

ANL/MCS-TM-328

Derivative-Based Uncertainty Quantification:
Automatic Differentiation Tools for SAS

Mathematics and Computer Science Division

About Argonne National Laboratory
Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC
under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago,
at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne
and its pioneering science and technology programs, see www.anl.gov.

Availability of This Report
This report is available, at no cost, at http://www.osti.gov/bridge. It is also available
on paper to the U.S. Department of Energy and its contractors, for a processing fee, from:
 U.S. Department of Energy
 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831-0062
 phone (865) 576-8401
 fax (865) 576-5728
 reports@adonis.osti.gov

Disclaimer
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of
document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof,
Argonne National Laboratory, or UChicago Argonne, LLC.

ANL/MCS-TM-328

Derivative-Based Uncertainty Quantification: Automatic
Differentiation Tools for SAS

prepared by
O. Roderick, M. Anitescu, and Jean Utke
Mathematics and Computer Science Division, Argonne National Laboratory

September 30, 2012

Derivative-Based Uncertainty Quantification: Automatic Differentiation Tools for SAS
O. Roderick, M. Anitescu, and Jean Utke

 i ANL/MCS-328

ABSTRACT

Automatic differentiation, or more properly algorithmic differentiation (AD), is a
technique for efficiently computing accurate derivatives for numerical models. It is
based on augmenting the code with partial derivatives of elementary mathematical
operations on important variables and retracing the calculation flow (in forward or
reverse direction) to assemble derivatives by chain rule. The relative computational
overhead associated with AD is bounded, independent of dimension, and is largely
independent of the mathematical model.

In our larger body of work on advanced uncertainty analysis of simulation models of
nuclear engineering, AD serves as the driving element behind such methods as
polynomial regression with derivatives, gradient-enhanced universal kriging, and
sensitivity-based dimensionality reduction of the uncertainty space. In fact, the main
alternative to using AD to get sensitivity information is hand coding of direct and
adjoint derivatives, which is always a significant development effort and often cannot
be expected from the developers.

In this report, we discuss the findings and intermediate benefits of the latest effort to
enable algorithmic differentiation of the SHARP safety code SAS. This effort was
planned as an exercise to demonstrate the effectiveness of AD on simulations of
professional interest. The subject is a legacy code comprising 120,000 lines of
uncommented Fortran 77 code; it thus presents significant challenges for manual
analysis. An intermediate outcome of the preparation work required for AD is a semi-
automatically generated code annotation, with identification and characterization of
code features in the context of AD.

While no principal, mathematical model-related reason prevents algorithmic
differentiation for SAS, certain features in model implementation pose steep technical
hurdles. We report the categories of the problematic features found in SAS and
recommend possible remedies, amounting to a future effort in code rewriting.

Because the full capability for differentiation of SAS was not achieved, we redirected
the effort to differentiation of the SHARP component neutronics code UNIC. We
report on the outcome—differentiation in forward mode achieved—and outline other
capabilities that can now be acquired and verified.

 Derivative-Based Uncertainty Quantification: Automatic Differentiation Tools for SAS
 September 30, 2012

ANL/MCS-328 ii

Derivative-Based Uncertainty Quantification: Automatic Differentiation Tools for SAS
O. Roderick, M. Anitescu, and Jean Utke

 iii ANL/MCS-328

TABLE OF CONTENTS

Abstract ... i
Table of Contents .. iii
List of Figures .. v
List of Tables.. v
1 Introduction ... 1
2 Method Description ... 2

2.1 Motivation for automatic differentiation of simulation models 2
2.2 Automatic differentiation building blocks ... 3
2.3 Problematic programming practices .. 4
2.4 Code review: incremental modification vs incremental rewrite 10
2.5 Automatic differentiation of SHARP component UNIC ... 12

3 Results and Discussion .. 13
4 Summary .. 14
Acknowledgments .. 15
References .. 15

 Derivative-Based Uncertainty Quantification: Automatic Differentiation Tools for SAS
 September 30, 2012

ANL/MCS-328 iv

Derivative-Based Uncertainty Quantification: Automatic Differentiation Tools for SAS
O. Roderick, M. Anitescu, and Jean Utke

 v ANL/MCS-328

LIST OF FIGURES

Figure 1: 95% confidence interval for 95th percentile, training set size 8 3
Figure 2: UNIC differentiation diagnostics, part of output ... 13

LIST OF TABLES

Table 1: Code idioms and suggested workarounds ... 9

1 Introduction
The modern field of nuclear engineering relies on complex numerical simulation models

for reactor prototype development, licensing, safety analysis, and performance optimization.
Automatic differentiation, or more properly algorithmic differentiation (AD), of simulation
codes is arguably the most developed method of intrusive analysis [1,2]. Enabled automatic
differentiation provides an immediate benefit of computationally inexpensive sensitivity
analysis of the code. In our past and ongoing work we have also shown that differentiation
capability can be used to significantly accelerate and improve the response surface methods
for uncertainty quantification, as applied to nuclear engineering simulations. AD was used as
the driving element behind such methods as polynomial regression with derivatives [3],
gradient-enhanced universal kriging [4], and sensitivity-based dimensionality reduction of the
uncertainty space [5]; it also fits well with the current work on multifidelity uncertainty
analysis methods.

