end to end through networks, clusters, storage, I/O, 

systems, and facilities will be a necessary ingredient for supporting these aggressive 

goals. The management of a morphable infrastructure is in itself a research project that 

needs to be explored and undertaken. Investment and use of facilities such as the NLR 

backbone, which were designed to support this capability, are a good start, but this 

capability needs to be supported at the sites and end systems, as well as by investments 

into SC/ASCR network infrastructures such as ESnet and UltrascienceNet. Alternative 

networks and architectures also need to be investigated; such studies must include best-

effort IPs, layer 2 VPN networks, and latency-sensitive and QoS-driven network 

capabilities.   

 

IV.2  Initial Steps 

 

Efforts are under way in system management, workflow, object management, 

architecture and system instrumentation, data management, and distributed resource 

management that can be leveraged as a basis for a petascale management program. An 

initial step would be to have a blue-ribbon committee provide a survey and status of 

current systems, tools, and capabilities. Then ASCR should host one or more workshops 

where the experts from these various fields can be assembled to help identify specific 

research and infrastructure requirements necessary for the success of such a management 

program.  

 

An ancillary approach to the support of the management program would be to identify a 

small number of institutes, preferably multisite, that could focus on the development and 

support of specific architectures and analysis tools relevant to the goal of managing the 

petascale facility and metafacility. One example is an institute focused on the 

benchmarking, analysis, and potential service definitions of I/O and interconnect 

technologies on an end-to-end basis. Another example is an institute devoted to the 

development of the metadata, monitoring, and tracking techniques and tools required to 

manage a secure end-to-end petascale network transfer from storage device to storage 

device at two sites; this would need to include the characterization and instrumentation of 

the components, services facilities, and workflow systems to enable their coupling to 

support the virtual metafacility. NLANR and CAIDA are examples of such institutes that 

have been successful in the past. 

 

IV.3  SciDAC Petascale Projects as Enabling Prototypes  

 

The DOE SciDAC program has been very successful in bringing together teams of 

scientists and computer scientists to focus on overall infrastructures and collaborative 

tools in support of specific science projects. The SciDAC model should be extended to 

this program of petascale management and in fact is a natural evolution of the 

multidisciplinary work and teams initiated by SciDAC. DOE should chose three to four 



 37 

flagship SciDAC-2 projects that are planning to use petascale facilities, datasets, 

infrastructure, and computing and then create R&D teams made up of scientists, 

architects, and experts in file system, I/O, security, data management, and networks and 

focus on them on a specific scientific petascale challenge. These people would be bound 

together as a dedicated team for the life of the SciDAC project (i.e., three to five years) 

and would work on specific but complementary technologies and architectures necessary 

for the success of a SciDAC project. The chosen SciDAC projects, infrastructure, and 

tools should complement each other and could be combined such that they could be used 

to build a complete secure virtual management system that could used by the SciDAC 

researchers.  
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Appendix AI.  Petascale Computing and Facilities 
 

AI.1  Leadership Capability Systems 

 

The federal HEC Plan defines leadership and production systems as follows: 

  

• Leadership-class Systems: the leading-edge high capability computers that will 

enable breakthrough science and engineering results for a select subset of 

challenging computational problems. These are problems that have been 

unsolvable with currently available computing resources. 

• Production Systems: computers that address the challenging computational 

problems that require high-end computational resources but do not require access 

to the extraordinary leadership-class systems.  

 

Leadership-class systems, also known as “capability systems,” are currently mainly 

terascale level, with movement into petascale within a couple of years. They usually 

support a smaller number of users than capacity systems. “Production systems,” also 

known as “capacity systems,” refer to today’s class of cluster and parallel systems, with 

the top end of these computers sometimes referred to as high-end capacity systems or 

“near-capability” systems. It is safe to assume that leadership-class machines will be at 

least in the petascale range for the next five to ten years 

 

Petascale computing involves more than just the petaflops one uses on a leadership-class 

capability computing system (LCCC). These machines consume and generate large 

volumes of data (i.e., petabytes) as part of the program’s and project’s normal dataflow 

and workflow processes. In the future the data will scale to exabytes and more. Some 

capability computing users develop and debug their codes first on local site compute 

clusters before they port their codes to an LCCC system, so as to reduce the time of trial 

and error on such an expensive resource. Subsequently, all LCCCs need to be an integral 

component of a petascale metafacility, which itself contains a continuum of computing 

power and would include not only the LCCC and other computational resources but also 

the data and file systems as well as the networks necessary to enable the migration 

between the class of facilities more easy and error free. Figure AI.1.1 is a graphic 

depiction of a continuum of computing capabilities as noted in the NERSC 2006-2010 

plan. Where certain systems fall on such as continuum is not as important as the 

recognition of the existence of a continuum and its value to science. The metafacility 

needs to include the appropriate supporting security, collaborative tools, middleware, and 

other relevant services (e.g., a unified name service) to allow the researchers to 

collaborate and share information.  
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  Figure AI.1.1:  The continuum of scientific computing systems. 

 

 

In summary, in order to get appropriate applications to run on these petascale, researchers 

need an appropriate environment—namely, a “less than LCCC” production system—on 

which to define, develop, and debug their programs, which can then be migrated to the 

LCCC system. If a problem is encountered, the researcher can then go back to the 

production system(s). Also, in order to encourage the next generation of petabyte 

applications to be developed for the next generation of petabyte computers, researchers 

need to be able to experiment with currently available or soon to be available LCCC 

systems. Moreover, researchers need the ability to experiment with new technologies and 

various combinations of petascale infrastructure capability systems such as networks, 

visualization, non-human-based analytics, autonomics, storage, and I/O.   

 

The MORPHnet concept, introduced in 1997, specifically argued for these types of 

experimental computing environments. The National Lambda Rail is a more recent 

attempt at providing this type of capability at the WAN level. It is important that the 

MORPHnet concept be extended to include the LAN and local resources as well as 

support the concept of the dynamic facility where researchers can test various types of 

production and experimental next-generation hardware and software as they probe the 

limits of their codes and how new technologies or different architectures (e.g., different 

ratio and number of I/O nodes or compute nodes coupled with various SAN, CAN, LAN, 

and WAN technologies) either enhance or impede their codes and science.  
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AI.2  Petascale-class Experimental Facilities 

 

Today’s experiments are mainly terascale, but petascale experiments are anticipated in 

the near term future. Some experiments are already generating petabytes of data. One 

such example is the TeraScale Supernova Initiative (TSI), which does three-dimensional 

simulations of stellar explosions. TSI is currently producing data at the staggering rate of 

5 TB per day, and the data produced is expected to rise in the next few years to hundreds 

of terabytes per simulation. 

 

Experiments that are expected to break into the petascale level with respect to data 

management, or that have already done so, include the following:  

• CEBAF at JLab, RHIC at BNL, and the Tevatron at Fermilab, which have all broken 
the petascale level for data. 

• The Large Hadron Collider (LHC) at CERN [18], complemented by matter-antimatter 
“factories” at the Stanford Linear Accelerator Center and KEK [19] and the current 
world’s highest energy collider at the Fermi National Accelerator Laboratory. 
Collisions detected at the LHC will have a raw information content of close to a 
petabyte per second. Even though much of this data will not be retained, it will still 
culminate in petabyte datasets. 

• The High Energy Physics International Linear Collider, which is in design now and 
will both complement and work with the LHC with respect to research on the Higgs 
boson and “map the unified ‘electroweak force.”  

• The Spallation Neutron Source (SNS), a new nanoscience facility at Oak Ridge 
National Laboratory, which will provide orders of magnitude more neutron flux and 
larger detector arrays than predecessor facilities, with concomitant increase in data 
volume. At full capacity, SNS expects to have 24 instruments and to generate 
petabytes of data a year. It will require coupling with petascale computing and 
petascale visualization for real-time steering of experiments. 

• Next-generation confocal microscopes for support of biological research (e.g., 
proteomics at Pacific Northwest National Laboratory), which will generate petabytes 
of data a year. Biological research is undergoing a transformation from a qualitative, 
descriptive science to a quantitative, predictive science as a result of the availability 
of high-throughput, data-intensive “omics” technologies such as genomics, 
transcriptomics, proteomics, and metabolomics, together with the advance of high-
performance computing.  

• Climate research, which is generating  (by both measurements and model 
simulations) datasets that range in size from a few megabytes to tens of terabytes. 
Examples include raw measurements from satellite instruments, data from in situ 
observation networks such as the DOE Atmospheric Radiation Measurement program 
sites, and the output of three-dimensional global coupled climate models such as the 
Community Climate System Model, which produces 7.5 TB of data in a single 100-
year integration.  

• Combustion research, which is just beginning to simulate laboratory-scale turbulent 
flames using massively parallel computers combined with emerging models and 
codes. Current computations generate about 3 TB of raw data per simulation, posing 
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new data storage and movement challenges and requiring a new paradigm for data 
analysis. Adaptive steering and subsetting of data as it is computed are needed in 
order to enhance discovery and to enable further analysis and visualization of events 
whose occurrence was not known a priori. 

• Nuclear energy experiments and data management processes, which can peak at data 
generation rates of tens of megabytes per second, with the major programs generating 
on order of one petabyte per year. The data analysis environments include tens to 
hundreds of scientists simultaneously accessing refined datasets of tens of terabytes. 

• Fusion research, which is developing increasingly realistic simulations that will result 
in large and diverse data that in turn will demand powerful data-management 
frameworks and tools. In particular, ITER’s plasma production effort, planned to be 
operational around 2015, will generate an enormous amount of data, which will need 
to be collaboratively analyzed and managed during experimental operations by a 
worldwide scientific community. 

 

AI.3  Capacity Computing  

 

Capacity computing can range from desktop computers to local site clusters to mission-

dedicated clusters such as those used at SLAC and Jefferson Lab and can range from the 

low-teraflops class to the leadership capability computing level. These capacity 

computing facilities are often used as pre- or postprocessing engines, as well as 

debugging and development resources, for leadership computing as well as to support 

data-intensive computing and leadership-class experiments. All of these environments 

generate or analyze petabytes of data and thus are included in the DOE/SC continuum of 

petascale facilities. (Because of their very nature as capacity systems, these facilities are 

often acquired with more of a focus on memory and processing issues than with the aim 

of building a leadership capability facility.)   

 

AI. 4  Petascale Storage and Data Management 

 

As we move into petascale computing and science, we need to address the fundamental 

challenge of moving data to and from leadership-class computers, as well as the 

associated general data management and provenance issues. This challenge will be 

especially acute in the I/O and storage systems where systems are already challenged to 

keep pace with the raw computational capabilities that exist today. The HEC Task Force 

notes in its plan that “one of the neglected areas of modern high-end computing is the 

ability to stream computed data to storage systems, i.e., parallel I/O.” 

 

Sites such as NERSC that once were more of a source for data are now large sinks for 

data, and the future explosion of DOE petascale facilities will generate the need for even 

more storage systems and facilities. Petascale storage and data management systems are 

currently in the range of hundreds of terabytes to petabytes and can be found at almost all 

of the DOE/SC labs  
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AI.5  Petascale Networks 

 

Petascale networks are currently gigabit-scale networks (10s to 100s of gigabits per 

second) and will eventually become terabit-scale networks in order to support the 

petascale facilities. The networks will need to support architectures and protocols that in 

turn support large file and dataset transfers. The Large Scale Network (LSN) subgroup 

notes as a goal in the NITRD report of 2007 ([11], page 12) the need to “enable near-real-

time petabyte and above data transfers, by 2008, to support science cooperation and 

modeling.” The subgroup also notes the need for Infiniband and single-stream flows to be 

supported over WANs, in addition to the “need to develop protocols to move massive 

amounts of data.” These goals are all focused mainly on the ability to move large datasets 

and files in support of science. This means that petascale capability networks will need to 

support a wide range of services including best effort IP (BEIP), high-speed TCP 

implementations, layers 2 and 3 virtual networks, tunneled cluster and interconnect 

protocols over the WAN (e.g., Infiniband, Ethernet, and fiber channel), lambda 

switching, and eventually optical packet switching. The National Lambda Rail (NLR) 

was the first large-scale, nationwide, multiple 10-gigabit wavelength multilayer network. 

The NLR, Internet 2, ESnet, and the regional networks need to scale up appropriately to 

support petascale facilities of the future. Petascale networking needs to be supported on 

an end-to-end basis in the WAN, MAN, and LAN. An example of relevant work at the 

site and LAN level is Fermilab’s Lambdastation. ESnet’s planned dual mode network to 

support large data transfers is depicted in Fig. AI.5.1. 
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  Figure AI.5.1:  ESnet’s dual-mode network  
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AI. 6  Petascale Analysis and Visualization Facilities  

 

Table AI.6.1, taken from the NERSC 2006-2010 Plan, identifies the data-intensive 

sciences. All of these science programs will be working with petascale datasets and will 

augment and support both petaflops computing and petascale experiments. The majority 

of the visualization servers are terascale systems and are predominantly distributed 

shared-memory architectures. These systems are often closely located to the petascale 

computing and experimental facilities to enable real time simulation as an integral 

component of experimental and computational steering processes.  
 
Table AI.6.1:  Applications and Algorithms Matrix 

 

 

Science 
Areas 

Multi-

physics  
& Multi-
scale 

Dense 

Linear 
Algebra 

Sparse 

Linear 
Algebra 

 

FFTs 

 

 

AMR 

 

Data  
intensive 

Nanoscience X X X X   

Climate X   X X  

Chemistry X X X X   

Fusion X X X  X X 

Combustion X  X  X X 

Astrophysics X X X X X X 

Biology X X    X 

Nuclear  X X   X 

 

  

AI.7  Petascale Facility and Metafacility 

 

Dr. Orbach notes on page 8 of the SciDAC Review [20], “One remarkable example of 

‘growth in unexpected directions’ has been in high-end computation. This is now one of 

the most important facilities.” For the purposes of this report it is important to realize that 

a petascale facility can be any of the individual systems or petascale facilities; but more 

important is the fact that these facilities can be combined in many combinations to make 

a virtual metafacility. Some of those resources may be located locally and on site, while 

others can be located remotely on other continents. The concept of metasystems was 

alluded to by Dr. Michael Strayer (then director of SciDAC and associate director for 

DOE/SC’s Advanced Scientific Computing Research and now director of ASCR) when 

he noted in the SciDAC Review [20], “In computational science, as in other sciences, the 

area of international collaboration is the forum for science for the 21
st
 century. The SC is 

heavily committed to multiple international collaborations – including the International 

Thermonuclear Energy Reactor, the International Linear Collider, and the Large Hadron 

Collider, to mention a few. SciDAC, together with other ASCR facilities, could provide 

powerful resources and the nexus for a new global village for computing that could take 

computational science and scientific discovery to wholly new peaks.” 
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Appendix AII.  Trends in Scientific Research 
 

   

AII.1  One-of-a-Kind Facilities 

 

The cost and complexity of one-of-a-kind experimental facilities have already generally 

resulted in there really being only a single such facility per scientific focus. The LHC at 

CERN, SNS at ORNL, and ITER at Cadarache, France, are just a few examples. The 

same trend is occurring in capability-scale high-end computing. DOE/SC is investing in 

two leadership-class capability systems that are intended to evolve to petascale-level 

computing facilities. One will be an IBM Blue Gene and the other a CRAY XT3. Each of 

these will have unique architectures. The cost and power requirements associated with 

running a capability machine will keep the numbers low. The future may well bring with 

it high-end capability machines focused solely on a particular class of problems, for 

example, Monte Carlo codes. All of these unique petascale experiments and computers 

will require petascale networks, I/O systems, and storage systems. 

