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ABSTRACT 

Automatic differentiation, or more properly algorithmic differentiation (AD), is a 
technique for efficiently computing accurate derivatives for numerical models. It is 
based on augmenting the code with partial derivatives of elementary mathematical 
operations on important variables and retracing the calculation flow (in forward or 
reverse direction) to assemble derivatives by chain rule. The relative computational 
overhead associated with AD is bounded, independent of dimension, and is largely 
independent of the mathematical model. 

In our larger body of work on advanced uncertainty analysis of simulation models of 
nuclear engineering, AD serves as the driving element behind such methods as 
polynomial regression with derivatives, gradient-enhanced universal kriging, and 
sensitivity-based dimensionality reduction of the uncertainty space. In fact, the main 
alternative to using AD to get sensitivity information is hand coding of direct and 
adjoint derivatives, which is always a significant development effort and often cannot 
be expected from the developers. 

In this report, we discuss the findings and intermediate benefits of the latest effort to 
enable algorithmic differentiation of the SHARP safety code SAS. This effort was 
planned as an exercise to demonstrate the effectiveness of AD on simulations of 
professional interest. The subject is a legacy code comprising 120,000 lines of 
uncommented Fortran 77 code; it thus presents significant challenges for manual 
analysis. An intermediate outcome of the preparation work required for AD is a semi-
automatically generated code annotation, with identification and characterization of 
code features in the context of AD. 

While no principal, mathematical model-related reason prevents algorithmic 
differentiation for SAS, certain features in model implementation pose steep technical 
hurdles. We report the categories of the problematic features found in SAS and 
recommend possible remedies, amounting to a future effort in code rewriting. 

Because the full capability for differentiation of SAS was not achieved, we redirected 
the effort to differentiation of the SHARP component neutronics code UNIC. We 
report on the outcome—differentiation in forward mode achieved—and outline other 
capabilities that can now be acquired and verified. 
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1 Introduction 
The modern field of nuclear engineering relies on complex numerical simulation models 

for reactor prototype development, licensing, safety analysis, and performance optimization. 
Automatic differentiation, or more properly algorithmic differentiation (AD), of simulation 
codes is arguably the most developed method of intrusive analysis [1,2]. Enabled automatic 
differentiation provides an immediate benefit of computationally inexpensive sensitivity 
analysis of the code. In our past and ongoing work we have also shown that differentiation 
capability can be used to significantly accelerate and improve the response surface methods 
for uncertainty quantification, as applied to nuclear engineering simulations. AD was used as 
the driving element behind such methods as polynomial regression with derivatives [3], 
gradient-enhanced universal kriging [4], and sensitivity-based dimensionality reduction of the 
uncertainty space [5]; it also fits well with the current work on multifidelity uncertainty 
analysis methods. 

This report outlines the necessary building blocks for implementing AD in the systems 
code SAS [6]. We then explain which programming idioms in SAS pose problems for 
applying AD tools. We provide guidelines for SAS code changes to remove these obstacles 
and present two approaches for a remedy, along with a brief description of how regression 
and validation tests would accompany the proposed remedies. 

This work was completed as part of the reactor performance and safety code development 
project, in fulfillment of milestone M4MS-12AN0603242, funded under the Nuclear Energy 
Advanced Modeling and Simulation (NEAMS) program of the U.S. Department of Energy 
Office of Nuclear Energy. 

We emphasize that problems with the SAS code discussed in the report originate from 
past design decisions made to accommodate various software and hardware restrictions at the 
time. In particular, they do not reflect current SAS development work, which is no longer 
bound by the same external restrictions but remains, to some extent, confined by the past 
decisions. Redesigning portions of SAS code has long been desired by developers, in order to 
improve th portability, scalability, and effectiveness of maintenance; permit new features; and 
enable complier optimization. We argue that a partial redesign with specific criteria for AD 
will yield the same desired improvements and is necessary to enable AD capability. 

We also stress that preparation work involved in algorithmic differentiation of SAS 
yielded an automatically generated report of code features that have relevance outside the 
context of AD. We note that manual annotation and feature identification for approximately 
120,000 lines of uncommented code would be an impractical task. Even without full 
capability for differentiation, we suggest that automatic analysis provided by AD tools 
therefore should be used by code developers within NEAMS. 

Many of the restrictions referred to in the report do not apply to the SHARP code UNIC 
[7], which is organized differently and in many ways is more modern and compliant with 
coding standards. We were therefore able to demonstrate capability for differentiation in a 
much shorter time. Current work can be used as a basis for advanced uncertainty analysis and 
stochastic optimization for codes such as UNIC, SAS, and possibly other SHARP 
components. Enabling differentiation capabilities fits well into a larger body of work on 
advanced verification, validation, and uncertainty quantification [8,9]. 