This report outlines the necessary building blocks for implementing AD in the systems
code SAS [6]. We then explain which programming idioms in SAS pose problems for
applying AD tools. We provide guidelines for SAS code changes to remove these obstacles
and present two approaches for a remedy, along with a brief description of how regression
and validation tests would accompany the proposed remedies.

This work was completed as part of the reactor performance and safety code development
project, in fulfillment of milestone M4MS-12AN0603242, funded under the Nuclear Energy
Advanced Modeling and Simulation (NEAMS) program of the U.S. Department of Energy
Office of Nuclear Energy.

We emphasize that problems with the SAS code discussed in the report originate from
past design decisions made to accommodate various software and hardware restrictions at the
time. In particular, they do not reflect current SAS development work, which is no longer
bound by the same external restrictions but remains, to some extent, confined by the past
decisions. Redesigning portions of SAS code has long been desired by developers, in order to
improve th portability, scalability, and effectiveness of maintenance; permit new features; and
enable complier optimization. We argue that a partial redesign with specific criteria for AD
will yield the same desired improvements and is necessary to enable AD capability.

We also stress that preparation work involved in algorithmic differentiation of SAS
yielded an automatically generated report of code features that have relevance outside the
context of AD. We note that manual annotation and feature identification for approximately
120,000 lines of uncommented code would be an impractical task. Even without full
capability for differentiation, we suggest that automatic analysis provided by AD tools
therefore should be used by code developers within NEAMS.

Many of the restrictions referred to in the report do not apply to the SHARP code UNIC
[7], which is organized differently and in many ways is more modern and compliant with
coding standards. We were therefore able to demonstrate capability for differentiation in a
much shorter time. Current work can be used as a basis for advanced uncertainty analysis and
stochastic optimization for codes such as UNIC, SAS, and possibly other SHARP
components. Enabling differentiation capabilities fits well into a larger body of work on
advanced verification, validation, and uncertainty quantification [8,9].

2 Method Description
We explain in this section the motivation for using AD and then describe the basic

components of AD. We identify the challenges raised by former programming practices and
describe how AD can be used effectively in the UNIC code.

2.1 Motivation for automatic differentiation of simulation models

For a realistic, high-resolution simulation model of a physical system, we can expect the
dimension of uncertainty to be large, making differentiation by finite-differences schemes
unpractical. At the same time, the mathematical model behind the simulation will not be
explicitly shown in the code; even with access to underlying equations and notes on designer
decisions, hand coding of the derivative (or, construction of the adjoint code) can be a
daunting task. For practical purposes, the only real options for getting at least partial
derivative information (with respect to at least some inputs of interest) are implementing
automatic differentiation or working with the code design team from the beginning of
development to output sensitivities as a part of the code’s main functionality.

The theoretical motivation for AD is a computability theory result by Griewank [10],
stating that there does not exist a sequence of elementary functions for which the additional
computational effort required to evaluate the gradient will be above a certain limit. The
estimated limit of 500% (relative to run time of the unmodified code) is cheaper than finite
differences at a dimension of parameter space equal to 3 or above. At high dimensions
currently being considered for applied tasks on simulation models, this overhead is relatively
negligible.

The value of derivative information for sensitivity analysis and error analysis on
deterministic ODEs and PDEs is clear. Many techniques that would otherwise require
additional cumbersome constructions or estimates are essentially development effort free if
the gradient is available (e.g., gradient-based optimization searches, perturbation-theory based
estimates, intelligent adaptive sampling of parameter space).

Our previous work on uncertainty analysis (for deterministic systems of differential-
algebraic equations with stochastic parameters) has shown additional value in obtaining
gradients. Specifically, we have shown that components of the gradient can be used as
additional fitting conditions in multivariate regression techniques and stochastic processes-
based machine learning; the result was that surrogate response to uncertainty, which would
normally require many code evaluations, could be constructed by using outputs and gradients
at <10 points in the parameter space. In Figure 1, we provide an illustration from recently
published research on gradient-enhanced kriging techniques: a confidence interval for order
statistics of a complex simulation model (SAS subset MATWS) is correctly placed using a
total of 8 model runs [11,4]. Normally, this task would require hundreds of code evaluations.

Another important reason for AD analysis that will become clear in the following text is
that preparation work required to pass the code through AD doubles as an extensive code
analysis that arguably could not be reproduced by manual code review and annotation. This
has implications for a wider range of tasks of verification, validation, ensuring standards
compliance, and maintainability and portability of the code.

Figure 1: 95% confidence interval for 95th percentile, training set size 8

2.2 Automatic differentiation building blocks

Algorithmic differentiation starts by analyzing data dependencies from designated input
variables to designated output variable. Next, it augments the program data with new data to
hold the derivative values to be computed. Then, it creates new statements to logic that
perform the computation by considering each elemental numerical operation applied to the
program data that lies on some dependency path from the input to the output. Regardless of
the AD tool one might apply to the SAS source code, AD comprises two fundamental
building blocks.