 

In order to support these capability experimental and computational facilities, there has 

been a recent trend to move back to a centralized system architecture, where the majority, 

or all, of the resources are located at one site. Access to cheaper energy and affordable 

networks may also affect the future location of capability petascale computing and 

experiments. A centralized system will need excellent data management and analysis, 

networking, and collaboration infrastructure to support the secure access and 

participation by international researchers. Specifically, the community will require not 

only enhanced tools and capabilities to manage the individual petascale systems but also 

the ability to handle metafacility and workflow processes associated with remote and 

internationally distributed use of these facilities. The provenance and management of the 

data associated with all of these petascale facilities will tax any current and planned 

infrastructures and architectures.  

 

Another feature associated with one-of-a-kind facilities is that since they are truly one of 

a kind, the analysis, instrumentation, and management of the systems and their individual 

components are very challenging. There is no large base on which to draw for expertise 

for the support of these systems as there is for commodity and off-the-shelf systems. 

DOE/SC and the high-end computing community need to develop their own teams and 

tools for properly supporting and managing these facilities. The intellectual capital and 

resources necessary for managing and supporting these types of facilities should not be 

underestimated.   

 

Another relevant trend that affects the support of these unique facilities is that the science 

community is expanding the number of collaborations in which it engages. The number 

of researchers collaborating on any given research project continues to increase. Many 

research papers now use two pages to list the co-researchers on a project. The roles of the 

researchers are also evolving. Often a researcher is a principal researcher on one project, 

a collaborator on a second project, and a consultant or minor contributor on many other 
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projects. Hence, not only does the infrastructure need to efficiently support the larger 

number of collaborations, access, and use of these facilities, but it also needs to support 

the many different roles of the researcher with respect to access, use, control, and 

management of the facilities. This last challenge is one that is especially relevant to open 

science facilities (i.e., DOE/SC facilities), as opposed to the NNSA, which supports a 

reduced and more controlled set of researchers using their facilities. 

 

The challenges associated with all of these trends are the need to address the dynamic 

creation and management of virtual organizations, role-based security, data management, 

and enhanced facility, metafacility, and workflow instrumentation and management. 

 

AII.2  Computational Science and Simulation 

 

As Dr.Orbach noted, we are already in a new era with respect to the use of high-end 

computers to perform science-based simulations that could not have been previously 

done. Simulation and computational science continue to gain respect and are now being 

coupled with experiments for steering purposes. The Data Management Report [12] notes 

the value of increased use of simulations to steer a variety of science projects:  

 

Sometimes the data to be analyzed is streamed directly from an instrument or 

simulation (e.g., when monitoring an observation or experiment in progress). By 

analyzing the data as it is being generated, scientists can detect anomalies and 

error conditions and can steer the experiments or simulations to focus on 

interesting events. If the anomaly is known, a signature-based method can be 

used. Alternatively, the “normal” data can be modeled and deviations from that 

model can be flagged. Research is needed to expand existing capabilities in real-

time algorithms, approximate algorithms, robust sampling techniques, and time-

constrained queries, in order to handle massive and complex data.   

 

The climate modeling community is heavily involved in the development of coupled 

simulations. In addition to the current coupled atmosphere-land-ocean-sea ice simulations 

of the physical climate system, future Earth system models will incorporate a true carbon 

cycle component, which has models of biological processes, such as land vegetation and 

ocean microorganisms. Model-data fusion, whereby simulations are coupled with satellite 

and surface-based multi-instrument data streams, are part of the research regimen. 

Satellite instruments scheduled for deployment will monitor a wider range of geophysical 

variables at higher resolutions, which will be used to evaluate climate model simulation 

suitability for a wide range of targeted research and practical applications. 

 

The Data Management Report [12] identifies three categories as the central workflow 

components of simulation-driven science: data movement and reorganization, data 

analysis, and visualization. All involve data-management challenges. The report also 

notes that simulation scientists desire a change from the current batch mode to interactive 

capabilities to better enable data management, visualization, and analysis. 
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The interesting challenges that arise from these trends will be the need to focus on the 

integration of these facilities, coupled with either petascale capability computers or 

petascale experiments, into a metafacility. Of specific interest will be the use of 

simulation for the quasi-real-time (e.g., in minutes or tens of minutes) steering of 

experiments. Figure AII.2.1shows the SNS architecture, which integrates and 

incorporates simulation on capability systems with visualization and petascale 

experiments. 
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 Figure AII.2.1:  SNS software architecture (courtesy of ORNL) 

 

 

AII.3  Data Fusion and Integration 

 

In addition to the integration of simulations, computation, and experiments, there is a 

trend toward more interdomain science collaboration, specifically with respect to the 

integrated use of datasets from multiple science domains. The Data Management Report 

[12] summarizes the general process of data integration:  

 

    

Data integration requires resolving the differences and inconsistencies in the data 

management systems (e.g., different vendors), in the data models (e.g., relational, 

network, ER, object-oriented), in the query and data manipulation languages, in 

the data types (e.g., text, graphics, multimedia, hypermedia), in the format (e.g., 

structured, semi-structured, specialized formats), and in the semantics. The ability 

to manipulate data requires both a characterization of the internal structural and 

semantic properties and a characterization of the relationship of the dataset to the 
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associated material. Moreover, to achieve the vision of data integration, one must 

have the technology to describe the data models, data structure, data format, and 

data semantics. 

 

Data integration also encompasses the integration of date types, formats, and systems. 

The Data Management Report [12] notes that “data sources are physically distributed and 

heterogeneous in how information is stored, organized and managed. Second, they reside 

on heterogeneous hardware platforms with diverse software interfaces. Third, the data is 

of different types (e.g., text, video, images, audio) and formats (e.g., netCDF, HDF, 

SILO) as well as dynamically changing in both content and form.” The report also notes 

that the goal of a data integration system is “to provide users with a uniform interface to 

access, relate, and combine data stored in multiple, geographically distributed, and 

possibly heterogeneous information sources. It enables users to focus on specifying what 

they want, rather than thinking about how to obtain the answers.” 

 

The obvious challenge with respect to these trends, and which go beyond the normal 

coupling of data storage and movement systems into a metafacility or virtual facility, is 

the need to address the various schemas, ontologies, and taxonomies associated with the 

various science domain datasets and to enable an inter-working set without imposing one 

standard.. 

 

AII.4  Integration of Scientific Databases and Data Management  

 

The evolution of petascale science will incorporate new trends of data integration and 

data intensive computing. Advances in the science domain will no longer be just derived 

from simulations alone or from either experimental or observational sources. Scientific 

exploration is now utilizing datasets from multiple science domains as well as relying 

solely on data generated or reduced as a result of other simulations and data-intensive 

computing endeavors, that is, simulations are now using the results of other simulations 

as source data. 

 

Richard Mount of SLAC has noted that within the HEP community pure computational 

high-end computing is evolving to a combination of computation with data-intensive 

high-end computing (i.e., using data generated from other sources). The biology and 

chemistry science domains and data are being combined as part of the research in bio-

fuels. There are efforts to combine climate simulations and observational data as part of 

the overall research in climate modeling. SNS nanoscience is coupling work with biology 

datasets. Chemistry is coupling quantum chemistry and molecular dynamics simulations 

in chemistry, combustion, geochemistry, biochemistry, and environmental studies. 

 

AII.4.1  Data Location 

 

Data management encompasses multiple facets including data placement, location, 

replication, tracking, caching, file and storage systems, architectures, transfer, metadata, 

and provenance of both the data and processes associated with data management. Other 

attributes associated with data management include short- vs long-term properties, 
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hierarchies of caching (e.g., NERSC writes caches to disk immediately), and location of 

the data with respect to local, remote, or distributed storage, even including transient 

storage in the network. Of particular interest will be the need to support long-term 

archives and efficient access to them. 

 

AII.4.2  Data Searching and Analysis 

 

A major challenge facing petascale science is dealing with the vast volumes of data 

generated by petascale facilities. New and enhanced techniques and tools are required for 

enhancing the scientists’ ability to annotate and attach attributes and metadata as the data 

is being generated and moved, so that appropriate sets of the data can be located and 

processed later. DOE/SC-funded projects such as FASTBIT [21] and ScalaBLAST [22] 

support indexing, searching, and analysis techniques aimed at large scientific datasets, 

but more much needs to be done. The trend toward more intelligent and cognitive 

techniques for analyzing datasets will continue as the volume of data outstrips our ability 

to effectively utilize humans and human visualization techniques to visualize and analyze 

the data. The user interface of choice for the management and control of data currently is 

the Web. As the number of scientific datasets generated increases and as the demand for 

access to those datasets increases, DOE/SC and its community will be faced with more 

and greater challenges with respect to data management and provenance. Of particular 

interest will be generating consensus on a limited yet workable set of schemas for all of 

the science domains and enhanced analytical tools including visualization and virtual 

visualization. 

 

AII.4.3  Data Provenance 

 

A good definition of data provenance is found in the Data Management Report [13].  

 

Provenance information is meta data that describes the logical organization of 

data in terms of its origins, including the original conditions under which an 

ancestor dataset was produced, the sequence of transformations applied to 

produce the derived data, and the people and software involved in performing 

these transformations. Provenance includes description at the level of science 

(dataset A is the Fourier transform of dataset B) and engineering (the transform 

was done with version 2.3 of software package X on a specific compute resource). 

Provenance meta data, particularly engineering-level information, is most easily 

collected directly from applications and workflow systems and can be used to 

create new, related workflows, for example by using the provenance of one 

analysis pipeline to instantiate a parameterized analysis of additional datasets. 

 

An example of a workflow management system that captures provenance information for 

planning and execution in Grids is the Pegasus [23] stem, which was developed as part of 

the GriPhyN (Grid Physics Network [24]) project. The Pegasus system takes a high-level 

definition of a desired workflow and schedules the tasks in the workflow on available 

resources, based on the requirements of the tasks and the availability of resources in the 

Grid. Pegasus tracks the original abstract workflow, the input files, and the output files 
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that are generated as products of the workflow execution. Pegasus highlights the fact that 

datasets are not the only entities that will require metadata descriptions; it will be 

necessary to describe hardware and software tools with information about their 

provenance and the data they are capable of processing.  

 

Another example is the MyGrid system [25], which enables a biologist to dynamically 

compose workflows and quickly discover sequences of interest among the thousands 

returned by curated databases for an investigation. 

 

AII.4.4  Policy 

 

Another important area of data management relates to who controls the data, has access 

to it, and can manipulate it, namely, who manages the policy of the data regardless of 

location. This will become even more of an issue as the datasets become larger and are 

managed at remote sites and data storage sinks, and specifically includes the issue of who 

owns the intellectual property rights, who can reference the data (and how and when), 

and who controls the placement and state of the data. An ancillary challenge will be the 

integration and bridging of local/site and global/meta-facility policies in the secure 

management of the data, that is, the combined policies associated with data, security, and 

systems. In addition, the current trend is to have visualization and analysis servers closely 

collocate with petascale computers and experiments so that they can effectively share the 

same file and storage system. Effective and secure remote access to these visualization 

servers is imperative for their effective use and will require addressing multisite and 

multinational security and data policies.  

 

AII.4.5  Object-based File Systems 

 

High energy physics at SLAC, biology at PNNL, and other sciences have recently 

experimented with the use of object based file systems. Some high-energy physicists 

found the Lustre file system could not effectively handle large numbers of small files, 

and hence the scientists developed their own minimalist object-based file system, called 

“ROOT” [26]. PNNL and others continue to use Lustre. The use of object-based 

databases in the science arena will continue to grow, and if an object-based database or 

file system is developed that addresses the range of science requirements with respect to 

access and transactions, its use could become predominant. As an example, some 

experiments generate data segments or objects on the order of 100 bytes. An object-based 

database that would support these types of datasets along with their relevant operations 

would greatly enhance the data management prowess of the DOE/SC sciences. A related 

challenge will be the development of an efficient and effective metafacility-wide object-

based file system.  

 

AII. 5  Interdisciplinary Teams  

 

A major goal of the interagency High Performance Computing and Communications and 

the Next Generation Internet programs in the 1990s was to encourage interdisciplinary 

teams to tackle the grand challenges of science. SciDAC took that concept and made it a 
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reality through its programs and projects by combining domain scientists, computational 

scientists, and a variety of computer scientists into project focused teams.   

 

A current trend in science is the combination of scientists from various science domains, 

such as biology and chemistry or biology and climatology. As the Data Management 

Report [12] notes, “Many simulation scientists collaborate in small groups in most stages 

of the scientific process. Increasingly, however, scientifically important problems require 

large, multidisciplinary teams. In these instances, the need to access distributed data and 

resources is the rule rather than the exception. Scientific discovery requires that we 

ultimately create distributed environments that not only facilitate access to data but also 

actively foster collaboration between geographically distributed researchers.” The 

challenge, then, is to ensure that these scientists have the appropriate supporting 

infrastructures, architectures, and tools so that they can work on an interdisciplinary 

basis. 

 

AII.6  Virtualization  

 

The number of international scientists working together on interdisciplinary teams is 

increasing. As a result, virtual organizations (VOs) are created to provide policy 

management and oversight as well as support collaboration on major projects. A VO is 

often associated with some set of facilities and a project. People no longer give a second 

thought to collaborating with colleagues around the world on either an extemporaneous 

or long term ongoing basis. The VOs themselves follow normal socioanthropological 

groupings into teams and some form of bureaucracy, each with its own set of dynamics, 

to support the research project and its subcomponents. A side effect of this trend is the 

need to match the social organizations and research processes with the placement of and 

access to resources, as well as the requirement for virtual collaboration middleware, 

tools, and infrastructure as part of an integrated architectureTherefore, the architecture 

and placement of petascale facility and metafacility resources will need to address these 

distributed and remote requirements. A 2005 OECD workshop report [27] on Grids 

makes specific note of the challenges associated with the virtualization of organizations 

and resources as part of the evolution of science inquiry. The workshop report also notes 

that the resources that make up a Grid are dynamic. This same characteristic will apply to 

petascale facilities and metafacilities.    