 

 
 

2 Method Description 
We explain in this section the motivation for using AD and then describe the basic 

components of AD. We identify the challenges raised by former programming practices and 
describe how AD can be used effectively in the UNIC code.   

2.1 Motivation for automatic differentiation of simulation models 

For a realistic, high-resolution simulation model of a physical system, we can expect the 
dimension of uncertainty to be large, making differentiation by finite-differences schemes 
unpractical. At the same time, the mathematical model behind the simulation will not be 
explicitly shown in the code; even with access to underlying equations and notes on designer 
decisions, hand coding of the derivative (or, construction of the adjoint code) can be a 
daunting task. For practical purposes, the only real options for getting at least partial 
derivative information (with respect to at least some inputs of interest) are implementing 
automatic differentiation or working with the code design team from the beginning of 
development to output sensitivities as a part of the code’s main functionality.  

The theoretical motivation for AD is a computability theory result by Griewank [10], 
stating that there does not exist a sequence of elementary functions for which the additional 
computational effort required to evaluate the gradient will be above a certain limit. The 
estimated limit of 500% (relative to run time of the unmodified code) is cheaper than finite 
differences at a dimension of parameter space equal to 3 or above. At high dimensions 
currently being considered for applied tasks on simulation models, this overhead is relatively 
negligible. 

The value of derivative information for sensitivity analysis and error analysis on 
deterministic ODEs and PDEs is clear. Many techniques that would otherwise require 
additional cumbersome constructions or estimates are essentially development effort free if 
the gradient is available (e.g., gradient-based optimization searches, perturbation-theory based 
estimates, intelligent adaptive sampling of parameter space). 

Our previous work on uncertainty analysis (for deterministic systems of differential-
algebraic equations with stochastic parameters) has shown additional value in obtaining 
gradients. Specifically, we have shown that components of the gradient can be used as 
additional fitting conditions in multivariate regression techniques and stochastic processes-
based machine learning; the result was that surrogate response to uncertainty, which would 
normally require many code evaluations, could be constructed by using outputs and gradients 
at <10 points in the parameter space. In Figure 1, we provide an illustration from recently 
published research on gradient-enhanced kriging techniques: a confidence interval for order 
statistics of a complex simulation model (SAS subset MATWS) is correctly placed using a 
total of 8 model runs [11,4]. Normally, this task would require hundreds of code evaluations. 

Another important reason for AD analysis that will become clear in the following text is 
that preparation work required to pass the code through AD doubles as an extensive code 
analysis that arguably could not be reproduced by manual code review and annotation. This 
has implications for a wider range of tasks of verification, validation, ensuring standards 
compliance, and maintainability and portability of the code. 



 

 

 

Figure 1: 95% confidence interval for 95th percentile, training set size 8 

2.2 Automatic differentiation building blocks 

Algorithmic differentiation starts by analyzing data dependencies from designated input 
variables to designated output variable. Next, it augments the program data with new data to 
hold the derivative values to be computed. Then, it creates new statements to logic that 
perform the computation by considering each elemental numerical operation applied to the 
program data that lies on some dependency path from the input to the output. Regardless of 
the AD tool one might apply to the SAS source code, AD comprises two fundamental 
building blocks.  

Data dependency analysis and data augmentation. The computation of derivatives 
along with the original model computation incurs an overhead in memory and compute time. 
Therefore one often has to restrict derivative computation of certain outputs with respect to 
certain inputs. Dependency analysis filters out all the computation not on a path from the 
inputs to the outputs. The filtered-out computations are called passive computations, and the 
involved variables are passive variables. In contrast, all (floating-point) values computed on 
dependency paths from the designated inputs to the designated outputs are called active; that 
is, they are evaluated in active computations involving active variables. This code analysis 
can be precise when all the computed values in the program are held in distinct variables with 
a fixed semantic meaning (e.g., temperature or pressure). Whenever the data model 
implemented in the program merges the storage of semantically distinct values into a single 
entity (e.g., a large “work array” storing temperature and pressure in different index ranges), 
the currently implemented analyses cannot maintain the semantic separation. Conservatively 
correct assumptions have to be made; for example, all merged values are considered to be on 
the same dependency path that was established for one of the merged values. This process 
incurs overhead in storage and computation. Storage merging also occurs through the use of 
equivalence and (blank) common blocks. 