Data dependency analysis and data augmentation. The computation of derivatives
along with the original model computation incurs an overhead in memory and compute time.
Therefore one often has to restrict derivative computation of certain outputs with respect to
certain inputs. Dependency analysis filters out all the computation not on a path from the
inputs to the outputs. The filtered-out computations are called passive computations, and the
involved variables are passive variables. In contrast, all (floating-point) values computed on
dependency paths from the designated inputs to the designated outputs are called active; that
is, they are evaluated in active computations involving active variables. This code analysis
can be precise when all the computed values in the program are held in distinct variables with
a fixed semantic meaning (e.g., temperature or pressure). Whenever the data model
implemented in the program merges the storage of semantically distinct values into a single
entity (e.g., a large “work array” storing temperature and pressure in different index ranges),
the currently implemented analyses cannot maintain the semantic separation. Conservatively
correct assumptions have to be made; for example, all merged values are considered to be on
the same dependency path that was established for one of the merged values. This process
incurs overhead in storage and computation. Storage merging also occurs through the use of
equivalence and (blank) common blocks.

For each active value (i.e., computed on a dependency path from the input to the output
variables) the AD tool must make space to hold this value in memory. The computed value

must be held in some program floating-point variable, say, r. The AD tool can provide the
space by changing the type of r to an active type that holds the original value as r%v and the
corresponding derivative as r%d, or it can create a corresponding variable with a uniquely
adorned name (e.g., r_ad) to hold the derivative value.

A semantically meaningful derivative computation can be generated only for arithmetic
operations on floating-point values. When floating-point values are taken as bit patterns and
reinterpreted to another type (as can be done through transfer, equivalence, F77-style
parameter passing with deliberately mismatched types), there is no conservatively correct
algorithm to generate derivative logic for any operations on the reinterpreted bit patterns.
Even if no operations are performed, however, it is unclear whether and how the bit patterns
of the corresponding derivative value should be stored and reinterpreted. The (frequently
incorrect) fallback assumption would have to be that any conversion away from the floating-
point representation signals that there is no differentiable dependency.

Data flow reversal. For a numerical operation ,...)(...,vu φ= in the model in question, the

basic adjoint propagation applied to each argument v can be written as u
v

vv
∂
∂

+=
φ . It is

applied to all built-in numerical operations φ on active data. During the forward execution,
the left-hand side u depends on the argument v . The dependency for the corresponding
adjoint quantities is reversed in that v depends on u . Applying this rule for the sequence of
all statements in a program means that the data flow needs to be reversed for the whole
program. Implementing the data flow reversal by source transformation implies control flow
reversal and reversal of all statement sequences (including subroutine calls).

We note that the adjoint statement refers to the partial derivatives
v∂

∂φ . Given the overall

reversal and the typical overwriting of variable values, one can see that computing the partials
requires variable values in the forward order, while the partial values are required in the
reverse order. To access the partial values, one may choose to store them on a stack, but doing
so implies a stack size proportional to the number of floating-point operations executed at run
time. To mitigate the stack size, one stores the partials only for sections and restarts
computation from checkpoints. Optimized checkpointing schemes do exist, but for long
computations these schemes require considerable space, and so checkpoint sizes have to be
minimized and are taken as “application”-level checkpoints (as opposed to system-level
checkpoints, with the entire process state). They are determined by the AD tool in terms of the
model data. (Re)storing application-level checkpoints requires the data model to allow code
generation to (de)serialize part of the model state. Minimizing the checkpoint size requires
precise data dependency analysis for the same reason mentioned before.

2.3 Problematic programming practices

Most of the problematic Fortran idioms reported here are consequences of now-obsolete
limitations in the language, compiler technology, or hardware; they are no longer needed, or a
better alternative exists in terms of source code maintainability and expected runtime
performance. We therefore attempted to reduce the source code base to be adjoint transformed
by starting with model setups that do not exercise the full functionality of SAS. Through
runtime profiling we found a reduction to a set of 308 distinct executed subroutines. Filtering

out ancillary logic for logging and initialization further reduced that number to 220. Given the
existing implementation, collecting all the source files for the 220 routines and including the
referenced modules results in a source code base of about 60K lines of code, or roughly 30%
of the entire code base of SAS. Through preprocessing, the code size to be transformed grows
to about 140K lines of code. The rationale for the reduced setup was the hope of implicitly
excluding some of the code exhibiting the earlier identified problems. Unfortunately, that was
not the case because the issues proved to be pervasive in SAS. The remainder of this section
highlights the problems by category.

Data model. Most of the data is held in common blocks. A migration of the data to
module variables and user-defined types has started but is still in its initial phase.