 

Another dimension of the virtual organization will be the move toward more use of 

codes, data, and services from other science domains. The Service Oriented Architecture 

(SOA), incorporated in Globus and other Grid architectures, offers users virtual codes 

and systems. Commercial vendors are starting to deploy and support virtualized SOA-

based virtual systems. One example is HP’s SOFTUDC concept. It is a virtual system 

that will virtualize not only the data center, blades, and servers but also the entire system, 

namely, virtual Ethernet based VPNs and operating systems. When utilizing SOA 

services, users will need the capability not only to request but also to validate the 

integrity of the codes and services they intend to use, as well as the ability to monitor and 

track usage of those services for accounting purposes.   
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At the technical level, virtualization is even more widespread. We have had virtual 

memory, with all of its layers of prefetch and caching techniques, and virtual operating 

systems for many years. The many processors on a massively parallel machine act like 

one virtual system. We have virtual disks and tape drives, virtual networks (tunneled and 

VPNs), virtual routers (similar to virtual operating systems but focused on routing), 

virtual switches (“n” switches act as one), virtual firewalls (i.e., software based), 

GridFTP (a virtual FTP where multiple parallel FTPs are used but the user sees only one), 

and now the advent of service-oriented architectures, Grids, and metafacilities where 

many individual facilities, resources, and systems are combined into a virtual system. In 

addition, next-generation science will depend on virtual researchers,  that is, teams of 

researchers, acting as one, will attempt to address the tsunami of scientific data needing 

to be analyzed and managed via the use of agents, “bots,” and services to search, locate, 

analyze, visualize, and manage data and information. 

 

The management of virtual resources presents numerous challenges. These include the 

verification of codes and services, cross-domain security, and trust, as well as the 

instrumentation, monitoring, and management of both the virtual and real resources. All 

of these are important issues that need to be addressed. For example, a user may have a 

different virtual machine configuration every time the user runs a code on a leadership-

class computer, that is, a different number of processors or ratio of I/O nodes and 

compute nodes, as well as potentially a different operating system loaded with each run 

and even virtual network configurations and file systems. These often transient virtual 

environments and states will require management tools to monitor and analyze the use of 

the resources as well as supporting the configuration of the system either before or during 

run time. 

 

The Globus Tookit, one of the most widely known and implemented set of distributed 

systems, support software, and services, has been under development for many years and 

has been working to address a wide range of management, allocation, and monitoring 

services for the support of virtual organizations and the use of distributed resources. 

Globus provides a workspace management service (Fig. AII.6.1) comprising a broad set 

of service implementations and infrastructure services.  
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The fourth version of the Globus Toolkit, GT4 [28] (Fig. AII.6.2), specifically provides 

standards-based services and mechanisms, as well as associated XML-based resource 

properties and attributes with resources, as part of an overall monitoring system that 

provides for two aggregator services for collecting information as well as capabilities to 

push (subscription) or pull (query) relevant data.   

 

AII.7  Visualization   

 

The Data Management Report [13] describes scientific visualization as follows:  

 

…the transformation of abstract data into images that are more readily 

comprehensible than the data itself. It is the primary means by which scientists 

““see”” their data, and it forms a central part of most, if not all, scientific 

processes. Visualization techniques can be applied to raw data as well as to the 

results of analyses; and, to a large degree, the challenges raised by increased data 

size and complexity for visualization mirror those of analysis tools. New 

visualization techniques are needed to make the patterns in large, complex 

datasets stand out. Visualization algorithms applied to raw data and, increasingly, 

to large subsets derived by analyses will need to shift from serial to parallel 

designs, including parallel transfer of data to large displays. 

 

Visualization is coming of age as part of the scientific inquiry and analysis process. The 

use of Powerwalls, CAVEs, ImmersaDesks, and powerful desktop graphical engines are 

used to generate visual representation of complex, multidimensional and multimodal 

data. Visual comparative analysis techniques and interactive data exploration are 

Figure AII.6.1: Selected GT4 components and interactions. Shaded boxes are GT4 code and 

white boxes user code. 
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common tools now for scientists. Analytical tools and techniques such as FASTBIT [21] 

and ScalaBLAST [22] are used for indexing and searching data, which is then often 

graphically displayed. Researchers use visual comparative analysis and interactive visual 

data exploration techniques as part of their analytical process. As the scale of data 

increases, we will need even better visualization and analytical tools.   

 

Two major challenges face the increased incorporation of visualization as part of the 

scientific process. First and foremost is the fact that the amount of data is out pacing 

scientists’ ability to view the results. Projects will not be able to afford to hire hundreds 

to thousands of students and postdocs to view the graphical output associated with these 

petascale systems; and even if they could, coordinating hundreds of people to visually 

analyze graphical output doesn’t scale. Petascale science requires other than “human 

only” visualization tools, that is, nonhuman visual cognitive visualization and analytical 

agents and bots to aid in the analysis, identification, selection, and reduction of the data, 

which then can be viewed by humans as part of the process. This is a data-intensive 

process. Many DOE/SC-supported labs are pursuing the research and development of 

new visualization techniques and approaches. As an example, PNNL has developed 

innovative visualization tools [29] such as Starlight and InSpire to analyze many types of 

scientific data and processes. The development of visualization centers (e.g., PNNL’s 

National Visualization and Analytics Center, http://nvac.pnl.gov/) is also beginning to 

emerge.    

 

The second challenge is also one of management: the management of the visualization 

process and service. Integrated data analysis and visualization environments data and 

process models are “coupled with integrating programming and graphical interfaces, to 

simplify common tasks, automate the mechanics of using advanced data management 

technologies and enable reuse of analysis, visualization, and other technologies” [12]. 

Visualization is as much a service as it is a system and includes information and data 

analytics (i.e., computing), graphical hardware and software, networks, and access to file 

and storage systems. A visualization service/server needs to be integrated into an overall 

petascale system management system so that it can be used in the real time process of 

steering of petascale computing and experiment steering as well as for post computation 

or observation analysis. 

 

AII.8  Workflow 

 

The remote use of one-of-a-kind facilities and the increased use of virtual metafacilities 

that combine multiple resources and facilities, both computing and experimental, from 

multiple sites requires the movement of large amounts of data as well as the need to 

manage the processes associated with that data movement and processing. The 

researchers want a performance-based, predictable, and usable facility and metafacility. 

They want to be able to specify when and where a program will run, ensure that it doesn’t 

fail, have various levels of checkpointing and recovery, have the data available at the 

right place and time for the analysis or computation, and schedule any other relevant 

resources such as networks and storage. This desire fuels the push for faster and better 

technologies and systems. The scientific community has recently shown an increased 
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interest in workflow and data management as it pertains to their use and management of 

scientific resources. The first international workshop on workflow in e-sciencewas held 

in May 2006 and the second in May 2007 [30] (see Figure AII.8.1 for a graphical 

depiction of a workflow process).  
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Figure AII.8.1: Example of a workflow created in the scientific investigation process, 

showing the three layers: control flow, applications and software tools, and physical 

computer hardware (courtesy of the Data Management Report [12]) 

Workflow in some sense is the no more than the time honored tradition of job control as 

developed in the 1970s with respect to the timeshared use and management of computing 

resources (i.e., processing, memory, and storage). There are many challenging facets to 

the workflow process, the secure movement of data (i.e., networks and I/O), the 

integration of numerous files systems, the intersection of naming systems, and multiple 

site and interdomain resource management, policies, and security. Many of these issues 

have been identified by Globus, Condor, and other Grid systems; and initial work has 

started in these areas. Another additional aspect of the workflow process that needs to be 

addressed is the need for data, schema, and workflow transformations and peering. In 

addition, the workflow process requires its own metadata and services to describe, 

monitor, audit, and manage its processes and flow. An example is the need for metadata 

for workflow components and to both capture and represent the relationships between the 

data, systems components, system status, time, and other relevant variables.    

 

There currently exist more than a few workflow-oriented systems whose focus is to 

address either a component of the overall workflow process, for example, the movement 

of data, or the total workflow process. Python is a popular scripting language, famous for 

its concise syntax and clear semantics, which many programmers use to control 

workflow. The SDM is focused on the management and movement of data. The 

European Data Tag program developed the Grid Laboratory Unified Environment 

(GLUE [31]) schema provides not only service definition schemas and templates but also 

templates for data and resources such as compute nodes, storage, and end nodes. Globus, 
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Condor, and MonALISA are focused on the management and allocation of distributed 

resources.  

 

             

 
Figure AII.8.2: The MonALISA architecture 

 

MonALISA (Figure AII.8.2) is an agent-based workflow system used by the international 

and distributed HEP community for support of its scientific collaborations. We describe 

the MonALISA system as just one example of a workflow system that incorporates many 

essential scientific workflow architectural capabilities. MonALISA, which stands for 

Monitoring Agents using a Large Integrated Services Architecture, has been developed 

over the past four years by Caltech and its partners with the support of the U.S. CMS 

software and computing program. The framework is based on Dynamic Distributed 

Service Architecture and is able to provide complete monitoring, control and global 

optimization services for complex systems. The MonALISA framework is a fully 

distributed service system, that is, distributed registration and discovery for services and 

applications, with no single point of failure, and it provides for the monitoring of all 

aspects of complex systems. For example, it monitors system information for computer 

nodes and clusters, network information (traffic, flows, connectivity, topology) for WAN 

and LAN, monitoring the performance of applications, jobs or services, and end user 

systems, as well as end-to-end performance measurements. It can interact with any other 

service(s) to provide in near-real-time customized information based on monitoring 

information, and it provides for the secure, remote administration for services and 

applications. Agents are used to supervise applications, to restart or reconfigure them, 

and to notify other services when certain conditions are detected. The agent system can 

be used to develop higher-level decision services, implemented as a distributed network 

of communicating agents, to perform global optimization tasks. MonALISA supports 
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graphical user interfaces to visualize complex information and global monitoring 

repositories for distributed virtual organizations. 

 

A major challenge exists with respect to workflow and resource management systems, 

namely, the need to leverage the initial work in the numerous existing workflow systems 

in order to develop an integrated workflow framework complete with associated 

metadata, schemas and processes that can be used as a common set of standards-based 

services and enable an object-based infrastructure from which an integrated monitoring, 

security, and management system can be built to support the various types of 

architectures and facilities.  

 

AII.9  Dataflow and Data Management 

 

Not only is science moving into petascale computing and experiments, it is also moving 

into data-intensive computing where the data may be analyzed, moved, reduced, 

transformed, and visualized more than once. The amount of data being generated and 

analyzed only continues to increase. As a result, more attention is being placed on 

dataflow and data management. Data management is an important component of the 

workflow process and is focused on the placement, searching, movement, and 

management of data. Two important aspects of data management that many are trying to 

address are its temporal nature, namely, how long it is kept, and its access patterns, both 

of which can affect what type of device the data should be stored on. For example, 

NERSC automatically copies data off fast disk to slow disk and tape for integrity 

purposes, while SLAC is experimenting on RAM disks as part of an overall architecture 

to enhance access. The management of data also requires the ability to appropriately 

describe the data and its relationship to other data and processes with the right amount of 

granularity and relevant information. Another important architectural issue with respect 

to data management is the separation of metadata from data for easier traversal, search, 

control, and management of the workflow and data management processes. 

 

The Data Management Report notes that metadata descriptions are used “to discover, 

interpret, evaluate, and transform the data. This additional description is often referred to 

simply as ‘metadata,’ and managing such information is considered ‘semantic 

engineering,’ or ‘knowledge engineering.’” The report (page 47) also points out that 

“tools such as problem solving environments, portals, and electronic notebooks can also 

document aspects of workflow, but they are more directly involved in the logical 

organization of data into project and experiment hierarchies. These tools can also be used 

to support a wide range of structured and unstructured annotations, such as a similarity 

between a gene in one organism and one in another, information about a detected feature, 

reviews of data and assertions about data quality, or simply some text about an idea for a 

new experiment triggered by current work.” The report cites as an example the SAM-

based Electronic Laboratory Notebook, which allows text, drawings, images, equations, 

and arbitrary files to be associated with data and organized into electronic chapters and 

pages. These tools and capabilities need to be an integral component of science workflow 

systems. 
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The Data Management Report (page 49) points out that effective indexing schemes and 

techniques are crucial to enhancing data analysis. It notes that “the traditional indexing 

techniques, such as B-trees and hashing, are inefficient for datasets with a large number 

of searchable attributes. Even multidimensional indexing techniques, such as R-trees, are 

efficient only for datasets with no more than 10 or 15 attributes. If there are more 

attributes or if the user query involves only a small number of the indexed attributes, a 

brute-force scan is more efficient than these indexing schemes.” Research and 

development of better indexing techniques is currently being undertaken at LBL 

(FASTBITS), PNNL (ScalaBLAST), and other centers. 

 

One aspect of data management that can be very important to the effectiveness of any 

facility, metafacility, and workflow systems is data placement. The Data Management 

Report page 55) describes data placement as consisting of two elements: “selection of an 

available storage location capable of holding the data … and the actual transfer of the 

data into this location.” The report notes that “regardless of whether it is an end user, an 

application, a middleware component, or a low-level system function, the entity that 

triggers a data placement request must be able to influence when, where, and for how 

long the data should be stored. The decision can be based either on the properties of the 

target storage unit (e.g., proximity to the current data location, reliability, throughput) or 

on a set of goals or intentions (e.g., keeping the checkpoint data until the end of the 

simulation run). Providing data placement services requires an appropriately layered 

design.” An example of the importance of placement is found in the TSI experiment  

 

Replication of data is another aspect of data management that is very relevant to sciences 

and the distribution and access to data generated by petascale facilities. The Data 

Management Report (page 56) notes that “replica management and cache management 

are closely related, but replica management focuses on the particular issues that arise in 

the management of geographically distributed copies of datasets. In geographically 

distributed computing environments, computational tasks may be performed at locations 

that are far away from necessary datasets.” This issue will become even more pertinent 

with the current trends of petascale science integrating datasets from multiple science 

disciplines. The report defines replication as follows: 

  

Replication involves creating multiple copies of identical files or portions of files 

in order to increase data locality and fault tolerance and to reduce the latency of 

data access in a wide-area, distributed computing environment. Traditional replica 

management for transactional database management systems keeps track of table 

updates and synchronizes the changes among the database replicas. In scientific 

applications, most datasets are read-only after they are published, and data access 

is predominantly file-based; these characteristics simplify replica management 

because update synchronization is not needed. 