For each active value (i.e., computed on a dependency path from the input to the output 
variables) the AD tool must make space to hold this value in memory. The computed value 



 

 
 

must be held in some program floating-point variable, say, r. The AD tool can provide the 
space by changing the type of r to an active type that holds the original value as r%v and the 
corresponding derivative as r%d, or it can create a corresponding variable with a uniquely 
adorned name (e.g., r_ad) to hold the derivative value. 

A semantically meaningful derivative computation can be generated only for arithmetic 
operations on floating-point values. When floating-point values are taken as bit patterns and 
reinterpreted to another type (as can be done through transfer, equivalence, F77-style 
parameter passing with deliberately mismatched types), there is no conservatively correct 
algorithm to generate derivative logic for any operations on the reinterpreted bit patterns. 
Even if no operations are performed, however, it is unclear whether and how the bit patterns 
of the corresponding derivative value should be stored and reinterpreted. The (frequently 
incorrect) fallback assumption would have to be that any conversion away from the floating-
point representation signals that there is no differentiable dependency. 

Data flow reversal. For a numerical operation ,...)(...,vu φ=  in the model in question, the 

basic adjoint propagation applied to each argument v  can be written as u
v

vv
∂
∂

+=
φ . It is 

applied to all built-in numerical operations φ  on active data. During the forward execution, 
the left-hand side u  depends on the argument v . The dependency for the corresponding 
adjoint quantities is reversed in that v  depends on u . Applying this rule for the sequence of 
all statements in a program means that the data flow needs to be reversed for the whole 
program. Implementing the data flow reversal by source transformation implies control flow 
reversal and reversal of all statement sequences (including subroutine calls). 

We note that the adjoint statement refers to the partial derivatives 
v∂

∂φ . Given the overall 

reversal and the typical overwriting of variable values, one can see that computing the partials 
requires variable values in the forward order, while the partial values are required in the 
reverse order. To access the partial values, one may choose to store them on a stack, but doing 
so implies a stack size proportional to the number of floating-point operations executed at run 
time. To mitigate the stack size, one stores the partials only for sections and restarts 
computation from checkpoints. Optimized checkpointing schemes do exist, but for long 
computations these schemes require considerable space, and so checkpoint sizes have to be 
minimized and are taken as “application”-level checkpoints (as opposed to system-level 
checkpoints, with the entire process state). They are determined by the AD tool in terms of the 
model data. (Re)storing application-level checkpoints requires the data model to allow code 
generation to (de)serialize part of the model state. Minimizing the checkpoint size requires 
precise data dependency analysis for the same reason mentioned before. 

2.3 Problematic programming practices 

Most of the problematic Fortran idioms reported here are consequences of now-obsolete 
limitations in the language, compiler technology, or hardware; they are no longer needed, or a 
better alternative exists in terms of source code maintainability and expected runtime 
performance. We therefore attempted to reduce the source code base to be adjoint transformed 
by starting with model setups that do not exercise the full functionality of SAS. Through 
runtime profiling we found a reduction to a set of 308 distinct executed subroutines. Filtering 



 

 

out ancillary logic for logging and initialization further reduced that number to 220. Given the 
existing implementation, collecting all the source files for the 220 routines and including the 
referenced modules results in a source code base of about 60K lines of code, or roughly 30% 
of the entire code base of SAS. Through preprocessing, the code size to be transformed grows 
to about 140K lines of code. The rationale for the reduced setup was the hope of implicitly 
excluding some of the code exhibiting the earlier identified problems. Unfortunately, that was 
not the case because the issues proved to be pervasive in SAS. The remainder of this section 
highlights the problems by category.  

Data model. Most of the data is held in common blocks. A migration of the data to 
module variables and user-defined types has started but is still in its initial phase. 

(P1) A serious problem is a repeated pattern using equivalence of the respective first 
element in a given common block to an array variable, as done in the following example: 

COMMON /block/ e1, e2, e3  
! etc. 
REAL(KIND=KIND(1.0d0) :: array(1) 
EQUIVALENCE (e1,array) 
Subsequently, the array, which is declared to be of length 1, is used to access the data in 

the entire block by using indices >1 up to some implicitly agreed-upon upper bound 
representing the “size” of the block. If one assumes that all the elements in block are declared 
as double-precision floating-point numbers, an alignment restriction now requires all elements 
of block together with array to be either passive or active (denote this P1a). Consequently, 
there exists no consistent way to reduce the overhead for selections of subsets of inputs and 
outputs. The use of indices for array that are outside its declared bounds violates the Fortran 
standard. There is, however, no reliable compile time check to enforce the standard’s 
restriction, and therefore such usage patterns have been common practice. We note that this 
practice prevents most runtime array bounds checking commonly implemented as a sanity 
check and debugging helper option in many compilers (P1b). At the same time, because there 
is neither a syntactic hint at the alignment requirement nor a compile time check, an AD 
transformation has to assume that any equivalencing implies such alignment restrictions even 
if, in reality, there are none. Many, but not all, common blocks in SASSYS have elements of a 
single type. If block contains elements of different types and active data, then a misalignment 
is virtually assured (P1c). 

