
Job Coscheduling on Coupled High-End Computing Systems

Wei Tang,∗ Narayan Desai,† Venkatram Vishwanath,† Daniel Buettner,‡ Zhiling Lan∗

∗Department of Computer Science, Illinois Institute of Technology
Chicago, IL 60616, USA

wtang6@iit.edu, lan@iit.edu
†Mathematics and Computer Science Division

‡Argonne Leadership Computing Facility
†‡Argonne National Laboratory, Argonne, IL 60439, USA

desai@mcs.anl.gov, venkatv@mcs.anl.gov, buettner@alcf.anl.gov

Abstract—Supercomputer centers often deploy large-scale
computing systems together with an associated data analysis or
visualization system. In this paper, we propose a coscheduling
mechanism, providing the ability to coordinate execution between
jobs on different systems. The mechanism is built on top of a
lightweight protocol for coordination between policy domains
without manual intervention. We have evaluated this system
using real job traces from Intrepid and Eureka, the production
Blue Gene/P and data analysis systems, respectively, deployed at
Argonne National Laboratory. Our experimental results quantify
the costs of coscheduling and demonstrate that coscheduling can
be achieved with limited impact on system performance under
varying workloads.

I. I NTRODUCTION

High-end computing (HEC) systems are increasingly using
heterogeneous processing elements in their designs. In the
typical configuration, accelerators such as GPUs are used in
addition to the traditional CPUs. Meanwhile, the volume of
data produced by high-end applications continues to grow,
leading to an increasing demand for data analysis and visual-
ization capabilities.

The trend has driven the deployment ofcoupled systems,
where a general-purpose compute system running scientific
computations or simulations is connected by a shared filesys-
tem or over the network to a special-purpose system used
for data analysis and visualization. Such systems are already
common, such as Intrepid and Eureka at Argonne National
Laboratory, Jaguar and Lens at Oak Ridge National Laboratory
(ORNL), and Ranger and Longhorn at the Texas Advanced
Computing Center (TACC). Figure 1 depicts a typical coupled
HEC system. On such systems, many applications run in a
post hoc fashion: data generated by compute applications is
first written to storage systems and then processed by analysis
applications.

While post hoc execution is common, however, co-execution
is increasingly demanded. One reason is that co-execution
enables monitoring of simulations, debugging, and visual
debugging of the simulation code at run time. Another reason
is that co-execution can accelerate the I/O time [33]—one of
the critical bottlenecks faced by simulations—by by staging
simulation I/O data to the memory of a couple resource
and avoiding writing data to persistent storage, This strategy
requires that both compute and analysis applications be alive at

the same time. Furthermore, computations in several scientific
domains require access to heterogeneous resources to concur-
rently execute models wherein one of more models are tailored
for GPU-based systems while others are optimized for CPU-
based clusters. This kind of computation requires co-execution
spanning heterogeneous coupled resources. Thus, many ex-
isting applications already can benefit from co-execution on
coupled systems, and more are anticipated if job co-execution
can be conveniently achieved.

Resource managers commonly used in high-performance
computing systems support a rich set of descriptions for
resource requirements. However, capabilities for representing
interjob temporal constraints are lacking. In general, job-
ordering constraints (modeled as job dependencies) are sup-
ported, but job co-execution is not. This latter capabilityis a
prerequisite for the execution model described above.

In this paper, we propose a coscheduling mechanism that
coordinates execution between jobs on different systems.
Specifically, the coscheduling can guarantee that associated
jobs (e.g., a compute job with the associated data analysis job)
start simultaneously across the coupled systems. The mecha-
nism is built on top of a lightweight protocol for coordination
across policy domains without manual intervention. Unlike
the commonly known coscheduling mechanisms to coordinate
process co-execution within a cluster of time-sharing ma-
chines [21], our coscheduling involves scheduling coordination
among multiple independent resource management domains.

Fig. 1. Typical coupled HEC systems: a large-scale compute system (left)
and a special data analysis/visualization system (right),which share a single
storage system via a network.



The primary challenge of such coscheduling comes from the
combination of multiple scheduling policies on multiple re-
source management domains. Minimizing the coupling of the
multiple resource managers involved in coscheduling increases
scalability and enables the implementation of this approach
across multiple resource managers. Coscheduling also costs
more than independent scheduling; thus, minimizing this cost
is also another clear goal.