 

Data replication, and even the caching of scientific data, can have a positive effect on an 

overall system, depending on the architecture. The HEP LHC program uses a tiered 

replication and storage system for distributing LHC data on an international basis. The 

data is preplaced at the replication sites. The location of the sites is important, and these 
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sites will require much more networking bandwidth and storage capabilities as a result. 

The size of the datasets being moved is normally very large and requires the use of 

parallel transfers to accomplish the movement. The GridFTP protocol and Reliable File 

Transfer Service are two well-known services employed to accomplish these transfers.  

   

The Data Management Report notes seven issues that need to be addressed (page 56):  

 

(1) specifying the source files to be copied and registered; (2) specifying the 

target directory or locations for the data; (3) specifying the catalogs in which new 

replicas should be registered; (4) coordinating copy and registration operations; 

(5) identifying and recovering from failures; (6) considering the state of resources, 

including network performance, existing replica locations, and the availability and 

performance of storage systems and computational resources; and (7) considering 

policy issues, including security and resource management policies that define 

which groups and applications have permission to access particular datasets, 

storage systems, and computational resources and what priorities are assigned to 

different requests.  

 

The Scientific Data Management Center has developed the Storage Resource 

Management System (SRM [15]) to handle these functions (see Figure AII.9.1 for a 

description of the SciDAC-funded SRM system). SRM uses Global Grid Forum 

standards, such as GridFTP, but also provides front-end services to other files systems 

such as HPSS, and manages both local and global resources. Fermilab uses SRM as a 

front-end and management system for its local disks systems. 
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 Figure AII.9.1:  Storage Resource Management (courtesy of the SciDAC SDM Center) 

 

 

AII.10  Persistence, Ubiquitous Computing, Nomadicity, and Remote Access 

 

Scientific work environments, both technical and social, have evolved to the point that 

when scientists are on business travel or are telecommuting from their homes, they expect 

to have access to some portion of their work environment and data. Unified messaging 

systems, VOIP, IP-based PDAs, VPNs, WI-FI, and other technologies allow the scientists 

to stay connected, including online real-time tracking of experiments as well as personal 

and collaboration or team communications. Nomadic access, ubiquitous computing, and 

PDAs need to be securely treated as an integral component of any petascale facility 

infrastructure and incorporated as part of the overall facility and metafacility from both a 

security and management perspective. An evolution of persistent presence will see the 

use of intelligent agents and bots regardless of whether the scientist is really on line at 

that time. Researchers will be able to use these agents, services, and bots to monitor and 

manage their research and computation in the background while they attend to other 

tasks.  

 

Ubiquitous computing and nanotechnology are just emerging, and their total impact on 

the scientific process is yet to be seen; but they have the potential for providing additional 
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capabilities for monitoring and managing codes, components, systems, services, and 

facilities, as well as enabling a more secure and smart facility and metafacility.   

 

AII.11   Summary of Trends in Scientific Research  

 

All of these trends will expand the use of distributed petascale resources, one =-of-a-kind 

facilities, and leadership-class computers by an even more distributed set of international 

researchers and virtual organizations. All of this, combined with the virtualization 

occurring at the technical level, will stress the ability to manage from an allocation and 

operational perspective petascale computing, resources, and networks, which need to be 

managed as an integrated system. 
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APPENDIX AIII.  DOE Facilities  
 

This appendix provides a brief overview of current and planned DOE/SC computing 

facilities. The purpose of the appendix is to highlight the breadth and depth of 

computational and experimental capabilities located at DOE/SC laboratories and the 

value of using the full continuum of these capabilities with the leadership-class capability 

computers and leading-edge capability experiments into a DOE/SC petascale 

metafacility. The broad spectrum of facilities supported by DOE/SC, coupled with the 

imminent data tsunami, further underscores the need to support a petascale facility and 

metafacility management program with a strong focus on security, data, resource, 

workflow, and operational management 

 

AIII.1  SciDAC  

 
Although SciDAC is not a facility per se, SciDAC has engendered the creation and use of 

many virtual facilities because it integrates facilities, science, and researchers. As a result 

it has become an important cornerstone for DOE/SC science. SciDAC is mainly a 

collaborative multidisciplinary approach to very challenging science problems. As Dr. 

Michael Strayer notes on page 62 in the SciDAC Report, “One of the key successes of 

the SciDAC program has been its ability to integrate diverse interdisciplinary groups that 

are focused on scientific discovery. The individual investigator approach has evolved into 

a tripartite partnership between discipline scientists, applied mathematicians, and 

computer scientists.” Many DOE/SC scientists note that the way they now pursue their 

scientific research has forever been changed in a positive fashion because of the team-

based collaborative approach enabled and supported by the SciDAC program. This new 

modus operandi, which builds teams of scientists and uses distributed facilities and 

resources, will be the norm for future scientific research and subsequently be dependent 

on the combined and integrated use of petascale facilities. 

 

AIII.2  NITRD and HEP Roadmap  

 

The federal plan for HEP advanced the concept of leadership high-end computing 

systems, also known as “capability” systems. DOE/SC is currently deploying and 

upgrading leadership systems at both Argonne and ORNL, as well as aggressively 

upgrading the near-capability capacity production system at NERSC. In addition to how 

SciDAC has changed the way DOE/SC researchers pursue science, it is as equally 

important to note the role that the full continuum of computation, network, and storage 

facilities plays at the various laboratories and universities as part of the overall petascale 

metafacility to support DOE/SC science 

 

The NITRD FY2007 Report (page 2) states that as part of the FY2007 goal and focus of 

the joint agency program on petascale leadership-class capability computing, ORNL will 

upgrade its leadership-class facility  to over 250 TF, Argonne will acquire a 100TF IBM 

Blue Gene/P system, and NERSC will acquire the 100-150 TF NERSC-5 as its next 
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generation of advanced capacity systems. The 2005 NITRD report (page 11) sets a long-

term goal for HEC capability systems in the range of 10 to100 sustained petflops. The 

systems are to be  adaptable and self-tuning. 

 

As part of the supporting infrastructure for leadership capability and capacity systems, 

DOE/SC has defined its networking goals in the NITRD 2005 report (page 48) to include 

the ability to transfer 3 petabytes per year by 2009-2010, move 1 petabyte in 24 hours 

using secure file movement over a 160 to 200 Gbps best effort service, support the cell 

biology community with shared immersive environments that include multicast and 

latency QoS guarantees using 2.4 Gbps links with strong QoS guarantees, and support 

real-time exploration of remote datasets using secure remote connectivity over 1 to 10 

Gbps links to the desktop with modest QoS services.  

 

AIII.3  Current and Planned Leadership-class Capability, Capacity, and Cluster 

Systems  

 

Dedicated and specific mission-focused systems are supported at Argonne’s Jazz 

machine, the SLAC and FERMI HEP systems, and the QCD resources at Jeffereson Lab, 

PNNL, and BNL. BNL also supports RHIC. General facilities and systems that support 

multiple programs and projects are at Argonne, NERSC, and ORNL. Below is a brief 

summary of the computational facilities at various DOE/SC labs. We note that the 

Argonne and ORNL systems are leadership-class capability facilities and subsequently 

will be expected to serve a small and selective number of petascale science problems or 

projects; however, a large amount of processing and analysis capabilities is required for 

other research, as well as a component of petascale metafacilities.       

 

AIII.3. 1 Capability Facilities 

 

Oak Ridge National Laboratory currently has the following resources:  

 

• Cray X1E Vector system with 1,024 processors, 18.5 TF peak, 2 TB shared 

memory, and 45 TB of disk storage;  

• Leadership-class Cray XT3 Opteron-based 25 TF peak, 5,294 processors with 2 

GB per processor (10.5 TB total memory) and 120 TB disk storage;  

• General storage consisting of 4 HPSS STK silos (STK 9840 and 9940 tape drives) 

with approximately 4 PB of tape and 10 TB disk cache as part of HPSS that front 

ends the silos;  

• Opteron-based visualization cluster with 64 dual-processor nodes with quadrics 

interconnect and NVideo graphics cards 

 

In the near term (mid-2006) ORNL plans to have a Cray XT3 Opteron system evolving to 

dual core processors upgrading to 50 TF and 21 TB RAM, and by November 2006 to 

expand the system to 100+ TF with 46 TB RAM and 900 TB disk. By December 2007 

the system will be upgraded to 250+ TF with 92 TB RAM. December 2008 will bring a 1 

PF machine to ORNL. Visualization services will be accomplished on the original 56 

cabinets.  
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Argonne National Laboratory currently has the following:   

 

• Leadership-class IBM BG/L with 1,024 processors, 5.7 TF peak, .5 TB RAM, and 

14 TB parallel file system as an evaluation system  

• Jazz, a 350-node, 1.6 TF, 1.05 TB RAM system used by Argonne scientists and 

engineers 

• Pentium-3 Cluster (“Chiba City”) with 256 nodes and 512 Pentium 3 500 MHz 

processors for a total of 256 GF 

 

The primary visualization resource is an NSF-supported visualization cluster of 96 

nodes/192 XEON processors at 2.4 GHz with 384 GB RAM. 

 

Argonne plans to have a leadership-class 100 TF IBM BG/P by late 2007. 

 

AIII.3.2 Capacity Facilities 

 

DOE/SC has a few “just less than capability” capacity facilities that are important 

components of the petascale computing portfolio. 

 

NERSC 

NERSC current has a 9TF SP3, a 3TF NCS-A Infiniband cluster, and a 7 TF NCS-B 

capacity system. The NERSC-5 is planned for operation in 2009 and will initially have 

35 TF (grow to 100-150 TF) with 5,000 processors, 1000 to 2000 nodes, 25 TB of 

memory, 350 TB of disks [32]. NERSC will keep its current NERSC-3 IBM SP with 

6000 processors, 7.8 TB memory, and 48 TB disks. NERSC specific networking 

capabilities are currently projected to be 40 Gb by 2008 and 100 Gb by 2010. Current 

NERSC visualization services include a SGI ONYX 3400 with 12 processors, 24 GB 

memory, and 5 TB of disk storage. NERSC plans to upgrade in 2009 to a visualization 

processing server with 100+ processors, 2 TB of memory, and 50 TB of disk storage. 

 

SLAC 

SLAC supports mission-dedicated systems to focus on data-intensive batch processing. 

SLAC’s cluster has 1700 nodes, 4 GigaSpecInt2000s (approximately 9.73 TF), 1 GB 

RAM per core, and a 275-node file server with 670 TB capacity, and a HPSS mass 

storage (Storage Tech Tape system) with the capacity for 6 PB (2.5 PB stored now). 

SLAC also supports MPI clusters with 256 processors, usually arranged in 4-64 node 

clusters with 0.25 TF per 64-node cluster. Miscellaneous disk storage is about 200 TB. 

Visualization services are supported through an SGI Altix with 72 processors and a 

combined total of 0.43 TF and 192 GB RAM. SLAC also supports the PetaCache RAM 

disk project prototype with 64 nodes and 1 TB RAM. 

 

PNNL 

The Molecular Science Computing Facility (MSCF) within the Environmental Molecular 

Science Laboratory (EMSL) at PNNL has an HP cluster of 1960 Itanium 2 processors 



 64 

with 6.8 TB of memory a peak performance of 11.8 TF and 45 TB of local scratch disk 

space. 

 

BNL, Fermilab, and Thomas Jefferson Lab (JLab)  

 

The BNL, Fermilab, and JLab facilities are focused on the support of QCD computational 

science.  

 

BNL has a 9.6 TF system physically divided into four machines of 3.2, 3.2, and 1.6,1.6 

TF. This is a custom machine, similar to the Blue Gene/L but with single core 

12000custom processors based on PowerPC, 400 MHz. Both BNL and Fermilab are 

primary participants in the HEP LHC program.  

 

Fermilab has a 4 TF system with approximately 1000 dual core 2 GHz Opteron 

processors each with 1/2 GB/core. By the fall of 2006 Fermilab will also have a 3 TF 

Xeon system with 512 nodes with 1 GB per node. By March 2007 JLab will have a 5 TF 

dual core (Opteron/Xeon to be determined). Fermilab currently has more than 3,000 dual-

processor computers in its data-processing farms and analysis clusters, more than 4 PB of 

scientific data in its storage systems, and more than 100 TB of disk storage. Fermilab will 

add more than 500 additional nodes over in 2007 to support LHC and QCD requirements. 

To support the data distribution needs of the supported research communities, Fermilab 

currently has two 10Gbs WAN connections in production use and will have eight in use 

by the end of 2006. Many of the existing Fermilab experiment facilities are now 

interfaced to FermiGrid, which provides an organization wide Campus Grid 

infrastructure supporting the sharing of resources, policy-driven scheduling of compute 

jobs and processors, and common monitoring and management services. 

 

JLab currently has a 3.3 TF Pentium-D, 280 processor, 3 GHz, 1/2 GB per core system, 

2.1 TF Xeon, 384 processor with 3.0 GHz nodes and 1/2 GB per node, and a 1.3 TF Xeon 

system with 256 processors at 2.66 GHz with 1/4 GB per node. Overall storage currently 

associated with these systems is approximately 80GB. 

 

AIII.4  Storage and Data Management 

 

This section highlights a few petascale storage facilities not addressed in the prior 

section. In 2003 NERSC turned a corner when it started to receive more data than it 

exported. Figure III.4.1 shows the trends of NERSC’s petabyte storage facilities and the 

projection of archival capacity being outpaced by the data stored in 2010. Table III.4.1 

shows the associated network and I/O requirements to handle the expected movement of 

the data to and from NERSC’s storage and archival systems. By 2010 NERSC expects to 

move 117 TB of their 39 PB system, an effort that will require a network that can move 

1356 Mbs, which is 10.85 Gbs, and subsequently needs a minimum of 40 Gbs of network 

capability.  
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Figure III.4.1:  Projected growth of stored data and archival capacity at NERSC  

(page 27 of the NERSC 2006-2010 report) 

 

 
Table III.4.1 :  NERSC Projected Data Growth and Bandwidth Requirements, 2005–2010 

Year Total  
Archived Data 

Data Transfers  
per Day 

Transfer Rate 

2005 1.5 PB 6 TB 60 MB/s 

2006 2.9 PB 10 TB 120 MB/s 

2007 5.0 PB 20 TB 231 MB/s 

2008 11.0 PB 33 TB 392 MB/s 

2009 21.0 PB 64 TB 749 MB/s 

2010 38.0 PB 117 TB 1356 MB/s 

  

 

These projections are very important, given that many other sites also act as storage sinks 

and database sites. Moreover, new data sites are expected that will be required to support 

LHC, SNS, ITER, climate, biology, and other petascale experiments.   

 

The architecture of the storage, database, and file systems is a crucial facet of a petascale 

storage facility. The LHC project is replicating and distributing its data to Tier 1 data 

sites (Fermilab and BNL in the United States), which in turn will distribute the data to 

Tier 2 sites, and so on. This is a distributed and replicated data management and storage 

system.  