(P2) A related problem is the reinterpretation of data as bit patterns of non-floating-point 
type effected via equivalence statements such as 

 

TYPE(INPT_RNEUTRPrototype) :: RNEUTR 

INTEGER(KIND=KIND(1)), PRIVATE :: RNEUTRInt(1) 
REAL(KIND=KIND(1.0d0)), PRIVATE :: RNEUTRDb1(1) 
EQUIVALENCE (RNEUTR, HEXPCH, RNEUTRINT, RNEUTRDb1)  



 

 
 

where storage space starting at the common block element HEXPCH is accessible by an 
integer or a double-precision array. No standard code analysis has been implemented in any of 
the current AD tools to determine whether all the operations performed on the reinterpreted 
bit patterns are benign (P2a: verify the absence of nontrivial operations). As mentioned 
before, an activation of elements of the equivalenced common block and an access of that 
modified common block through an array of a different type will lead to misalignment 
problems (P2b). This type of problem is extremely difficult to diagnose and, short of 
manually removing the equivalence and replacing the associated functionality in the source 
code, no easy remedy exists. 

(P3) Another, similar problem is the use of the transfer intrinsic, as in the following line: 

PRIMINSize = SIZE(TRANSFER(PRIMIN,  PRIMINDbl))  ! Determine  Block  Size 
It, too, implies a bit-pattern reinterpretation followed by taking the size of an array where the 
elements are the reinterpreted bit patterns. For each of these size values one would have to 
manually investigate (P3a) how exactly the size is used. A use like 

CALL  INPT_IOBaseReadINP(unit, PRIMINDbl, PRIMINSize) 
suggests I/O operations through the equivalenced array. If we assume that the equivalenced 
block contains only double-precision elements, all uniformly redeclared as active, then the 
bit-pattern reinterpretation (depending on the data augmentation method used by the AD tool) 
may include with size also all derivative data storage, thereby causing misalignment for this 
I/O subroutine call (P3b). Bit-pattern reinterpretations of any sort make consistent automatic 
data augmentation much harder. 

(P4) Another problem is data dependencies through the use of blank common blocks with 
varying definitions. For example, compare the following lines: 

COMMON // TSAT1(49)     !TNV1..31 
COMMON // ISGIN(40), ISGOUT(40)   !SS1L..19 
COMMON // BIG(1)     !REEC..5 

These are inscrutable to automatic code analysis (P4a) as well as to most programmers unless 
they happen to be familiar with the code. The subsequent reference to BIG in 

NPLACE=LOCUS+IOFFST-1 
DO 100 I=1,LONG 
W(I)=BIG(NPLACE+I) 

hints at the fact that BIG is used as an array with more than 1 element but, as in the previously 
noted case, this fact is not reflected in the declaration syntax. What, if any, derivative data 
should be tracked between this and the other references to the blank common block storage 
remains unclear until a manual analysis of the code reveals the usage patterns (P4b). 

(P5) There is a implicit assumption that the compiler will allocate storage to local variables 
following the Fortran 77 storage model with static allocation. This effectively promotes all 
variables to have global life span. Thus, a value assigned to a variable v that is local to 
subroutine foo during a given execution of foo can be accessed during the following execution 
of foo. The SAS code makes use of this effect in a number of places. Since Fortran 90 local 



 

 

variables can be dynamically allocated on the stack, in order to enforce the older storage 
model, the SAS code must be compiled with the respective option (-save for Intel’s ifort). 
Doing so, however, prevents certain compiler optimizations. Furthermore, the AD source 
transformation requires a similar modification (currently not implemented) for the 
dependency analysis overriding the actual scope information and giving all variables global 
life span. Eventually this leads to less-precise analysis results and unnecessary overhead for 
the adjoint computation. Instead of global promotion, the variables requiring the rescoping 
should be identified and declared with the Fortran save attribute. 