(P1) A serious problem is a repeated pattern using equivalence of the respective first
element in a given common block to an array variable, as done in the following example:

COMMON /block/ e1, e2, e3
! etc.
REAL(KIND=KIND(1.0d0) :: array(1)
EQUIVALENCE (e1,array)
Subsequently, the array, which is declared to be of length 1, is used to access the data in

the entire block by using indices >1 up to some implicitly agreed-upon upper bound
representing the “size” of the block. If one assumes that all the elements in block are declared
as double-precision floating-point numbers, an alignment restriction now requires all elements
of block together with array to be either passive or active (denote this P1a). Consequently,
there exists no consistent way to reduce the overhead for selections of subsets of inputs and
outputs. The use of indices for array that are outside its declared bounds violates the Fortran
standard. There is, however, no reliable compile time check to enforce the standard’s
restriction, and therefore such usage patterns have been common practice. We note that this
practice prevents most runtime array bounds checking commonly implemented as a sanity
check and debugging helper option in many compilers (P1b). At the same time, because there
is neither a syntactic hint at the alignment requirement nor a compile time check, an AD
transformation has to assume that any equivalencing implies such alignment restrictions even
if, in reality, there are none. Many, but not all, common blocks in SASSYS have elements of a
single type. If block contains elements of different types and active data, then a misalignment
is virtually assured (P1c).

(P2) A related problem is the reinterpretation of data as bit patterns of non-floating-point
type effected via equivalence statements such as

TYPE(INPT_RNEUTRPrototype) :: RNEUTR

INTEGER(KIND=KIND(1)), PRIVATE :: RNEUTRInt(1)
REAL(KIND=KIND(1.0d0)), PRIVATE :: RNEUTRDb1(1)
EQUIVALENCE (RNEUTR, HEXPCH, RNEUTRINT, RNEUTRDb1)

where storage space starting at the common block element HEXPCH is accessible by an
integer or a double-precision array. No standard code analysis has been implemented in any of
the current AD tools to determine whether all the operations performed on the reinterpreted
bit patterns are benign (P2a: verify the absence of nontrivial operations). As mentioned
before, an activation of elements of the equivalenced common block and an access of that
modified common block through an array of a different type will lead to misalignment
problems (P2b). This type of problem is extremely difficult to diagnose and, short of
manually removing the equivalence and replacing the associated functionality in the source
code, no easy remedy exists.

(P3) Another, similar problem is the use of the transfer intrinsic, as in the following line:

PRIMINSize = SIZE(TRANSFER(PRIMIN, PRIMINDbl)) ! Determine Block Size
It, too, implies a bit-pattern reinterpretation followed by taking the size of an array where the
elements are the reinterpreted bit patterns. For each of these size values one would have to
manually investigate (P3a) how exactly the size is used. A use like

CALL INPT_IOBaseReadINP(unit, PRIMINDbl, PRIMINSize)
suggests I/O operations through the equivalenced array. If we assume that the equivalenced
block contains only double-precision elements, all uniformly redeclared as active, then the
bit-pattern reinterpretation (depending on the data augmentation method used by the AD tool)
may include with size also all derivative data storage, thereby causing misalignment for this
I/O subroutine call (P3b). Bit-pattern reinterpretations of any sort make consistent automatic
data augmentation much harder.

(P4) Another problem is data dependencies through the use of blank common blocks with
varying definitions. For example, compare the following lines:

COMMON // TSAT1(49) !TNV1..31
COMMON // ISGIN(40), ISGOUT(40) !SS1L..19
COMMON // BIG(1) !REEC..5

These are inscrutable to automatic code analysis (P4a) as well as to most programmers unless
they happen to be familiar with the code. The subsequent reference to BIG in

NPLACE=LOCUS+IOFFST-1
DO 100 I=1,LONG
W(I)=BIG(NPLACE+I)

hints at the fact that BIG is used as an array with more than 1 element but, as in the previously
noted case, this fact is not reflected in the declaration syntax. What, if any, derivative data
should be tracked between this and the other references to the blank common block storage
remains unclear until a manual analysis of the code reveals the usage patterns (P4b).

(P5) There is a implicit assumption that the compiler will allocate storage to local variables
following the Fortran 77 storage model with static allocation. This effectively promotes all
variables to have global life span. Thus, a value assigned to a variable v that is local to
subroutine foo during a given execution of foo can be accessed during the following execution
of foo. The SAS code makes use of this effect in a number of places. Since Fortran 90 local

variables can be dynamically allocated on the stack, in order to enforce the older storage
model, the SAS code must be compiled with the respective option (-save for Intel’s ifort).
Doing so, however, prevents certain compiler optimizations. Furthermore, the AD source
transformation requires a similar modification (currently not implemented) for the
dependency analysis overriding the actual scope information and giving all variables global
life span. Eventually this leads to less-precise analysis results and unnecessary overhead for
the adjoint computation. Instead of global promotion, the variables requiring the rescoping
should be identified and declared with the Fortran save attribute.

Data passing. Because of hardware memory limitations an obfuscation such as the use of
BIG in a blank common block discussed previously had to be accepted as a tradeoff for a
reduced memory footprint of the program. The logic referring to BIG also hints at the
(pseudo) address arithmetic performed using Fortran integers where LOCUS is some base
address in memory and IOFFST an offset to that base address. This is done to move data from
one memory region to another, where certain subroutines can then operate on it. Much like the
previously discussed storage, merging this programming pattern obfuscates the data
dependencies by funneling otherwise distinct data through the BIG array. This process is akin
to low-level C-style passing of data with memcpy via pointers of type void*. There is no
syntactic hint about the alignment and therefore little information for any automatic
transformation (P6) or, again, for most programmers not intimately familiar with the SAS
code. Furthermore, the implementation of the (pseudo) address arithmetic restricted the code
to 32-bit platforms, because Fortran integer arithmetic does not automatically reflect the
different address length on a 64-bit system. Given the nonportable logic, it is a foregone
conclusion that semantically correct AD data augmentation would be difficult to implement
manually and virtually impossible for an automatic transformation.