 

The TSI researchers also addressed the storage placement and management challenge by 

replicating data at multiple sites. The TSI researchers, as noted on page 32 of the SciDAC 

Report devised ways to transmit and store terabytes of data among multiple national sites 
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to better enhance access to the data. The report notes that “the TSI team worked with 

computer scientists at the Logistical Computing and Internetworking Laboratory, UTK, 

and used their Logistical Runtime System to move data on parallel streams, across 

multiple Internet paths [33]. This tactic increased data transfer rates by 10-20 times. 

Moreover, data are now stored on a community Linux cluster at NCSU which yields 

interactive access to all team members. The team also worked with networking 

researchers at ORNL to move data from the ORNL Cray X1E to NCSU, using the bearer 

channel protocol.”  

 

The climate modeling researchers have multiple databases located at different 

international sites. LLNL currently hosts data output from 16 different international 

climate modeling groups which are archived at that single location, while grid based 

technologies are used to combine archives from three sites where the CSM model is run 

into a single distributed database. Current plans are to create a multi-site, multi model 

international model output database over the next few years.   

 

Another integral and important component of storage facilities is the file system or 

database architecture. HPSS, PVFS, and other systems are widely used today. Will they 

be able to scale to effectively handle the amount of data generated by the petascale 

facilities? NERSC has in production the NERSC Global Filesystem (NGF), a high-

performance parallel global file system that is accessible from all of the multivendor 

computing systems in use by NERSC. NERSC is also using IBM’s GPFS as the basis for 

its NGF and plans to integrate it with HPSS in 2007. Argonne and many other sites are 

using the Parallel Virtual System (PVFS). Lustre, an object-based file system, was used 

by the HEP community but has largely been replaced by the object-based ROOT system. 

However, Lustre is being successfully used at PNNL and LLNL. Both have expressed 

interest in seeing Lustre evolve to handle the challenges of petascale science data 

management. The LLNL Lustre file system currently supports one petabyte of data.      

 

AIII.5  Petascale Experiments 

 

Petascale experiments are briefly listed below, not only because many of these are being 

integrated with HEC and thus are part of the capability-based virtual petascale 

metafacility, but also they attest to the large amount of data that each facility is expected 

to generate and that will need to be moved, stored, and analyzed. The figures quoted 

below are a combination of information derived from discussions with scientists, as well 

as information from the Science-Driven Network Requirements for ESnet report by Eli 

Dart of ESnet [34] and the Data Management Report. 

 

Astronomy, Astrophysics, and Cosmology 

The Large Synoptic Survey Telescope (LSST) obtains exposures of the entire night sky 

every 2–3 days to search for transient objects such as supernovae. It is expected to 

generate 20 TB of data per night. If one assumes at least 100 such nights, this results in 2 

PB a year.   
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High Energy Physics  

The Large Hadron Collider is a one-of-a-kind facility focused on research of the basic 

objects of the universe. It will generate a raw data rate of a petabyte per second, much of 

which is to be reduced on the fly; however, it is still expected to distribute tens of 

petabytes of data per experiment approximately four times a year, for a yearly total of 

about 40 PB. As noted earlier, the data will be replicated at Tier 1 sites, which then 

provide access to Tier 2 sites, and so forth. LHC expects to be moving and storing 

thousands of petabytes within five years. Both BNL and FNAL are expecting to have 30-

40 Gbs network capability by then to help support this data movement. The LHC is 

complemented by matter-antimatter factories at SLAC and KEK and the world’s highest-

energy collider at Fermilab. Fermilab is developing a distributed LHC control room 

capability to support in situ experimental control and steering from a few controlled 

international sites.  

 

Fusion  

Magnetic fusion experiments operate in a pulsed mode producing plasmas of up to 10 

seconds in duration and acquiring around 2–3 GB per pulse every 10 to 20 minutes. 

Decisions to change the next pulse are informed by data analysis conducted within the 

roughly 20 minutes between pulses. This mode of operation requires rapid data analysis 

that can be assimilated in near-real-time by a geographically dispersed research team. 

Assuming that all the data needs to be moved to remote analysis centers, this translates 

into an approximate 16–24 Gbs network capacity. In the 5+ year timeframe, there will be 

hundreds of terabytes of simulation data in addition to the data generated by the 

International Thermonuclear Experimental Reactor, a burning plasma experiment that is 

expected to produce data on the order of petabytes per year. 

  

Macromolecular Crystallography   

Macromolecular crystallography will generate tens of GB per experiment, with an 

expectation of approximately 10 experiments per day, for a total of 1 TB per day, or 

about 300–360 TB per year. BNL estimates it will need to transfer a 1 TB file per day. 

 

Spallation Neutron Source       

The SNS at full capacity expects to have 24 instruments operational and will support 12 

experiments per day, about 200 days per year, and will generate an average of 160 GB of 

data per day for a total of 32,000 GB per year, or 32 TB per year. Real-time data mapping 

will require 2Gbs as part of a distributed computer and experiment network 

 

Nuclear Physics   

The Relativistic Heavy Ion Collider (RHIC) experiment currently generates 365 TB per 

year of STAR data and 400 TB per year of PHENIX data for a total of 765 TB per year. 

RHIC researchers predict their networking requirements to be on the order of 12 Gbs to 

support the movement of data. By 2011–2012, the STAR experiment will generate 2,610 

TB per year (2.61 PB) of data, and the PHENIX data will be on the order of 1,599 TB per 

year (1.5 PB/yr) for a total of 4,110 TB per year (4.11 PB/yr). The scale of the data 

handling issues is characterized by experiments having peak data generation rates of tens 

of megabytes per second, the major programs generating on the order of 1 PB per year, 
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with data analysis environments supporting tens to hundreds of scientists simultaneously 

accessing refined datasets of tens of terabytes. 

 

Climatology 

The Data Management Report (page 10) notes that “the datasets generated by both 

measurements and model simulations for analysis by climate researchers range in size 

from a few megabytes to tens of terabytes. Examples include raw measurements from 

satellite instruments, data from in situ observation networks such as the DOE 

Atmospheric Radiation Measurement (ARM) program sites, and the output of three-

dimensional global coupled climate models such as the Community Climate System 

Model (CCSM).” Currently a single climate model of a 100-year integration generates 

approximately 7.5 TB of data. The Earth System Grid integrates supercomputers with 

large-scale data and analysis servers located at numerous national labs and research 

centers to create a powerful environment for next-generation climate research and for the 

dissemination of model data and scientific analysis. Climate modeling will generate 400 

TB of data (0.4 PB) by 2007. The data repositories at NCAR have 180 TB, at NERSC 76 

TB, and at ORNL 75 TB. By 2011 there will be at least a petabyte of data per year at 

NCAR alone and after that 5–10 PB.  

 

Chemistry  

Chemistry simulations and computations currently generate about 3 TB of raw data, with 

a near-term expectation of datasets of 1 to 30 TB being generated twice a year. These 

simulations, which layers data, models, and both simulation and analysis tools, will 

require a petaflop-scale machine over a one- to two-month period. In 2011, 3D 

simulations will generate datasets in the 100 TB to 1 PB range twice a year. After 2011, 

multidisciplinary simulations will be generating hundreds of terabytes to petabyte 

datasets as well.   

 

Biology 

PNNL will be using remote steering of its new confocal microscopes. There will be two 

sensors per microscope, with an expected 10 microscopes operational by 2010. Each 

sensor generates 39 MB/s. Therefore with two sensors it will generate 78 MB/s (624 

Mb/s) per microscope. With 10 microscopes there will be approximately .78 TB/s (6.24 

Tb/s) of high-resolution video generated. The PNNL proteomics mass spectrometers 

currently generate 50 TB of data. The Genomes to Life program will start sometime after 

2012: the genomics GTL program will be able to analyze hundreds of samples per day 

and therefore generate petabytes of data per year within the next decade. 
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AIII.6  Networks 

 

DOE/SC network facilities currently comprise the10 Gbs LAN best effort IP ESnet, 

which also supports 10 Gbs MANs in four metropolitan areas, and the multi-10 Gbs wave 

UltraSciencenet network, which is experimenting with lambda switching. 

UltraSciencenet uses multiple 10 Gbs lambdas from ORNL to Chicago, Seattle, and other 

peering sites. Plans are under way for an addition to the ESnet network, namely, the 

Science Data Network (SDN), which is expected to become operational by 2007. The 

SDN will be a layer 2 VPN service layered over 10 Gbs waves acquired from other R&E 

sources. The initial implementation of this network will be dedicated to support the 

movement of HEP large datasets required by the LHC project. The main reason for the 

second network is to provide a predictable, scalable cost, and performance-based network 

environment for the “big science” community for large file and dataset transfers. The 

SDN network will provide for multiple10 Gbs waves to support Fermilab’s and BNL’s 

role as Tier 1 LHC data centers and to support large data transfers between them and both 

the LHC and Tier 2 sites. As other experimental and computational petascale facilities 

(e.g., SNS) start generating the large amounts of data they are projecting, it will be 

necessary to provide for a robust hybrid network and architecture that can concurrently 

support best effort IP and VPN services at layer 3, layer 2 VPN services, and multiples of 

waves or lambdas with the future ability to switch and allocate the latter based on policy 

and priority. Initial R&D on this front is being performed on GMPLS, UltrascienceNet 

wave allocation, and OSCARS dynamically provisioned virtual circuits, to address some 

of these network management and control issues,;the latter is projected to use GMPLS in 

the future. However, much more R&D and financial support needs to be invested to 

develop a viable multimode petascale network to effectively support these expanded 

requirements. 

 

AIII.7  Infrastructure 

 

DOE facilities are currently used either strictly for production or for experimentation and 

research. This strategy has been the norm for the past 10–15 years and in some sense has 

hindered the R&D of new network and network-based distributed systems research 

necessary to support next-generation petascale metafacilities. DOE scientists require 

production-quality infrastructure in order to perform their research. However, if we 

expect to have new petascale applications and evolve current terascale science to 

petascale science, DOE/SC will need to develop and integrate new technologies into the 

distributed petascale programming environment. In order to do this, applications, 

researchers, and systems (OS, storage, network) will need to develop and experiment 

with new technologies. The mere integration of multiple production technologies into a 

complex system often turns the metafacility into an experimental infrastructure at the 

system level until the kinks are worked out of the system. A morphable infrastructure that 

extends beyond the network backbone into the end systems will be necessary for enabling 

the next generation of SciDAC teams (domain scientists as well as storage, OS, network, 

file and programming environment researchers) to push into the petascale level of 

science, and beyond.



 70 

AIII.8  Grids  

Grids are virtual facilities that support distributed research. One example of a Grid being 

used by the DOE/OSC community is the Open Science Grid [35]. The OSG Consortium 

has grown out of a collaboration between a SciDAC-1 project working with peer NSF-

supported projects such as iVDGL and GriPHyN and is specifically aimed at working 

with the stakeholder application and computer science communities. The OSG is a 

distributed facility with sites spanning the United States. It operates as a loosely coupled 

yet coherent virtual facility. The individual facilities, including the DOE HEP 

laboratories and DOE- and NSF-sponsored university sites, maintain autonomy over the 

use of their local resources while providing remote access to shared storage and 

processing for all the communities participating in the OSG Consortium. Europe’s 

DataGrid and the U.S. TeraGrid are additional examples of the use of Grids to support 

distributed scientific research. 
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APPENDIX IV.  Trends in Technology  
 

This appendix highlights some of the top technology trends that are directly relevant to 

the development and support of infrastructures to support petascale science. It is not 

meant to be an exclusive or inclusive list; rather, the trends are noted in order to further 

highlight the increasing challenges associated with managing petascale facilities and 

metafacilities. This appendix borrows generously from the NERSC and Data 

Management reports with respect to processor and storage hardware growth trends. The 

NITRD reports were used to document the interagency projections associated with HEC. 

 

AIV.1  Technology Churn  

 

The turnover rate for new technologies is moving at a rapid pace with many sites 

planning on a three-year turnover rate for capacity and desktop computing environments. 

Networking technology churn tends toward a three- to five-year turnover rate. Even 

leadership-class computers are overtaken by new architectures and technologies at a fast 

rate. Rarely do the top supercomputers remain at the top of the 500 list for more than one 

or two years. The technology churn rate is a very important variable because it means that 

there will always be a continuum of older to newer computational, storage, and 

networking facilities and technologies represented in the DOE/SC petascale computing 

continuum. Even more important is the fact that this creates a big challenge with respect 

to the ongoing need for developing the appropriate monitoring, debugging, engineering, 

analysis, and management tools within a timeframe that will support these technologies, 

especially for HEC and leadership-class capability systems.    

 

Another challenge faces providers and supporters of HEC infrastructure and facilities. 

Many large vendors of computing and networking equipment are very conservative with 

respect to how quickly they will develop, adopt, ship, and support the newest 

technologies. They often leave that work to smaller, innovative, and more nimble startup 

companies and then acquire those companies or technologies after the technology has 

been proven and there is a very visible large market share associated with that 

technology. This situation often means that new leadership technologies and architectures 

are not developed by larger vendors. Convergence in the markets via acquisitions and 

mergers also affects the availability of choice with respect to new and advanced 

computing and networking technologies. Venture capitalists have also become 

conservative, and as a result there are fewer new innovative startups. The decision to use 

conservative, older, and open standards-based technologies is a safe choice; but such 

technologies often cannot compete with the startup or proprietary technologies in 

satisfying the cutting-edge requirements of the leading-edge sciences.  

 

The advantage of the cutting-edge approach is obvious: When operational, it usually 

brings remarkably increased capabilities to bear in support of the science. IBM’s Blue 

Gene and the CRAY XT3 both use proprietary interconnects for performance reasons, 

and the widely deployed Myrinet started as a proprietary cluster interconnect technology. 
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Smaller startup network vendors such as CASPIAN, Calient, Cienna, Force10, Infinera, 

and Juniper have brought innovations to market quicker than have larger competitors and 

were subsequently aligned with the leading-edge requirements of the science community.  

 

The disadvantages of this approach include a lack of a broader community expertise 

normally achieved with open standards-based technologies, as well as the potential risk 

of having a “niche” startup company, or the “startup” department or product line of a 

large company, fail or fall behind in the ability to supply or support its equipment. 

Another issue is the ability of a niche, startup, or smaller vendor to remain profitable and 

solvent because of proprietary protocols, a small installed base, or the challenge of 

developing the next generation of technology while kick-starting and supporting its first 

product lines. The latter point is exemplified by Myricom’s recent decision to build 10 

GE networking equipment to remain competitive in an evolving marketplace and IBM’s 

use of Infiniband to connect Power Series machines. The decision ultimately comes down 

to a risk versus potential benefit tradeoff analysis; but grand challenge science normally 

requires grand challenge-capable technologies, which are more often delivered by niche 

startup companies or niche departments in larger companies. 