Data passing. Because of hardware memory limitations an obfuscation such as the use of 
BIG in a blank common block discussed previously had to be accepted as a tradeoff for a 
reduced memory footprint of the program. The logic referring to BIG also hints at the 
(pseudo) address arithmetic performed using Fortran integers where LOCUS is some base 
address in memory and IOFFST an offset to that base address. This is done to move data from 
one memory region to another, where certain subroutines can then operate on it. Much like the 
previously discussed storage, merging this programming pattern obfuscates the data 
dependencies by funneling otherwise distinct data through the BIG array. This process is akin 
to low-level C-style passing of data with memcpy via pointers of type void*. There is no 
syntactic hint about the alignment and therefore little information for any automatic 
transformation (P6) or, again, for most programmers not intimately familiar with the SAS 
code. Furthermore, the implementation of the (pseudo) address arithmetic restricted the code 
to 32-bit platforms, because Fortran integer arithmetic does not automatically reflect the 
different address length on a 64-bit system. Given the nonportable logic, it is a foregone 
conclusion that semantically correct AD data augmentation would be difficult to implement 
manually and virtually impossible for an automatic transformation. 

In addition, the current implementation uses wrapper routines for system library 
functionality such as malloc and free that are provided only as compiler-specific extensions to 
the Fortran standard but not part of the standard and therefore not an integral part of the code 
analysis based on the Fortran memory model (P7). The introduction of dynamic memory 
concepts to the recent Fortran standards makes obsolete the need to refer to C functionality. 
Furthermore, the Fortran syntax provides more information to the AD tool. In particular, the 
restrictions on aliasing implied by the use of allocatable variables over pointer variables are 
beneficial for compiler optimization and source transformation (P8). Using allocatable 
variables also prevents memory leaks. 

Control flow. The data flow reversal needed for adjoint computations implies a control 
flow reversal for the transformed code. The code exhibits numerous cases of unstructured 
control flow, such as the use of go to, early returns from loops or branches, and alternative 
entry. The ability to jump from one instruction to another is limited by the Fortran standard. 
Consequently, not every legitimate forward jump in the control flow graph has a legitimate 
reverse jump in the control flow graph with the same underlying structure (but reversed 
edges). 

In contrast, structured control flow is free of such jumps. In a simplified view with 
structured control flow, every path taken through a loop or branch node in the control flow 
graph has to go through the corresponding endloop or endbranch node. This requirement 
permits control flow reversal by a control flow graph in the transformed code that is identical 
to the original control flow graph except for reversed edges. The concrete reversed path 



 

 
 

through the graph at execution time is controlled by the same conditions as the forward path, 
and therefore only a minimum of information has to be recorded to reverse the concrete path. 

Unstructured control flow for the AD-enabled adjoint computations requires an explicit 
recording of the path through the executed statements and a reversed replay for the data flow 
reversal to be syntactically permissible. This implies a significant overhead for the adjoint 
computation and a slow execution because it effectively removes optimizable loops and 
branches from the reversed control flow (P9) and leaves a flat set of statement sections whose 
execution pattern is unknown at compile time. Various compiler optimization techniques 
benefit from structured control flow as well. 

We summarize the code features with suggested workarounds in Table 1. In the table, AD 
workaround indicates whether some intervention can make AD work without completely 
replacing the problematic idiom. Partial tool support indicates that some usage scenarios are 
handled but that incomplete coverage will require some more costly intervention in the use 
code if the usage falls outside of the covered patterns. Note that some of the problematic 
idioms include others: P2b includes P1c, and P4b includes P1b. The workaround suggested in 
P2a and P3a is an extensive manual check to assert the absence of the respective patterns in 
the code. Portability is meant to be among hardware platforms and compilers. Verification is 
meant here in a wider sense but also includes aspects of the typical verification and validation 
process. A particular aspect is the ability to assert facts about the use and update of model 
data by the executable statements in the program. For example, to verify that a given model 
setup uses exclusively “regime A” to update the temperature data, one would like to assert 
that the temperature field is assigned only in routine foo, whose logic can be checked to 
implement “regime A.” The use of equivalence, memcpy as well as the reliance on externally 
agreed-upon offsets to discriminate between the different data portions precludes simple and 
conclusive checks searching for syntactic references to the temperature portion of model data 
and allowing to make the assertions. Instead, the model data is accessed, copied, and copied 
back in ways that are hard to trace even manually. The corollary is the ease by which off-by-
one index errors and offset mistakes can be introduced (undetectable by compiler or runtime 
checks) and the fact that these errors may remain undetected. 