In addition, the current implementation uses wrapper routines for system library
functionality such as malloc and free that are provided only as compiler-specific extensions to
the Fortran standard but not part of the standard and therefore not an integral part of the code
analysis based on the Fortran memory model (P7). The introduction of dynamic memory
concepts to the recent Fortran standards makes obsolete the need to refer to C functionality.
Furthermore, the Fortran syntax provides more information to the AD tool. In particular, the
restrictions on aliasing implied by the use of allocatable variables over pointer variables are
beneficial for compiler optimization and source transformation (P8). Using allocatable
variables also prevents memory leaks.

Control flow. The data flow reversal needed for adjoint computations implies a control
flow reversal for the transformed code. The code exhibits numerous cases of unstructured
control flow, such as the use of go to, early returns from loops or branches, and alternative
entry. The ability to jump from one instruction to another is limited by the Fortran standard.
Consequently, not every legitimate forward jump in the control flow graph has a legitimate
reverse jump in the control flow graph with the same underlying structure (but reversed
edges).

In contrast, structured control flow is free of such jumps. In a simplified view with
structured control flow, every path taken through a loop or branch node in the control flow
graph has to go through the corresponding endloop or endbranch node. This requirement
permits control flow reversal by a control flow graph in the transformed code that is identical
to the original control flow graph except for reversed edges. The concrete reversed path

through the graph at execution time is controlled by the same conditions as the forward path,
and therefore only a minimum of information has to be recorded to reverse the concrete path.

Unstructured control flow for the AD-enabled adjoint computations requires an explicit
recording of the path through the executed statements and a reversed replay for the data flow
reversal to be syntactically permissible. This implies a significant overhead for the adjoint
computation and a slow execution because it effectively removes optimizable loops and
branches from the reversed control flow (P9) and leaves a flat set of statement sections whose
execution pattern is unknown at compile time. Various compiler optimization techniques
benefit from structured control flow as well.

We summarize the code features with suggested workarounds in Table 1. In the table, AD
workaround indicates whether some intervention can make AD work without completely
replacing the problematic idiom. Partial tool support indicates that some usage scenarios are
handled but that incomplete coverage will require some more costly intervention in the use
code if the usage falls outside of the covered patterns. Note that some of the problematic
idioms include others: P2b includes P1c, and P4b includes P1b. The workaround suggested in
P2a and P3a is an extensive manual check to assert the absence of the respective patterns in
the code. Portability is meant to be among hardware platforms and compilers. Verification is
meant here in a wider sense but also includes aspects of the typical verification and validation
process. A particular aspect is the ability to assert facts about the use and update of model
data by the executable statements in the program. For example, to verify that a given model
setup uses exclusively “regime A” to update the temperature data, one would like to assert
that the temperature field is assigned only in routine foo, whose logic can be checked to
implement “regime A.” The use of equivalence, memcpy as well as the reliance on externally
agreed-upon offsets to discriminate between the different data portions precludes simple and
conclusive checks searching for syntactic references to the temperature portion of model data
and allowing to make the assertions. Instead, the model data is accessed, copied, and copied
back in ways that are hard to trace even manually. The corollary is the ease by which off-by-
one index errors and offset mistakes can be introduced (undetectable by compiler or runtime
checks) and the fact that these errors may remain undetected.

Table 1: Code idioms and suggested workarounds

AD
workaround

Negative impact on:

A
D

 d
iff

ic
ul

ty

SA
S

ef
fic

ie
nc

y

V
er

ifi
ca

tio
n

D
ed

ug
gi

ng

Po
rta

bi
lit

y

St
an

da
rd

s

M
ai

nt
ai

na
bi

lit
y

P1a: equivalence differentiable and
passive data automatic X

P1b: equivalence with incorrect array
bounds manual X X X X

P1c: equivalence array with mixed-type
common block no

P2a: check non-real operations done on
bit patterns of real data manual

(costly)

P2b: equivalence to non-real type yields
misalignment of differentiable data no X X X X X

P3a: use of size after transfer on
differentiable data manual

(costly)

P3b: use of transfer of diffentiable data
for I/O no X X X

P4a: blank common block with
mismatching definitions no no X

P4b: blank common block with single
”big” array of length 1 no X X X X

P5: enforce static allocation of all
variables by compiler switch automatic automatic X X

P6: data passing through anonymous
memory with pseudo address arithmetic
(IOFFST, LOCUS)

no X X X X X

P7: use of C-library calls malloc and
free (instead of Fortran memory mgmt.) no X X X X X

P8: use of pointer where allocatable is
appropriate. partial

support
X X X

P9: unstructured control flow via goto
and entry partial

support
X X X

2.4 Code review: incremental modification vs incremental rewrite

Arguably, certain changes are unavoidable to enable AD. The complicated semantic
transformations for adjoint computations only exacerbate the ill effects of the identified
problems. A fitting analogy might be the code changes needed if a program that has been
written over many years for sequential execution is to be parallelized. We note that none of
the changes required for AD contradict good coding practices but instead contribute to the
earlier-stated general goals for a redesign of parts of SAS. Two main groups of changes can
be identified.