  

The reason that these technical business trends are noted is that it is important to realize 

both the pros and cons when choosing cutting-edge technologies. If the requirements of 

the science mandate the use of cutting-edge or niche technologies and facilities, then 

DOE/SC/ASCR needs to anticipate and provide for the additional support infrastructure 

and personnel necessary to appropriately manage such a facility. The grand challenge of 

the future will be the management of these technologies and the systems in which they 

are deployed. 

 

AIV.2  Computing and Moore’s Law  

 

The expectation is that Moore’s law with respect to computing will continue for the next 

decade; however, this will be accomplished mainly through the use of parallelism—

multicore compute nodes, multiple and multifunction ASICs and FPGAs, parallel striping 

of I/O, storage, and networks, and the use of parallelism in the middleware such as 

GridFTP. The NERSC Report (page 16) notes:  

 

We expect these performance trends to continue in the next decade with two 

major differences. First, as opportunities for additional instruction-level 

parallelism wane, chip manufacturers will exploit smaller feature sizes by 

increasing the number of processors per chip. Indeed, some experts suggest that 

the number of processors per chip is likely to double every few years. Second, 

vendors of high performance computing systems will increasingly implement 

processor and network accelerators. These two factors will expose more 

parallelism to applications and potentially require significant code and algorithm 

changes to achieve high performance, placing an even higher burden on 

applications programmers. 
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This move to multicore processors and self-contained systems on a chip will most likely 

need to be accompanied by agile and adaptive systems and software, which will 

subsequently increase the challenge associated with managing and utilizing these systems 

for petascale science and beyond. 

 

The NERSC Report (page 16) further notes that “the peak performance of high-end 

computing platforms has increased by a factor of 1.8x annually over the past decade, with 

two trends contributing equally to this growth: (1) individual processor performance has 

grown by about 1.4x annually, due to both higher clock speeds and the increased use of 

on-chip parallelism; (2) the number of processors in high-end machines has increased by 

an average factor of 1.3x annually.” Terascale systems of today currently have 128, 256, 

1024, and 2048 processor nodes. The top-end terascale and near-term future petascale 

systems will have anywhere from 1,024 to 65,000 processors. The systems eight to ten 

years from now will have hundreds of thousands of processors. The NITRD Roadmap 

(page 11) for the long term calls for self-tuning HEC systems that can sustain 10 to 100 

PF. These systems will have hundreds of thousands of processors. There will be self-

organizing and self-reliant chips, nodes, processors, and systems. In order to be able to 

benchmark, tune, monitor, and manage these systems, we need to better understand the 

system and the many interconnected dynamics and components that affect the system, 

namely, memory, processors, I/O for storage, interconnection area network, and even 

external network and storage data I/O for file and data movement.    

 

There is a growing gap between processor performance and memory system 

performance. Increase of memory bandwidth of commodity microprocessor memory 

systems has slowed to about 23% per year, as noted on page 17 in the NERSC 2006-2010 

Report, which itself references an NRC report on the future of supercomputing. Memory 

accelerators are one way to try to address this memory performance challenge (see page 

18 of the NERSC Report [36] for a more detailed description), but in essence rely mainly 

on prefetching the data. Work will continue in this and other areas of prefetching and 

caching of data to address both the memory and the I/O latency issues.  

 

Another significant hardware trend is the increased use of application-specific integrated 

Circuits (ASICs) and Field Programmable Gate Arrays (FPGAs) in systems to support 

specific functions and offload the general processing units. Both ASICs and FPGAs are 

useful for applications and systems with special requirements (i.e., instructions or 

function). IBM’s Blue Gene uses the same ASIC for both computation and I/O. The 

function is determined by configuration control at boot time. We can expect to see 

increased use of both ASICs and FPGAs as integral parts of systems in the future, 

specifically in support of particular applications. Given the ability to select the mode of 

the ASIC at boot time, as is the case for the IBM Blue Gene, it is not a stretch to envision 

the use of dynamic ASICs that could morph between I/O and computation during the life 

of a job for enhanced matching of function to dynamic job requirements (i.e., as the code 

moves into a heavy I/O phase the ASIC changes to an I/O node). In addition, today’s 

high-end computers and I/O systems are statically configured much like the operating 

systems and architectures of the 1960s and 1970s. The use of ASICs and FPGAs may be 
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of help in evolving the current capability petascale computers, storage, and networks to a 

new dynamic age that molds itself to the applications being run. 

 

AIV.3  Storage  

 

AIV.3.1  Challenge of Data Storage 

 

Data storage will remain a major challenge for DOE scientists and facilities. The volumes 

of data continue to grow in all science domains. In 2003, the NERSC center went from 

being a data source to a data sink. It now holds approximately 30 years of archived data, 

and it expects that the data needing to be archived and stored will catch up with storage 

capacity and capabilities by 2010. LLNL’s HPSS petabyte file system is expected to soon 

become a 10-petabyte system. Data provenance not only includes the mechanics of 

storing the data but also needs to ensure both the integrity and safety of the data while 

stored and in transit. For example, NERSC uses a three-phase data management plan to 

address the issue of data integrity and safety. Data safety is implemented on many levels. 

As the NERSC report notes, “The first level of storage hierarchy is a high performance 

HPSS cache RAID5 and RAID3 disk. Data is written to tape immediately after it arrives 

on HPSS cache disk. Our tape environment is fully automated, and storage tape silos are 

strong, resistant to damage, and equipped with fire suppression. The storage system meta 

data is backed up offsite for disaster recovery every three months.” Each of these levels 

of storage will be sorely challenged to handle the onslaught of data that will be generated 

by the petascale capacity and capability facilities. Many feel that holographic storage is 

still very far off in the future, with little evidence of any recent documented advances: in 

other words, holographic storage remains a holograph itself.   

 

AIV.3.2  Tape Storage 

 

Tapes and tape drive systems continue to remain viable for archival and longer-term 

storage purposes. Many scientists expect tapes to still be in use 10+ years from now. The 

density and speeds of tape drives continue to increase. Although tapes are not very good 

for efficient access to small random access objects and are very costly for high-speed 

capabilities, they will be an important part of the storage solution for some time to come, 

given the sheer capacity challenge facing science. As the Data Management Report (page 

68) notes, “Tape storage becomes expensive, however, if the data must be accessed at 

high speed or, even worse, at high speed with an unpredictable access pattern. Buying 

100 Mbytes/s streaming throughput from an array of tape drives costs 40 to 100 times as 

much as from a disk array. Today’s robotic tape systems support efficient random access 

to objects of 10 gigabytes or larger but are expensive and inefficient solutions for smaller 

objects.” 

 

The NERSC Report (page 29) notes that it is using tape striping with HPSS. Current tape 

technology streams data at 30 MB/s, and by striping across three tape drives one can 

achieve a 90 MB/s transfer rate to better handle large file transfers. For example, a 372 

GB file would take 3 to 4 hours using only one tape drive but about an hour with three 

tape drives. Tape technology also continues to evolve and increase in speed. NERSC will 
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upgrade its current tape drives to ones that can stream data at 120 MB/s. Hence, tape 

technology will remain a viable and integral component of DOE/SC’s storage and 

archival portfolio; but, as noted in the Data Management Report, tapes are no longer 

viable for random access for small files.    

 

AIV.3.3  Disk Storage  

 

The Data Management Report (page 65) notes that magnetic disk transfer rates are not 

keeping pace with computational capacity. This mismatch is also the case with respect to 

the increases in rotation rates of the disks for both accesses and seeks. This in essence 

means that in order to provide for the demanding data and I/O requirements of terascale 

and petascale applications and leadership-class computers, there will be even more use of 

parallel I/O, virtualization techniques such as the prefetching and caching of data, and 

innovative architectures and technologies. The NERSC Report (page 29) notes that 

“using a four-way disk stripe configuration and multiple network interfaces, the network 

speed for data was increased from 80 MB/s to 200 MB/s. With the upgrade to 10 GigE, 

each individual stripe of data will be capable of full disk bandwidth, raising transfer 

capability to 800 MB/s.” This is but one example of the move toward parallelism to 

address the growing I/O requirements of terascale and soon petascale applications and 

data requirements. The Parallel Virtual File System also uses parallel I/O to address the 

mismatch between the computing and storage systems. Many sites are forced to add 

additional disks and controllers to their disk farms, not primarily to add storage capacity, 

but to provide better parallel I/O access to keep pace with the output of the computations. 

 

These approaches are necessary, but they increase the complexity factor of the system, 

making it harder not only to benchmark I/O and storage systems but also to monitor, 

debug, and manage these systems. Another challenge is that as the increasing disk 

capacities make it harder to get truly random access to data for smaller objects. The Data 

Management Report (page 69) notes with respect to high-capacity disks, “If used to store 

thousands of 10-megabyte objects, today’s disks may still be considered to support 

random access to these objects.” However, it goes on to note, “Many scientific 

applications require the retrieval of much smaller objects, often at or below the kilobyte 

level, resulting in retrieval rates than can be dominated by disk access time.” Although 

these trends may seem to argue for more R&D on architectures and solutions that 

incorporate prefetching and caching of data, the Data Management Report notes that 

“caching on a modest scale cannot be expected to eliminate the problem. High-

transaction-rate commercial database systems address this issue with a memory cache 

equal to the size of the database. The future challenge will be to exploit large-market 

technologies to create in-memory scientific databases that are cost-effective”. The 

DOE/SC/ASCR-supported RAM disk project at SLAC is one approach that may be 

effective [37]. It requires data-cache memories of 10–100% of the data size, depending 

on the scientific field. In order to better understand and address these challenges, 

enhanced and better instrumentation, monitoring, benchmarking, and analysis capabilities 

of I/O systems, interconnect technologies, caching, disks, and networks are required. 
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AIV.3.4  Parallel I/O, File Systems, and Data Formats 

 

With the explosive growth in the number of processors and parallelism, more attention 

will need to be exerted in the development of parallel I/O and parallel files systems as an 

integral component of a capability HEC system. The Data Management Report (page 68) 

notes, “ Near-future applications require access speeds in excess of 10 Gbytes/s. Current 

‘hero’ file I/O benchmarks are in the 1 to 10 Gbytes/s range using as many as hundreds of 

disks in parallel. Translating these benchmark results into comparable end-to-end I/O 

performance has been difficult and will become more difficult as more disks and compute 

processes are added to the system.” The challenges will grow larger with respect to 

benchmarking, monitoring, and managing these systems as the number of processors, 

ASICs, and FPGAs used in systems increases.  

 

MPI is one model of parallel I/O where a system approach to the management of the I/O 

benefits the researcher. Other popular parallel I/O libraries are netCDF, Parallel netCDF, 

Panda, and HDF5. HDF5 and netCDF are two higher-level I/O libraries that provide the 

ability to abstract away the details of file layout as well as standard portable file formats 

and metadata descriptions of contents. UIUC/NCSA developed the parallel I/O Panda 

library. Panda provides for wrappers around HDF so that the user does not have to know 

about physical I/O. In addition, data-parallel model languages and programming 

environments such as Fortran 90, High Performance Fortran, Global Arrays, and Global 

Addresses support various types of parallel I/O.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 
 

 

Figure AIV.3.4.1: MPI parallel file system  

 

As noted in the Data Management Report (page 68), the MPI model works in terms of a 

cloud of parallel compute processes accessing a cloud of file servers (see Fig. AIV.3.4.1). 
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In order to provide a convenient model for access and high throughput to storage, a 

collection of I/O components is used, which consists of three distinct layers: high-level 

I/O libraries (e.g., PnetCDF and HDF5), I/O middleware (e.g., MPI-IO), and parallel file 

systems (e.g., PVFS2, GPFS, Lustre). For future applications to use this I/O model, the 

performance of these components must be improved, particularly in the area of 

throughput and scalability. One way of improving the stack as a whole is to tune how 

components communicate with one another. For example, implementing a richer 

language for describing I/O accesses to the parallel file system and using this language in 

MPI-IO can provide significant performance gains.” 

 

In addition to the physical challenges associated with storage and I/O hardware systems, 

as well as the various parallel I/O libraries, there exists the issue of the data formats. 

There seems to be no shortage of data formats being used by the science community (e.g., 

HDF, HDF5, netCDF, gif, jpeg, XML, and the GGF data format description language). 

HDF5, the successor to HDF, supports multithreading and files over 2 GB; netCDF is a 

machine-independent self-describing data exchange standard.       

 

AIV.3.5  Summary 

 

Some believe that the development of optical interconnects will help address some of 

afore mentioned I/O challenges; but optical interconnects by themselves provide no 

panacea for addressing this I/O to storage challenge, specifically because of the media 

challenges (i.e., tapes, disks) associated with keeping pace with the data tsunami. These 

challenges to scaling will need to be addressed through parallelism and innovative 

architectures for the short and medium term. However, experimentation with new 

technologies, techniques, and architectures should also be pursued now, in order to try to 

address the longer-term challenge of effective data provenance. One potential example is 

the combination of optical interconnects with first-level storage RAM disks as part of the 

system interconnect; combined with morphable I/O and compute nodes, it might help 

address some of these parallel I/O issues. R&D is also being supported in using fiber as a 

storage media (i.e., CANARIE’s optical disk [38]) as well as work done at the University 

of Tennessee using the network for transient data storage and management. SLAC is also 

working on a DOE/SC/ASCR-funded project to use RAM as disks. Moreover, Google 

and Akamai have focused on content management and delivery for a variety of Web-

based commercial and public delivery systems. Similar attention needs to be placed on 

the long-term management and placement of scientific data in a distributed metafacility. 

There may be lessons learned for the R&D community from the Google, AKAMI, and 

Amazon models. 

 

AIV. 4  Interconnect Area Networks  

 

The NRC report (page 17) notes that “the cost and power of providing bandwidth 

between chips, boards, and cabinets is decreasing more slowly than the cost and power of 

providing logic on chips, making the cost of systems bandwidth dominated by the cost of 

global bandwidth.” The NERSC report (page 19) adds that the gap between processor 

speed and network latency is growing more quickly than the gap between processor 
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speed and memory latency. These trends indicate that the interconnect is losing the race 

relative to the increases in speed of processors and memory, and will most likely become 

a bottleneck in petascale computing. Latency, speed, and jitter remain a major concern 

with any interconnect technology and architecture. The management goals of 

performance, predictability, and usability remain very relevant.    

 

The NERSC report (page 19) makes the following comments:  

 

The problems of bisection bandwidth scaling, especially as the number of 

processors scale, has led to an increasing interest in interconnect topologies with 

less than full bisection bandwidth, such as torus and related mesh topologies. For 

relatively small systems, such interconnects perform well, especially because 

point-to-point bandwidth is over provisioned, resulting in reasonable bisection 

bandwidth. It has not yet been demonstrated that these topologies can be effective 

on NERSC’s diverse workload at large system sizes (thousands of nodes). 