 

 

 

 

 

 

 

 

 

 

Table 1: Code idioms and suggested workarounds 
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P1a: equivalence differentiable and 
passive data  automatic X       

P1b: equivalence with incorrect array 
bounds  manual X  X X  X  

P1c: equivalence array with mixed-type 
common block no        

P2a: check non-real operations done on 
bit patterns of real data manual 

(costly) 
       

P2b: equivalence to non-real type yields 
misalignment of differentiable data  no   X X X X X 

P3a: use of size after transfer on 
differentiable data manual 

(costly) 
       

P3b: use of transfer of diffentiable data 
for I/O no   X X X   

P4a: blank common block with 
mismatching definitions no no       X 

P4b: blank common block with single 
”big” array of length 1 no   X X X  X 

P5: enforce static allocation of all 
variables by compiler switch automatic automatic X X      

P6: data passing through anonymous 
memory with pseudo address arithmetic 
(IOFFST, LOCUS) 

no   X X X X X 

P7: use of C-library calls malloc and 
free (instead of Fortran memory mgmt.) no   X X X X X 

P8: use of pointer where allocatable is 
appropriate. partial 

support 
X X     X 

P9: unstructured control flow via goto 
and entry  partial 

support 
X X     X 

 

 

 

 



 

 
 

2.4 Code review: incremental modification vs incremental rewrite 

Arguably, certain changes are unavoidable to enable AD. The complicated semantic 
transformations for adjoint computations only exacerbate the ill effects of the identified 
problems. A fitting analogy might be the code changes needed if a program that has been 
written over many years for sequential execution is to be parallelized. We note that none of 
the changes required for AD contradict good coding practices but instead contribute to the 
earlier-stated general goals for a redesign of parts of SAS. Two main groups of changes can 
be identified. 

Redesign the data model. While the file formats used to initialize the data for a SAS 
model run and capture the output will have to remain invariant, the internal representation 
should be changed, and in the process the offending programming patterns should be 
completely eliminated. The following aspects should be considered for the data layout: 

• Globally accessible data organized to achieve locality by physical properties of the 
engineering problem and functionality implemented in SAS permits easy tracking of data 
references. Either subroutines either directly access the global data implemented as module 
variables, or direct references to the global data are passed as arguments. 

• An alternative data layout that is built on the fly as stack variables local to certain top-
level subroutines will always imply more passing of data as subroutine arguments and more 
encapsulation of data in nested types and makes tracking data dependencies more difficult. 

• Employing user-defined types, one can nest data structures. This nesting can be used to 
reflect locality of groups of data in the physical setup being modeled. While such nesting is 
plausible, however, it may not provide the locality needed by the computation. For example, 
one may want to have immediate access to all temperature data instead of first having to 
extract the temperature data buried in a data structure reflecting the physical assembly. 
Hierarchical structures can still be reflected in the temperature array by using multiple ranks. 
Globally accessible data allow for simpler (less-nested) data structures. 

• For parallel execution the top-level structure in the data model should reflect the 
partitioning. As long as each process still executes sequentially, the above remarks in favor of 
globally accessible data still hold. In many cases multithreaded parallelism can also be 
implemented to operate on partitioned global data rather than thread-private data although 
perhaps then using few of the typical usages patterns supported by established tools. 

• For dynamic memory allocation the use of allocatable is much preferred over pointer 
because it limits the possibility for aliasing. For performance and adjoint code generation it is 
highly desirable to allocate once and reuse over repeated local allocate/deallocate pairs. 

• Allocation with constant array bounds, where possible, is preferred, in particular because 
it can be used to fix loop bounds. Compiler optimization and AD control flow reversal benefit 
from fixed array and loop bounds.  

• Recursive data structures (e.g., linked lists) and other uses of pointers should be avoided 
unless required. The use of pointers poses problems for checkpointing (similar to problems 
known in the context of serialization) and the restoring of address values; both are needed for 
the data flow reversal. 



 

 

Modify control flow and encapsulation. One should be able to rewrite the logic in such 
a way as to avoid unstructured control flow. Concerns with handling of unstructured control 
flow, the data model, and so forth should not apply to source code that does not contain 
operations that need differentiation. Therefore, it is helpful to extract the numerical core from 
the model code and analyze and transform only the core. Because of the nesting afforded by 
using module or subroutines with contains, one can group numerical functionality with 
initialization, debugging, and so on in a single syntactic envelope. The envelopes make it 
difficult to separate out the numerical core. In addition to commonly accepted rules for 
encapsulations, it is therefore desirable for AD to go a step further and encapsulate the 
common data, the numerical computations, and the ancillary logic in separate entities. 

A modularization of the code that is enhanced by preprocessor directives should enable 
building different configurations by filtering out both unnecessary parts of the data model and 
the logic (calls to subroutines and their definitions).  

Given the above, one should note that the overwhelming majority of the work comes with 
the data model redesign because it has a global effect on the source code and is more difficult 
to regression test. On the other hand, modifying the control flow is a local change that is 
comparatively easy to test for consistency with the unmodified source code. 