Redesign the data model. While the file formats used to initialize the data for a SAS
model run and capture the output will have to remain invariant, the internal representation
should be changed, and in the process the offending programming patterns should be
completely eliminated. The following aspects should be considered for the data layout:

• Globally accessible data organized to achieve locality by physical properties of the
engineering problem and functionality implemented in SAS permits easy tracking of data
references. Either subroutines either directly access the global data implemented as module
variables, or direct references to the global data are passed as arguments.

• An alternative data layout that is built on the fly as stack variables local to certain top-
level subroutines will always imply more passing of data as subroutine arguments and more
encapsulation of data in nested types and makes tracking data dependencies more difficult.

• Employing user-defined types, one can nest data structures. This nesting can be used to
reflect locality of groups of data in the physical setup being modeled. While such nesting is
plausible, however, it may not provide the locality needed by the computation. For example,
one may want to have immediate access to all temperature data instead of first having to
extract the temperature data buried in a data structure reflecting the physical assembly.
Hierarchical structures can still be reflected in the temperature array by using multiple ranks.
Globally accessible data allow for simpler (less-nested) data structures.

• For parallel execution the top-level structure in the data model should reflect the
partitioning. As long as each process still executes sequentially, the above remarks in favor of
globally accessible data still hold. In many cases multithreaded parallelism can also be
implemented to operate on partitioned global data rather than thread-private data although
perhaps then using few of the typical usages patterns supported by established tools.

• For dynamic memory allocation the use of allocatable is much preferred over pointer
because it limits the possibility for aliasing. For performance and adjoint code generation it is
highly desirable to allocate once and reuse over repeated local allocate/deallocate pairs.

• Allocation with constant array bounds, where possible, is preferred, in particular because
it can be used to fix loop bounds. Compiler optimization and AD control flow reversal benefit
from fixed array and loop bounds.

• Recursive data structures (e.g., linked lists) and other uses of pointers should be avoided
unless required. The use of pointers poses problems for checkpointing (similar to problems
known in the context of serialization) and the restoring of address values; both are needed for
the data flow reversal.

Modify control flow and encapsulation. One should be able to rewrite the logic in such
a way as to avoid unstructured control flow. Concerns with handling of unstructured control
flow, the data model, and so forth should not apply to source code that does not contain
operations that need differentiation. Therefore, it is helpful to extract the numerical core from
the model code and analyze and transform only the core. Because of the nesting afforded by
using module or subroutines with contains, one can group numerical functionality with
initialization, debugging, and so on in a single syntactic envelope. The envelopes make it
difficult to separate out the numerical core. In addition to commonly accepted rules for
encapsulations, it is therefore desirable for AD to go a step further and encapsulate the
common data, the numerical computations, and the ancillary logic in separate entities.

A modularization of the code that is enhanced by preprocessor directives should enable
building different configurations by filtering out both unnecessary parts of the data model and
the logic (calls to subroutines and their definitions).

Given the above, one should note that the overwhelming majority of the work comes with
the data model redesign because it has a global effect on the source code and is more difficult
to regression test. On the other hand, modifying the control flow is a local change that is
comparatively easy to test for consistency with the unmodified source code.

Possible remedy: incremental modification. Incrementally modifying the existing
source code while maintaining all existing functionality is an approach most suited to local
changes. It may be possible to achieve the redesign in this way, and the advantage is the
uninterrupted availability of all functionality of SAS. Given the need to modify the globally
accessible data model, however, the required changes will have a wide scope, implying
massive modifications throughout the source code. In other words, the ensuing changes are
unlikely to be “incremental.” Chances for introducing errors increase, and so does the effort to
maintain all functionality. Because of this extra effort, the cost for making corrections as the
data model is being changed is substantial.

Preferred remedy: incremental rewrite. Realizing the global impact of the data model
one might instead start with designing a new data model. With this model one would then
piecewise rewrite to match the new data model:

• Logic for initialization

• Logic for result outputs

• Individual physics components that make up SAS

Identifying the components, where there are not well separated from each other in the
current SAS implementation, offers the chance to modularize the code in terms of both
encapsulation and the preprocessor filtering suggested in the beginning of this section. After
integrating each piece, the consistency of the output with the original SAS output should be
verified to build up the prerequisite for the eventual switch over to the rewritten SAS code.

By designing the data model first and then rewriting the components, one has better
granularity of the work units and can achieve a truly incremental approach. Experience
suggests an overall lower effort and much improved tractability compared with the first
approach. The design of the data model as the critical first step requires expert insight into the
(abstract) data access patterns of the SAS components and ideally also the review by an AD
expert.

2.5 Automatic differentiation of SHARP component UNIC

From the conclusions drawn from the effort in SASSYS, the application of AD
methodology to the UNIC code was motivated as follows:

- Identification at a high level an eigenproblem that is solved in the UNIC code. Starting
from the high-level description, which lends itself to a high-level adjoint formulation,
we then identify a subproblem that warrants the use of AD. By restricting the
application of AD to the subproblem, we expect to reduce the amount of UNIC source
code to be transformed by the AD tool.