To achieve these goals, we designed a distributed algorithm
and implemented it in an existing resource manager. We
evaluated our mechanism with event-driven simulations using
real job traces from the production Blue Gene/P [7] and data
analysis systems deployed at Argonne National Laboratory.
Our experimental results demonstrate that coscheduling can
be achieved with limited impact on system performance un-
der varying workloads. We also quantified the performance
sensitivity of coscheduling to various configurations.

The remainder of this paper is organized as follows. Sec-
tion II presents background, including some sample coupled
systems and motivating applications. Section III discusses
some relevant work. Section IV describes our coscheduling
design. Section V evaluates coscheduling performance via
trace-based simulations. Section VI concludes the paper and
points out future work.

II. BACKGROUND

We begin with a discussion of several existing coupled
systems. We then describe a few applications that motivate
our study of coscheduling.

A. Examples of Coupled Systems

Many supercomputing centers have a large-scale system in
charge of simulation and another system responsible for data
analysis and visualization. One example is Intrepid and Eureka
at Argonne National Laboratory.

Intrepid is a 556 TF Blue Gene/P system [7] operated by the
Argonne for the U.S. Department of Energy INCITE program
[2]. The system comprises 40,960 quad-core nodes, giving
a total of 163,840 cores. It was ranked 13th in the latest
Top500 list released in November 2010 [6]. Eureka is a data
analysis cluster, comprising 100 computing nodes with 800
Xeon cores, 3.2 TB memory, and 200 NVIDIA Quadro FX
5600 GPUs. It is currently the largest installation of GPUs.
A Myrinet switch complex connects Intrepid, Eureka, and a
storage system consisting of PVFS [19] servers and storage
nodes. Therefore, Intrepid and Eureka can exchange data on
the shared file system or through the network directly.

Other such deployments exist in other supercomputing
centers. For example, TACC has Ranger and Longhorn. Ranger
is a SunBlade system with 62,976 cores, currently ranked 15th
in the Top500 list. Longhorn is a 256-node Dell cluster with
128 GPUs. ORNL deploys Jaguar and Lens. Jaguar is a Cray
XT5 system with 224,162 cores, currently ranked second in
the Top500 list. NICS/UTK has Kraken and Verne. Kraken is
a Cray XT5 with 98,928 cores, ranked eighth in the Top500.
Verne is a 5-node Dell cluster.

B. Motivating Applications

A variety of applications would benefit from coscheduling.
One is the coupled type in which computing and data anal-
ysis or visualization are conducted separately. For example,
FLASH [30] is used to simulate buoyancy-driven turbulent
nuclear burning; it uses VL3 [9] for visualization. PHASTA
[15] is used for parallel, hierarchic, adaptive, stabilized tran-
sient analysis; it uses the visualization tool ParaView [5]. Both
can benefit from co-execution. Specifically, running simultane-
ously with the compute application, the analysis/visualization
application can process the output data at run time. Further-
more, if both applications are alive, the two can exchange
a large amount of data via the network instead of using
a permanent storage system, thus accelerating the I/O time
[33]. Currently, co-execution is fulfilled mainly by makinga
reservation manually or submitting one job immediately after
the related job starts (it works only when one of the systems
is lightly loaded).

Another type of motivating application is the coupled com-
putation using heterogeneous resources across the different
systems. An example is the weather forecasting models run
by NASA [4] wherein multiple climate analysis models are
executed concurrently and their results are fed into one or
many prediction models where each model is typically an
independent parallel program. A key requirement to attain real-
time climate prediction during hurricanes is to schedule the
various executable concurrently. Moreover, some of the models
could be optimized to run on GPU-based systems while others
are tailored for CPU-based systems.

Furthermore, with coscheduling, some existing work in
more loosely coupled systems, such as Grid [13], can also
be applied to our coupled HEC system. One example is
MPICH-G2 (Globus-enabled MPI) [18], which provides for
MPI-style interprocess communication between computing
resources. Moreover, applications similar to metacomputing
[10] can also be applied to the coupled HEC environment
with coscheduling.

In summary, a number of existing applications can benefit
from coscheduling; and in return, coscheduling can boost
the emergence of more applications taking advantage of the
heterogeneous resources in coupled HEC systems.