Possible remedy: incremental modification. Incrementally modifying the existing 
source code while maintaining all existing functionality is an approach most suited to local 
changes. It may be possible to achieve the redesign in this way, and the advantage is the 
uninterrupted availability of all functionality of SAS. Given the need to modify the globally 
accessible data model, however, the required changes will have a wide scope, implying 
massive modifications throughout the source code. In other words, the ensuing changes are 
unlikely to be “incremental.” Chances for introducing errors increase, and so does the effort to 
maintain all functionality. Because of this extra effort, the cost for making corrections as the 
data model is being changed is substantial. 

Preferred remedy: incremental rewrite. Realizing the global impact of the data model 
one might instead start with designing a new data model. With this model one would then 
piecewise rewrite to match the new data model: 

• Logic for initialization 

• Logic for result outputs 

• Individual physics components that make up SAS 

Identifying the components, where there are not well separated from each other in the 
current SAS implementation, offers the chance to modularize the code in terms of both 
encapsulation and the preprocessor filtering suggested in the beginning of this section. After 
integrating each piece, the consistency of the output with the original SAS output should be 
verified to build up the prerequisite for the eventual switch over to the rewritten SAS code.  

By designing the data model first and then rewriting the components, one has better 
granularity of the work units and can achieve a truly incremental approach. Experience 
suggests an overall lower effort and much improved tractability compared with the first 
approach. The design of the data model as the critical first step requires expert insight into the 
(abstract) data access patterns of the SAS components and ideally also the review by an AD 
expert. 



 

 
 

 

2.5 Automatic differentiation of SHARP component UNIC 

From the conclusions drawn from the effort in SASSYS, the application of AD 
methodology to the UNIC code was motivated as follows:  

- Identification at a high level an eigenproblem that is solved in the UNIC code. Starting 
from the high-level description, which lends itself to a high-level adjoint formulation, 
we then identify a subproblem that warrants the use of AD. By restricting the 
application of AD to the subproblem, we expect to reduce the amount of UNIC source 
code to be transformed by the AD tool. 

- The expectation that the Fortran source code in UNIC, having a more recent origin, 
was not containing any of the programming patterns that prohibited the application of 
AD to SASSYS.  

While both points were met in principle and the application of AD was eventually 
successful, the path was not straightforward. The lessons learned will be applicable to 
continued work. The major phases of the AD application are outlined below. 

Identify the source code representing the subproblem. In view of the high-level 
characterization of the relevant part of the computation as solving an eigenproblem using an 
iterative method, it is often not advisable to subject the entire source code to AD. The reasons 
include the possibility of using black-box libraries for the iterative solve steps and the 
efficiency gains obtainable by exploiting the high-level insight that allows an inexpensive 
adjoint formulation and use of the AD tools where necessary. Here, this means identifying the 
logic in UNIC that implicitly applies the system matrix to a given vector. 

The top-level procedure (SN2NDz_MGS_ApplyA) was known, but in a static analysis 
included references to UNIC functionality and external libraries not needed for the proof of 
concept to be shown here for a benchmark problem. To suitably restrict the scope, therefore, 
we profiled the code in order to identify the subset of the UNIC source code relevant to the 
benchmark. While this represented the functional dependencies, a first round of testing clearly 
showed that the global data (module variables) imply additional dependencies, requiring the 
transformation of significantly more (a factor of 4) code to ensure the correct data setup.  

Determine the data dependencies. Based on the results of the first round of testing, we 
again carried out benchmark profiling. The final amount of UNIC code to be differentiated 
was approximately 30K non-comment lines of Fortran. The additional code to be transformed 
in order to achieve consistent data initialization was approximately 90K non-comment lines of 
Fortran from a total of approximately 300 source files. 

Devise a build procedure for the AD transformation. In order to achieve a consistent 
transformation, the AD tool must have a view of all the references to the data and logic that 
are to be transformed at the same time. The source files identified in the previous two steps 
stem from a variety of separately built UNIC components and therefore are not directly usable 
for the AD transformation. An AD-specific build procedure makes all the identified source 
files available (via symbolic links) to the AD tool in one step and enables linking with a top-
level driver procedure modified for AD and other adaptations outlined in the next section.  



 

 

Adapt the source code. While the UNIC source code base is comparatively clean, the 
introduction of certain recent Fortran language features can in some cases still pose inherent 
difficulties for the transformation. One notable example is the qualification of variables as 
pointer where a qualification as allocatable would be appropriate. The same assumptions 
allowing more aggressive compiler optimizations for variables with the latter qualification 
also permit a significantly simpler and more efficient adjoint transformation.  