- The expectation that the Fortran source code in UNIC, having a more recent origin,
was not containing any of the programming patterns that prohibited the application of
AD to SASSYS.

While both points were met in principle and the application of AD was eventually
successful, the path was not straightforward. The lessons learned will be applicable to
continued work. The major phases of the AD application are outlined below.

Identify the source code representing the subproblem. In view of the high-level
characterization of the relevant part of the computation as solving an eigenproblem using an
iterative method, it is often not advisable to subject the entire source code to AD. The reasons
include the possibility of using black-box libraries for the iterative solve steps and the
efficiency gains obtainable by exploiting the high-level insight that allows an inexpensive
adjoint formulation and use of the AD tools where necessary. Here, this means identifying the
logic in UNIC that implicitly applies the system matrix to a given vector.

The top-level procedure (SN2NDz_MGS_ApplyA) was known, but in a static analysis
included references to UNIC functionality and external libraries not needed for the proof of
concept to be shown here for a benchmark problem. To suitably restrict the scope, therefore,
we profiled the code in order to identify the subset of the UNIC source code relevant to the
benchmark. While this represented the functional dependencies, a first round of testing clearly
showed that the global data (module variables) imply additional dependencies, requiring the
transformation of significantly more (a factor of 4) code to ensure the correct data setup.

Determine the data dependencies. Based on the results of the first round of testing, we
again carried out benchmark profiling. The final amount of UNIC code to be differentiated
was approximately 30K non-comment lines of Fortran. The additional code to be transformed
in order to achieve consistent data initialization was approximately 90K non-comment lines of
Fortran from a total of approximately 300 source files.

Devise a build procedure for the AD transformation. In order to achieve a consistent
transformation, the AD tool must have a view of all the references to the data and logic that
are to be transformed at the same time. The source files identified in the previous two steps
stem from a variety of separately built UNIC components and therefore are not directly usable
for the AD transformation. An AD-specific build procedure makes all the identified source
files available (via symbolic links) to the AD tool in one step and enables linking with a top-
level driver procedure modified for AD and other adaptations outlined in the next section.

Adapt the source code. While the UNIC source code base is comparatively clean, the
introduction of certain recent Fortran language features can in some cases still pose inherent
difficulties for the transformation. One notable example is the qualification of variables as
pointer where a qualification as allocatable would be appropriate. The same assumptions
allowing more aggressive compiler optimizations for variables with the latter qualification
also permit a significantly simpler and more efficient adjoint transformation.

Other code modifications are caused by as-yet-unsupported language features such as the
replacement of invocations of Fortran procedures via function pointers. Modifications to
enable the computation of the derivatives for the subproblem include the injection of calls to
hook methods on entry and exit of the top-level procedure (SN2NDz_MGS_ApplyA).

All changes are triggered by preprocessor directives and have been committed
permanently to the UNIC source code repository.

Use library wrappers, drivers, verification. The benchmark test makes references to
certain functionality provided by the PETSc library. Because the PETSc library was not
differentiated, this functionality was wrapped to enable the derivative computation. The
implementation of the hook methods to enable the computation of the inner product of the
matrix vector product, as well as initialization and retrieval of the derivative values, is given
as Fortran source. The wrappers, the hook methods, the driver for the transformed source
code, and the makefiles for the transformation and linking of the transformed source code are
permanently retained in a source code repository.

Initial tests indicate the correctness of the source transformations, implying the
correctness of derivatives computed with AD.

3 Results and Discussion
The intermediate benefit of preparing SAS for algorithmic differentiation was an

extensive review of code features and a set of recommendations for code modification. In the
material above we have provided the main contents of this review, which can be used as a
basis for future code development and standardization. This project could be undertaken in
cooperation with developers of AD tools.

The changes made under either incremental modification or the incremental rewrite
approach will have to be tested by regression and eventually validated. The timeline implied
by the second (preferred) approach suggests an incremental buildup of regression tests
corresponding to the integration of rewritten components. The numerically stable output
values need to be identified, separated from inherently unstable outputs (subject to numerical
noise), and assigned limit values for absolute and relative discrepancy. The obtained
knowledge of the structure of the code and at least partial AD capability for the integrated
components would be helpful here. In particular, elements of sensitivity analysis can be used
to greatly speed the process of establishing precision thresholds and ranking parameters by
stability and importance.

The task of validation here means partial validation that the computed results correspond
to the externally established principles (such as physical conservation laws, or closeness to
known exact solution). Such tests will also be easier to formulate on components of the
system as they are integrated under the incremental rewrite approach.

Figure 2: UNIC differentiation diagnostics, partial output

At the current allocation of resources and with no significant code modification of SAS,
capability for algorithmic differentiation cannot be achieved, and the preparation work
performed for AD will be set aside as reference material to assist with the future code
development (in context of AD capability or otherwise).