Various forms of network accelerators are being considered by researchers and 

HPC vendors to address the network performance gap. Support for direct access 

to remote memory has been available in custom supercomputing networks for 

many years, but at a high cost. The introduction of standard interconnects such as 

Infiniband has marked a trend in networking—these networks have a broader 

market than high performance computing, and still support direct access to remote 

memory. There is still a latency advantage to more highly customized networks 

that connect through a memory interface, rather than an I/O bus, but the 

performance difference is smaller. 

 

With respect to the cluster interconnect options, Myrinet, which was a proprietary 

standard, was the original technology of choice for HEC systems. There has been a recent 

surge by Infiniband in this niche market. These two protocols were specifically designed 

for HEC clusters and have predominated over Fast and Gigabit Ethernet, which were 

designed for more general inter nodal communications, because of the latter’s superior 

latency and bandwidth; but with the coming of age of 10 GigE and TCP offload engines 

(TOE), which moves the processing of TCP off board much as Infiniband and Myrinet 

perform off board processing of their network protocols, the 10 GigE and TOE 

architecture might become just as acceptable as the others for high-end computer 

systems. Figure VI.4.1 provides a stack comparison of 10GE and TOE versus Infiniband. 

Prices for 10 GigE and TOE will come down as the technology matures; and if Gigabit 

Ethernet is any indication, the mass production of 10 GigE in the next few years will 

make it very cheap compared to proprietary protocols. 

 

The majority of the IAN and CAN protocols rely on remote direct memory access and 

offloading the node processor with an intelligent NIC that handles the protocol stack 

processing without involving the node processor(s). Traditional Ethernet has been known 

for causing a lot of overhead and interrupts for the host node. Myrinet, Infiniband, and 10 

GigE/TOE all make use of RDMA and offloading, much like the CDC 6600’s peripheral 

processing units. Some vendors are seeking to converge and combine some of these 

competing technologies; and Myrinet is starting to support the standards-based 10 GigE.    
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The NCSA/UIUC MPI Pallas benchmarks show that with respect to bandwidth and 

latency [39], Infiniband is better than Myrinet, which is better than TCP over Gigabit 

Ethernet, and the 64-bit processor tests showed SHMEM to be better than Infiniband. 

These tests are now a couple of years, however, with no comparisons to10 GigE and 

TOE. It is important that the petascience infrastructure architects and users better 

understand the minimum latency and bandwidth required to support various sets of 

applications and architectures so that they can do a proper cost-benefit tradeoff 

comparison between the alternatives. Given the interplay between interconnect and 

cluster area networks with parallel I/O libraries and file systems, it is critical not only to 

understand the low-level protocols but also to better understand what the potential ideal 

number of I/O and file server nodes for an application coupled with the characteristics of 

the interconnect technologies. The petascale research community needs more and 

enhanced benchmarking, monitoring, and analysis for all interconnect technologies, 

networks and I/O. Given the lack of much empirical data for today’s terascale systems, it 

will be even more important to know how MPI, GA, Infiniband, 10 GigE and TOE, 

Myrinet, and other technologies perform as we move from terascale to petascale systems 

with hundreds of thousands of processors and hundreds of I/O nodes [40]. The 

establishment of one or more multisite benchmarking and performance institutes would 

help address this challenge. 

 

 

 
Figure AIV.4.1:  Comparison of 10 GigE/TOE and Infiniband architectures 

(courtesy of Sandia National Laboratories) 

 

AIV.5  Networks—Enterprise or ISP 

 

One of the challenges faced by the DOE/SC science programs is that the networks 

supporting the sciences is often considered an enterprise network from the perspective of 

management and acquisition, but in reality these networks are more like ISPs and in fact 
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use ISP equipment in their networks. As a result, science networks often require ISP-

class high-performance routers and switches with enterprise–focused “high touch” 

feature support such as QoS. Yet many vendors consider this a niche market and often do 

not provide such features for high-end ISP equipment, or these features are added very 

late in the life cycle of the router/switch. This has been and will continue to be a 

challenge with supporting the international science community. The requirements of 

commercial content providers such as Comcast, Google, and Amazon mirror some of 

those of the science community; and in those areas where they do intersect, they may 

have some effect on the availability of certain technologies. 

 

AIV.5.1  Dark Fiber and Waves 

 

Many of the bandwidth advances in telecommunications over the past five years were 

accomplished with the adoption of DWDM and more specifically with the adoption of 

dark fiber by the R&E community. CANET, NLR [41], SURFNET, FLR, 

UltraScienceNet, I-Wire, and CENIC are just a few examples of networks that have 

acquired dark fiber. With the recent spate of telecom mergers and consolidations, we can 

expect to see less dark fiber available to the community. The Telcos will provide wave 

services; but, as part of their financial recovery from the early 2000s dot.com bust, they 

will be seeking to generate more profit, and therefore it remains to be seen how 

competitively the Telcos will continue to price these wave services. Those possessing 

long-term dark fiber IRUs may have a financial advantage five plus years from now; 

however, the real cost of a network needs to also include the cost of the technology 

needed to light, terminate, and mux the fiber, as well as the technologies needed for 

moving and switching the data. Petascale facilities are dependent on multiple 10 GigE 

wave services, and the cost of services and the quality of the support of those waves thus 

is of paramount importance.  

 

AIV.5.2  IAN, CAN, SAN, LAN, MAN, and WAN 

 

Networking has evolved from the simple local area network (LAN) connected to the wide 

area network (WAN). We now have interconnect area networks (IANs) that provide for 

the interconnection of massively parallel high-end systems, cluster area networks (CANs) 

that interconnect processors in loosely or tightly coupled clusters, storage area networks 

(SANs), local area networks (LANs), and metropolitan area networks (MANs).  

 

The MANs were built to better serve intermetropolitan distribution and connectivity and 

are often an edge aggregator that connects to WANs. ESnet currently supports four MAN 

services (BAMAN, LIMAN, CHIMAN, JLAN) connected to its WAN. The SANs (e.g., 

fiber channel) arose to address specific requirements such as QoS and latency among 

local system and storage systems, which the predominant Ethernet LANs at that time 

could not do. The CANs (e.g., Myrinet and Infiniband) were developed specifically to 

address the low-latency, high-performance cluster environment. IANs were developed 

mainly as a high-speed backplane network to interconnect tightly coupled processors. 

Current IANs are mostly proprietary technology. Some of these networks (such as CAN, 

SAN, and LAN) are converging (e.g., Infiniband), and many varieties of CAN, SAN, and 
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LAN protocols are being tunneled over an IP WAN. The MAN and WAN networks are 

now mainly SONET and DWDM based.   

 

As part of moving data to or from a petafacility and as part of a petascale computation, 

experiment, visualization, or analysis, the data may traverse an IAN, SAN, CAN, LAN, 

MAN, and WAN, often each with its own protocols, protocol data units (PDUs), 

architectures, naming, and addressing. The more protocols and different technologies that 

the data has to pass through, the more likely that error, delay, and jitter will be 

introduced. In addition, a lot more energy is consumed because each time a device needs 

to perform a “high-touch” action such as framing, transformation, PDU 

(de)fragmentation, or encapsulation. Another issue associated with the data traversing the 

many different types of networks is the ability to coherently allocate, monitor, and 

manage all of the network resources. 

 

AIV.5.3  10 Gbs Building Blocks 

 

We are about to enter the time with respect to 10 Gbs technology components and 

manufacturing processes, at both the LAN and WAN level, that market analysts often call 

the “sweet spot.” This means that the availability and cost of 10 Gbs is at a point to 

encourage wide deployment for the next four to five years. This is especially true for 10 

GE. Desktops are now seeing 10 Gbs network interface cards (NICs). In 2002, the NLR 

made the commitment to the first large-scale national 10Gbs network, 10GE to be exact. 

The NLR was operational in 2005. ESnet is now at 10 Gbs, as are many other R&E 

networks. Some vendors are already providing 40 Gbs optical switches, but this is done 

by striping 10 Gbs waves with proprietary technology. Infinnera combines 10 waves onto 

a chip and drives all 10 waves with one transponder. The 40Gbs rates of some high-end 

routers are accomplished through parallel striping of multiple 10 Gbs waves backed by an 

inverse optical mux. Some vendors are already experimenting with 100 Gbs in their 

research labs, but these are short reach optics. As the speed is increased past 10 Gbs, the 

reach is reduced. In addition to increasing the bandwidth through various means, some 

vendors are also concentrating on extending the distances of 10 Gbs links to multiples of 

thousands of kilometers, which would reduce the cost of supplying and supporting a 10 

Gbs service because of the reduction of costly regeneration. R&D is also being done on 

combining Ethernet labels with G.8709 wrappers to try to develop effective and less 

costly technologies. In summary, the science community can expect to be relying on 10 

Gbs building blocks for its networks for the next five years. Higher speeds will be 

attained through striping 10 Gbs waves, that is, parallel pipes.  

 

AIV.5.4  IP and Routing 

 

The telecoms and carriers are moving toward an IP core for both data and voice. They are 

deploying multiaccess routers at the edges of their networks and use these multiaccess 

routers to combine ATM, Frame Relay, and IP services onto an IP core. There is also a 

convergence of layers 2 and 3. Layer 2 switches are often indistinguishable from layer 3 

routers with respect to their function and capabilities. MPLS is often used in conjunction 

with IP to provide for layer 3 path-based VPNs and QoS.      
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One direct result of the move toward an IP-based core is that the core IP-based routers 

need to be the very powerful and capable. The highest-end routers such as Juniper’s T 

series routers and Cisco’s CRS-1 router are themselves massively parallel, multichasis, 

multiprocessor, “capability” HEC systems dedicated to the task of moving data. These 

routers are capable of aggregates of 640 gigabits and more and are used, as is MPLS-

capable devices, at the core as well as the edge of the network. A disadvantage associated 

with these high-end routers is their cost, as well as footprint, cooling, and power 

requirements. Hence, some network architects are trying to reduce the number of high-

end backbone routers in the networks and use optical switches and cross-connects in their 

place.  

 

Another trend in core, edge, and site-based routers is the use of “blades” and network 

service processors (NSPs) in the switches and routers. These are often used by the 

vendors to support high-touch ancillary features such as QoS, security, IDS, DOS, and 

network management. Many of the blades support some flavor of Linux or Unix. An 

opportunity exists for collaboration between the science community and willing 

router/switching vendors to investigate the use of generic blades in routers and switches 

that could then be programmed to address scientific data management challenges such as 

caching and temporary storage, RAM disks, prefetching, in situ metadata engines and 

repositories, GMPLS, and other relevant functions associated with the movement and 

management of scientific data.  

 

The router versus switched lambda debate often focuses on the need for performance 

based, predictable, and usable network services. Many proponents of the optical wave 

solution and circuit-based VPNs point to the fact that IP is not predictable under heavy 

load and does not provide for QoS, mainly because of the way TCP works with IP, as 

well as the way buffer and queue management is implemented in many routers. Many 

QoS techniques are available at the IP level (e.g., diffserv), and their lack of deployment 

is often due to the lack of an appropriate inter-domain policy and resource management 

service rather than a lack of technical capability. Lambda switching faces this same 

challenge. As a counterexample of the move away from IP-based networks for 

predictable performance, Caspian Networks supports QoS and flow-controlled IP 

services. Other trends with respect to routing include the support of logical and virtual 

routers that have their own routing databases and can be managed separately.   

 

AIV.5.5  Optical Networks 

 

We noted that the bandwidth and speeds that we have today are a result of the move to an 

optical infrastructure, specifically DWDM. The debate between circuit- and packet-

switched networks has raged for decades and will most likely continue. BEIP is just what 

it says, “best effort,” albeit with MPLS one can get a version of QoS. Circuits, 

specifically DWDM waves/lambdas, are now being favored for the movement of large 

datasets and files by the science community, mainly because of the end user’s goal for 

determinism, predictability, and performance (i.e., if there is but one application on the 

lambda or circuit, it will not have to contend with other applications). A circuit-switched 
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lambda service can be coupled with one of the TCP variants that support large dataflows 

(e.g., FAST or HS-TCP), for a predictable high-performance service that allows for the 

full use of the circuit by one application.   

 

The majority of today’s lambda networks are more of a timeshared multiplexed lambda 

service whereby a prefixed and preallocated set of lambdas is shared with a set of 

networks and applications. Such sets are often shared without any accounting and 

authentication (e.g., GLIFF) and are made available to the applications on a scheduled 

time-shared basis. There is some experimentation with lambda switching and automated 

optical patch panels. GlimmerGlass and Calient fall into the latter category and 

essentially are used to switch the directions of light signals without regard to framing. 

The Optiputer project dynamically (de)allocates private optical paths to form a 

distributed virtual computer.   

 

Work is also under way on incorporating optical transponders into router blades. This 

strategy gives the router, working with the appropriate optical switches (e.g., Cienna’s 

Core director) and dynamic optical patch panel systems (e.g., Glimmerglass and Calient), 

the ability to signal the layer 1 optical infrastructure to affect lambda switching; that is, 

the optical switch is treated as merely an optical mux/demux by the router. This 

technique works for enterpriselike deployments where one administrative domain 

controls both the layer 3 routers and the layer 1optical infrastructure, since it needs to 

ensure consistency and trust between the various layer management systems. The 

management, control, and business model aspects associated with this cross-plane 

management of optical infrastructure is one reason that interdomain lambda switching 

will remain a challenge and will probably not be supported by the carriers. A new trend is 

in the use of transponders in routers, and optical switches, to convert the ITU grid 

frequencies of 1550 and 1310 nanometer signaling into DWDM lambdas and then use 

optical switches merely as optical mux/demuxes. These are often referred to as “alien 

waves.” Many vendors are experimenting with and investigating alien wave support.   

 

GMPLS is a protocol being developed to support the signaling for lambda switching. The 

management and business model challenges associated with lambda switching needs to 

be solved to make inter-domain lambda switching viable, otherwise the community may 

have to rely on layer 2 VPNs to affect the predictability, performance, and usability 

envisioned with the adoption of lambda switching. Lambda switching has the same 

interdomain business, policy, and resource management challenges that face the 

deployment of interdomain QoS-based IP services, and it is a very similar with respect to 

the challenges encountered in deploying ATM virtual circuits in the 1990s. If the waves 

are statically allocated and configured among predetermined sites, as will be the case in 

the first iteration of ESnet’s Science Data Network, which will provide multiple 10 Gbs 

waves between LHC tier 1 sites at Fermilab and BNL, then in order to grow the network 

capacity to satisfy the other petascale facilities as they start generating petabytes of data, 

DOE/SC will need to support a much denser mesh of waves and circuits between all sites. 