Other code modifications are caused by as-yet-unsupported language features such as the 
replacement of invocations of Fortran procedures via function pointers. Modifications to 
enable the computation of the derivatives for the subproblem include the injection of calls to 
hook methods on entry and exit of the top-level procedure (SN2NDz_MGS_ApplyA).  

All changes are triggered by preprocessor directives and have been committed 
permanently to the UNIC source code repository. 

Use library wrappers, drivers, verification. The benchmark test makes references to 
certain functionality provided by the PETSc library. Because the PETSc library was not 
differentiated, this functionality was wrapped to enable the derivative computation. The 
implementation of the hook methods to enable the computation of the inner product of the 
matrix vector product, as well as initialization and retrieval of the derivative values, is given 
as Fortran source. The wrappers, the hook methods, the driver for the transformed source 
code, and the makefiles for the transformation and linking of the transformed source code are 
permanently retained in a source code repository. 

Initial tests indicate the correctness of the source transformations, implying the 
correctness of derivatives computed with AD. 

3 Results and Discussion 
The intermediate benefit of preparing SAS for algorithmic differentiation was an 

extensive review of code features and a set of recommendations for code modification. In the 
material above we have provided the main contents of this review, which can be used as a 
basis for future code development and standardization. This project could be undertaken in 
cooperation with developers of AD tools.  

The changes made under either incremental modification or the incremental rewrite 
approach will have to be tested by regression and eventually validated. The timeline implied 
by the second (preferred) approach suggests an incremental buildup of regression tests 
corresponding to the integration of rewritten components. The numerically stable output 
values need to be identified, separated from inherently unstable outputs (subject to numerical 
noise), and assigned limit values for absolute and relative discrepancy. The obtained 
knowledge of the structure of the code and at least partial AD capability for the integrated 
components would be helpful here. In particular, elements of sensitivity analysis can be used 
to greatly speed the process of establishing precision thresholds and ranking parameters by 
stability and importance. 

The task of validation here means partial validation that the computed results correspond 
to the externally established principles (such as physical conservation laws, or closeness to 
known exact solution). Such tests will also be easier to formulate on components of the 
system as they are integrated under the incremental rewrite approach. 



 

 
 

 

 

Figure 2: UNIC differentiation diagnostics, partial output 

At the current allocation of resources and with no significant code modification of SAS, 
capability for algorithmic differentiation cannot be achieved, and the preparation work 
performed for AD will be set aside as reference material to assist with the future code 
development (in context of AD capability or otherwise). 

With the limited amount of effort redirected to differentiation of UNIC, we were able to 
achieve capability for direct differentiation. At this point, the effort to fully verify this 
capability is not finished. The interpretation of results beyond the algorithmic correctness of 
AD is still in process, and the diagnostics we are relying on (see an example of the output in 
Figure 2) are not easy to examine and interpret. Clearly, additional effort is required to attach 
this newly obtained capability to practical tasks related to improved performance and use of 
UNIC. 

Overall, we maintain that, with additional effort required for codes with obsolete 
programming components, algorithmic differentiation remains a powerful and effective tool 
for code analysis. Once the technical difficulties of obtaining derivatives are resolved, it will 
drive the effort in advanced uncertainty analysis for models of high complexity and high 
dimension of uncertainty. 

4 Summary 
In our work in FY11-12, we performed an extensive analysis of the SHARP component 

code SAS, in the context of algorithmic differentiation. An intermediate result was a detailed 
(and otherwise not practically possible) annotation of the code for future development and 
standardization. While none of the mathematical (essential) components of the model 
prevented algorithmic differentiation, code organization and features in variables and memory 
management presented technical difficulties. We concluded that the capability for AD cannot 
be achieved without code modification. We have outlined two plans for possible code 



 

 

improvement and argued that such effort will eventually become necessary for multiple 
reasons, many of them coming from wider context than just AD. We briefly identified future 
work in verification and validation of modified code as it is being developed. 

Algorithmic differentiation of high-performance simulation codes was demonstrated (in 
the initial stages) on UNIC. This required comparatively less effort and is perhaps a better 
example of how we expect AD preparation process will work, given adequate resource 
allocation. 

In the context of the NEAMS mission, our effort on implementing AD is a driving effort 
and one of the possible key elements that will enable advanced uncertainty analysis of codes 
previously inaccessible to any but the most basic (and computationally expensive!) 
uncertainty quantification techniques. We hope to continue the development work as a part of 
an independent effort or within practical code development and analysis tasks of NEAMS. 
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