With the limited amount of effort redirected to differentiation of UNIC, we were able to
achieve capability for direct differentiation. At this point, the effort to fully verify this
capability is not finished. The interpretation of results beyond the algorithmic correctness of
AD is still in process, and the diagnostics we are relying on (see an example of the output in
Figure 2) are not easy to examine and interpret. Clearly, additional effort is required to attach
this newly obtained capability to practical tasks related to improved performance and use of
UNIC.

Overall, we maintain that, with additional effort required for codes with obsolete
programming components, algorithmic differentiation remains a powerful and effective tool
for code analysis. Once the technical difficulties of obtaining derivatives are resolved, it will
drive the effort in advanced uncertainty analysis for models of high complexity and high
dimension of uncertainty.

4 Summary
In our work in FY11-12, we performed an extensive analysis of the SHARP component

code SAS, in the context of algorithmic differentiation. An intermediate result was a detailed
(and otherwise not practically possible) annotation of the code for future development and
standardization. While none of the mathematical (essential) components of the model
prevented algorithmic differentiation, code organization and features in variables and memory
management presented technical difficulties. We concluded that the capability for AD cannot
be achieved without code modification. We have outlined two plans for possible code

improvement and argued that such effort will eventually become necessary for multiple
reasons, many of them coming from wider context than just AD. We briefly identified future
work in verification and validation of modified code as it is being developed.

Algorithmic differentiation of high-performance simulation codes was demonstrated (in
the initial stages) on UNIC. This required comparatively less effort and is perhaps a better
example of how we expect AD preparation process will work, given adequate resource
allocation.

In the context of the NEAMS mission, our effort on implementing AD is a driving effort
and one of the possible key elements that will enable advanced uncertainty analysis of codes
previously inaccessible to any but the most basic (and computationally expensive!)
uncertainty quantification techniques. We hope to continue the development work as a part of
an independent effort or within practical code development and analysis tasks of NEAMS.

Acknowledgments
We thank Thomas Fanning and Mike Smith for their assistance with aspects of our work
related to SAS and UNIC.

References
1. J. Utke, U. Naumann, M. Fagan, N. Tallent, M. Strout, P. Heimbach, C. Hill, and C.

Wunsch, “OpenAD/F: A Modular Open-Source Tool for Automatic Differentiation of
Fortran Codes,” ACM Trans. on Math Software, 34(4) pp. 1–36, 2008.

2. A. Griewank, “On Automatic Differentiation,” Tech Report CRPC-TR89003, Center for
Research on Parallel Computation, Rice University, 1989.

3. O. Roderick, M. Anitescu, and P. Fischer, “Polynomial Regression Approaches Using
Derivative Information for Uncertainty Quantification,” Nuclear Science and
Engineering, 164(2) pp. 122–139, 2010.

4. B. Lockwood and M. Anitescu, “Gradient-Enhanced Universal Kriging for Uncertainty
Propagation,” Nuclear Science and Engineering, 2011.

5. O. Roderick, Z. Wang, and M. Anitescu, “Dimensionality Reduction for Uncertainty
Quantification of Nuclear Engineering Models,” Transactions of the American Nuclear
Society, Hollywood, FL, 104, 2011.

6. F. Dunn and F. Prohammer, “SASSYS LMFFBR Systems Analysis Code,” Mathematics
and Computers in Simulation, 26(1) pp. 23–36, 1984.

7. M. Smith, D. Kaushik, A. Wollaber, W.S. Yang, and B. Smith, “Recent Research
Progress on UNIC at Argonne National Laboratory,” International Conference on
Mathematics, Saratoga Springs, NY, 2009.

8. M. Anitescu, O. Roderick, Argonne National Laboratory, unpublished information, 2011.

9. H. Edwards et al., “Nuclear Energy Advanced Modeling and Simulation Waste
Integrated Performance and Safety Codes (NEAMS Waste IPSC), Verification and
Validation Plan, Tech. report, 2011.

10. A. Griewank, Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation, SIAM, 2000.

11. M. Alexe, O. Roderick, J. Utke, M. Anitescu, P. Hovland, and T. Fanning, “Automatic
Differentiation of Codes in Nuclear Engineering Applications,” Tech. rep, ANL/MCS-
TM-310, 2009.

Argonne National Laboratory is a U.S. Department of Energy
laboratory managed by UChicago Argonne, LLC

Mathematics and Computer Science Division
Argonne National Laboratory
9700 South Cass Avenue, Bldg. 240
Argonne, IL 60439

www.anl.gov

	ANL/MCS-TM-328
	Derivative-Based Uncertainty Quantification: Automatic Differentiation Tools for SAS
	Mathematics and Computer Science Division
	About Argonne National Laboratory
	Availability of This Report
	Disclaimer
	ANL/MCS-328
	Derivative-Based Uncertainty Quantification: Automatic Differentiation Tools for SAS
	O. Roderick, M. Anitescu, and Jean Utke
	Mathematics and Computer Science Division
	September 30, 2012
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Method Description
	2.1 Motivation for automatic differentiation of simulation models
	2.2 Automatic differentiation building blocks
	1.1
	1.1
	1.1
	2.3 Problematic programming practices
	2.4 Code review: incremental modification vs incremental rewrite
	2.5 Automatic differentiation of SHARP component UNIC

	3 Results and Discussion
	4 Summary
	Acknowledgments
	References