This could be costly and hard to manage. The other option is lambda switching or the 

development of a true layer 3 IP QoS capability. All require relevant policy and 
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management systems. The OSCARS capability is designed to address the allocation of 

VPNs.   

 

Optical technology, as noted above, is currently in the 10 to 40 Gbs range and is being 

developed and deployed by vendors. DARPA is supporting two all optical high-end 

router research projects as part of its DoD-N program. UCSB’s LASOR project is an 

example of an all-optical routing project. The prototypes should be available by 2010 and 

will be capable of 40 to100 Gbs of all optical packet switching. One of the challenges 

involved with moving into this realm is that the optics itself needs to be more self-

monitoring and correcting. Tunable lasers are being deployed now for easier set up and 

maintenance; however, as Alan Wilner notes, the optical network is a fragile 

infrastructure and will become even more so as we increase the speeds and bandwidths 

[42]. For example, wave leakage is more likely to occur at these higher speeds and can 

even become an unintentional DOS attack. Wilner argues for enhanced operating, 

administration, and maintenance systems.  

 

The CAL-IT
2
 program at UCSD is supporting research on quantum optical networks. A 

five-node terabit network could be built by 2008, but much more research needs to be 

supported in the application of information theory to achieve any serious advances in 

quantum optical networks. 

 

AIV.5.6  Transport Protocols 

 

One of the reasons researchers are abandoning BEIP for other more predictable solutions 

involves the use of TCP and the problems associated with the effect of the TCP sliding 

window mechanism on the ability to predictably make full use of the bandwidth for 

moving large datasets. The ESnet Requirements Report (page 27) notes the challenges 

with using TCP:  

 

For example, in order to fill a one-gigabit path which has a 100-millisecond 

round-trip time and a packet size (MTU) of 1,500 bytes, a TCP stream would 

have to have of the order of 8,000 packets in flight continuously—the equivalent 

of 12 megabytes. A 100 millisecond round-trip time is approximately an East-

West coast transfer. The TCP protocol is designed with the premise that the 

random loss rate in network components is insignificant compared to the loss rate 

due to congestion. Thus, the TCP sending rate is a function of the packet loss rate 

(assumed congestion) in the network. The packet sending rate drops dramatically 

as a response to a congestion event (packet loss); then the sending rate increases 

slowly until the next congestion event is encountered. The ESnet network must be 

designed to minimize end-to-end single stream TCP packet loss as well as support 

alternatives to TCP.   

 

A lot of effort is being focused on the evolution of TCP. The FAST version of TCP was 

used at SC2006 and was instrumental in wining the bandwidth speed challenge. Other 

TCP revisions include High Speed TCP (HS TCP), XCP, and the tuning of end systems 
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as part of the solution (e.g., the WEB100 project). Considerable work needs to be done 

on making TCP scale to tera- and petascale networks as well as investigating alternatives. 

 

AIV.5.7  Multimode Networks 

 

The NITRD report (page 44) notes the need for multimode networks: “However, 

controlled use networks or dual use networks will be required to assure that researchers 

doing research for network development (with a high risk of bringing down the network) 

do not interfere with applications researchers who require highly reliable networks.” The 

NLR, based on the MORPHnet concept, was designed to provide this capability. DWDM 

was the liberating variable for enabling the NLR and MORPHnet to become a reality 

since it provided cost-effective layer 1 “physical” separation. In addition to the various 

types of production services incorporated into a hybrid multimode network, the network 

also needs to include an experimental capability to encourage researchers and 

applications to experiment with and evaluate new technologies such as skinny transport 

protocols for the movement of large data files, alien waves, and lambda switching. This 

capability needs to extend past the backbone and into the local, storage and interconnect 

networks. 

 

AIV.5.8  Hybrid Networks  

 

When one weighs the pros and cons of packet switching versus circuit switching and TCP 

versus other transport protocols, it is apparent that hybrid networks, such as those 

planned for ESnet4, will be used for some time to come. DWDM wave-based services are 

valuable because they can support each one of these services on one or more lambdas 

while keeping them physically separate. Another necessary component of the hybrid 

network will be the support of an experimental network infrastructure, for example, the 

use of one or more waves to support the investigation and analysis of various transport 

protocols or lambda switching in support of high-end science.  

 

AIV.6  Security 

 

What most people refer to as security—authentication, access control, and auditing—is 

really a subset of any organization’s overall management of their resources and people. It 

is not surprising, then, that both network and system management systems have many 

intersections and overlaps with the frameworks, technologies, and approaches supported 

and used by security personnel and systems support staff. For example, network and 

security management systems both build systems aimed at detecting anomalies, although 

the security systems usually monitor for intentional attack, theft, or interference with 

resources whereas network and operating systems have traditionally sought to detect and 

protect against unintentional errors. These two areas are converging, and systems now 

need to protect themselves against both intentional and unintentional attacks. Both 

networks and systems keep some form of “logs.” It behooves the community to integrate 

and synchronize these logs into an overall management system and capability. 
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NERSC, as do other sites, implements a variety of security measures. NERSC, however, 

does not use a traditional border firewall but instead utilizes internal and external 

intrusion detection systems based on Bro (http://bro-ids.org/). Network subnets and 

various flavors of internal firewalls segment services and critical systems such as user 

account databases and system control workstations are used in combination with a single 

sign-on, workload profiling, and auditing. PNNL has architected its network to push the 

firewalls to as close to the system as possible to allow for a finer grained security. For 

example, the EMSL cluster has its own firewall. Another trend that accompanies the 

trend of virtualization of networks and routers is the virtualization of firewalls. There can 

also be a tension between site and facility/meta-facility security policies and access due 

to the global nature and subsequent international remote use of the facilities. The 

continued challenges to all firewalls and intrusion detection systems indicate a need for 

all security policies and network/system policies to be folded into an enhanced overall 

management system that integrates the potentially conflicting policies 

 

Deb Agarwal of LBL has suggested that more R&D be focused on the following security 

areas: auditing and forensics, dynamic host firewall port management, identity 

management, and secure middleware. The petascale facility of the future will require 

high-speed (10 Gbs and up) network encryption and monitoring, certificate management 

(i.e., certificate revocation), interdomain and federated trust and certificate management, 

multisystem and multifacility security, and interdomain management and auditing 

systems. Regardless of the advances made in infrastructure security, the petascale 

infrastructure of the future will require an enhanced focus on security as a major 

component of an overall policy driven management architecture. 

 

Ian Foster, Tom Scavo, and Frank Siebenlist have a soon-to-be-published implementation 

approach for enabling attribute-based authorization for the TeraGrid [43] and other 

distributed systems. The approach leverages work done by AKENTI [44], Shibboleth 

[45], VOMS [46], and other access control and attribute management systems and 

combines the best of these into the Globus Toolkit 4 [47]. Figure AIV. 6.1 shows the use 

of policy information points and policy decision points as key components of this 

integration in the GT4 authorization architecture. 

 

VOMS Shibboleth LDAP PERMIS
…

GT4 Client

GT4 Server

PDP

Attributes

Authorization

Decision

PIP PIP PIP

  
Figure AIV.6.1: GT4 attribute-based authorization architecture. 
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The visibility and importance of HEC facilities may make them attractive targets for 

hackers; and if the protections are breached, not only will DOE/SC lose the use of a 

petascale facility, but the infected facility can be used to launch massive denial of service 

attacks against other facilities.  

 

AIV.7  Architectures and Systems 

 

DOE has long excelled at using a variety of advanced technology “serial one” leadership 

computers and combining them into a cutting-edge system and facility to support 

advanced science. DOE/SC is again facing this challenge as it moves into petascale 

science. The systems and facilities may often require collocation because of the 

performance requirements and the need to share local I/O and file systems as well as to 

address latency and jitter. At the same time many DOE labs support their own local 

capacity clusters. The recent trend toward the distributed integration of facilities and 

multidiscipline datasets will create tension with this other trend toward centralized 

capability architectures. This tension between centralized and distributed systems will 

never go away. An approach that combines the two models will best support the 

researchers. Petascale facilities, metafacilities, and Grids all depend on integrated 

middleware, networks, security, auditing, resource allocation, scheduling, object and data 

management, and naming. 

 

Relevant architectural work has been pioneered by Globus, Condor, Legion, TeraGrid, 

and most recently Optiputer and MonALISA. The Grid-based systems of Globus, 

Condor, and Legion have done a lot to advance the concept and formative 

implementation of virtual facilities and virtual organizations through shared resource 

management, scheduling, and allocation. The TeraGrid is a multisite experiment that 

allows the user to shop for local resources, much like the Grid systems; and like the Grid 

systems the TeraGrid has focused on a common set of software to be supported at the 

participating sites. The Optiputer system is a layer 1 optical lambda/wave system that has 

private optical paths at both the local- and wide-area basis and that can be dynamically 

set up on demand and combined with end resources to form a distributed virtual 

computer. All of these require policy-based management. The Simple Network 

Management Protocol (SNMP) with its associated MIBs became the standard 

management platform for a broad variety of network technologies. An effort should be 

made to investigate the development and implementation of a standards-based Simple 

Systems Management Protocol (SSMP), which could be used to support the management 

of petascale facilities, metafacilities, systems, and Grids. The GLUE schema work by 

HEP community, object-based architecture work sponsored by OMG and CORBA, and 

the resource definition languages of Globus, Condor, and other relevant technologies are 

a good base from which to start. 

 

AIV.8  Visualization  

 

Visualization is a data-intensive operation that utilizes visualization servers, 

computational clusters, networks, storage systems, and file systems. Currently, many of 
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these visualization services/servers are collocated with the leadership-class computers or 

leadership experiments. The NERSC Report (page 32) notes: 

 

Over the years and into the foreseeable future, the most suitable systems for data-

intensive computing are scalable shared-memory systems. In the late 1990s and 

early 2000s, the SGI Onyx platform was the best choice for providing raw I/O 

bandwidth, a scalable shared-memory architecture, support for diverse parallel 

programming models, and cache-coherent non-uniform memory access 

(ccNUMA). Especially in the case of interactive work, the load on the machine 

goes from near idle to 100% capacity across all processors and I/O channels in 

response to the “bursty” nature of interactive visualization.   

 

A lot of work has been done on visualization display technologies, including desktop 

computers, ImmersaDesks, CAVEs, and Powerwalls. One of the challenges associated 

with some of these technologies is the scheduling of these room-based technologies and 

the desire of researchers to perform their research from the comfort of their offices. For 

the appropriate project, however, these visualization facilities provide immeasurable 

benefits. Many labs and universities are working on visualization tools and software to 

take advantage of these physical capabilities. PNNL [48], for example, has developed 

Starlight, an object-oriented approach to do exploratory information analysis, and Inspire, 

which provides tools for exploring textual information, including query, subset, and trend 

analysis tools. The open source distributed computation model Paraview is a widely used 

application designed to support the visualization of large datasets [49].  

 

AIV.9   Naming and Addressing 

 

Naming and addressing are crucial elements of any local or global infrastructure. There is 

currently a tower of Babel of naming schemes and infrastructures, which cover a wide 

range of facilities including networks, the Web, file systems, storage systems, parallel I/O 

systems, global addresses, global arrays, and massively parallel systems. There are URIs, 

URNs, URLs, e.164 addressing, SIP, Handle system, DNS, IPv4, IPv6, NFS, HPSS, 

netCDF, HDF5, X.500, MPI, Akenti, and many other naming systems.   

 

AIV.10  Virtualization 

 

As noted many times in other sections of this report, virtualization of resources and 

organizations is happening at a very quick pace, at the system, network, storage, and 

facility levels. Virtualization has taken hold in commercial data centers; and HP is 

delivering, or will in the near future, virtual computation, network, and storage resources. 

EMC supports VMware for x86 compatible computers. One aspect of virtualization is the 

use of parallel resources in a seamless fashion such that the combined resources appear as 

one to the user. A challenge associated with the use of parallel resources is determining at 

what level the use of parallel resources introduces too much overhead with respect to 

communications and synchronization such that the system is no longer benefited by the 

additional breakdown of tasks into subtasks. The Mythical Man Month noted that there is 

a similar level of task breakdown with people. 
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System virtualization started with the IBM S/360 and VM. VMware and XEN are two 

more recent supporters of virtualization of systems. Barney Maccabe, at the University of 

New Mexico, and other leading researchers have been researching whole system 

virtualization as well as hypervisor capabilities in HEC systems. Current high-end routers 

support logical and virtual routers and VPNs exist at all levels of the network. In order to 

better understand when to use parallelism or virtualization in systems or networks and to 

support their use, new monitoring, benchmarking, and analysis tools and capabilities will 

need to be developed. 

 

AIV.11  Programming Environments  

Many of the research agencies are supporting R&D focused on the next generation of 

operating systems, languages, and libraries necessary for utilizing the next-generation 

capability machines. Language-based programming models include Co-array from Rice, 

the unified parallel code (UPC) from Berkeley and LBNL, Titanium from Berkeley, and 

the DARPA-supported HEC language development of FORTIS with Sun, Chapel with 

CRAY, and X10 with IBM. These languages all incorporate more of an abstract approach 

to using HEC facilities. In addition to the languages, there are various library-based 

programming models such as the message-passing MPI-2 library, the CRAY XT3 

SHMEM shared-memory library, the Global Arrays library developed at PNNL, and the 

Global Address Space (GAS). Projects supported by the Forum to Address Scalable 

Technology for runtime and Operating Systems (FAST-OS) include HEC and K42, 

Scalable Fault Tolerance, ZeptoOS, Petascale SSI, Modular Linux and Adaptive Runtime 

(MOLAR), Dynamic Adaptivity in Support of Extreme Scale (DAiSES), Config OS, and 

Colony. An ongoing challenge will be whether to add new capabilities in the OS, 
language, or library. 

 

Given the differences in approaches by both languages and libraries, as well as the 

capabilities of the operating system, it would helpful to have better benchmarking, 

instrumentation, monitoring, analysis, and management capabilities to better compare and 

contrast all of these with a variety of applications. One of the overarching issues is that 

the applications using leadership-capability HEC systems will generate a lot data and will 

subsequently use a broad set of I/O, networking, data management, visualization, and 

computing technologies and systems. Therefore it is important to provide an environment 

that supports a metafacility view of programming and management. Another issue that 

needs to be addressed across the board is that these codes tend to run for a long time and 

subsequently will need appropriate monitoring, checkpointing, recovery, and restart on a 

metafacility and workflow basis, not just for the HEC system. A complementary issue is 

the need to provide for enough hooks, tools, and APIs to allow for a workflow, system, or 

application to release resources as soon as possible in case of failure to avoid the wasteful 

use of the unique petascale facilities.  
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