III. R ELATED WORK

The term “coscheduling” is commonly used to denote
a specific mechanism proposed for concurrent systems that
schedules related processes to run on different processors
at the same time [21]. It has a strict version named gang
scheduling [34] and other versions or enhancements proposed
in the literature, such as demand-based coscheduling [25],
dynamic coscheduling [24], buffered coscheduling [22], and
flexible coscheduling [12].

These mechanisms share a similar goal with our coschedul-
ing: running related processes (in our case jobs) simultane-
ously. The difference is that the former are used for time-
sharing systems belonging to a single scheduling domain,



where nodes and job queues are managed by a single re-
source manager. Driven by the use of coupled systems, our
coscheduling fulfills the need to start associated jobs across
multiple scheduling domains (i.e., different resource managers
with independent scheduling policies).

Advance resource co-reservation has been widely proposed
to coordinate resource allocation across multiple systems.
MacLaren [20] presented the Highly-Available Resource Co-
allocator (HARC), a system for creating and managing re-
source reservations used for metacomputing applications [10]
or workflow applications. Foster et al. [14] proposed GARA,
a general-purpose architecture for reservation and allocation.
Yoshimoto et al. [35] presented GUR, a system for coschedul-
ing compute resources in a Grid computing environment using
user-settable reservations similar to travel arrangements.

While co-reservation can be used to start related jobs
on multiple systems at the same (reserved) time, however,
it is not suitable in coupled HEC systems. First, because
the two coupled systems are administratively heterogeneous,
co-reservations on both machines involve expensive manual
efforts in policy negotiation. Second, excessive use of reser-
vation will leave temporal fragmentations on the computing
resources, thereby leading to worse response times for regular
jobs [26]. Our work fits the coupled HEC environment well
because it is free from manual intervention and will leave no
temporal resource fragmentation.

Metascheduling [32] also involves scheduling jobs on mul-
tiple clusters. It aims at optimizing computational workloads
by combining an organization’s multiple distributed resource
managers into a single, aggregated view, allowing batch jobs
to be directed to the best location for execution. Existing
work includes GridWay by Globus Alliance [16], LoadLeveler
by IBM [17], and Moab by Adaptive Computing Inc. [3].
However, these schedulers require a global job submission
portal. A unique feature of our work is that we remove
the restriction of a global submission portal by enabling
independent job submission on each resource.

The term coscheduling is also used in other problem do-
mains with various objects, such as coscheduling of compu-
tation and data [23], coscheduling CPU and network capacity
[8][27], and coscheduling CPUs and GPUs for heterogeneous
computing [29]. The object of our coscheduling is associated
jobs that need co-execution on different machines in coupled
HEC systems.

IV. COSCHEDULINGDESIGN

In this section we define job scheduling, present our core
coscheduling algorithm and its various configurations, and
discuss enhancements and potential drawbacks.

A. Problem Statement

Suppose two systems (machines)A and B are running
workloads of parallel jobs. Jobs on each system are managed
by different resource managersR1 andR2, respectively.R1

and R2 use independent scheduling policies. Among all the
jobs on the two systems, there exist some pairs of associated

jobs. In such a job pair, one job is submitted to one system,
and the other job to the other system. These two associated
jobs need to be started at the same time even though they are
scheduled separately on different systems.

We need a coscheduling mechanism to guarantee all the
associated jobs in the same pair start at the same time without
manual reservation. Meanwhile, the mechanism must limit the
side effect on system utilization and the response times of both
paired and nonpaired jobs.

To fulfill coscheduling, we need to make the resource
managers aware of the information of associated jobs. More
essentially, we need a protocol to coordinate and synchronize
the scheduling of the associated job.

B. Basic Schemes

In job scheduling, we say that a job is “scheduled,” or
“ready,” when a job is selected by the scheduler to start next.
A scheduled job can have the highest priority or have been
given the opportunity of backfilling [31]. The job should be
assigned with a designated number of nodes. Normally, when
a job is scheduled, it can start immediately. With coscheduling,
however, a scheduled job may not be started because it may
need to wait for its mate job.

When a job is ready to run but its remote mate cannot, we
have two basic coscheduling schemes, “hold” and “yield,” to
choose from. With hold, when a job is ready but its mate job
is not, it will hold the needed computing nodes, not allowing
them to be used by others, until the remote mate gets ready in
the future. With yield, it will give up the chance to run without
occupying any nodes and allowing the scheduler to schedule
another job.

Regarding minimizing paired job synchronization, hold is
better than yield. A holding job will start immediately once
its mate job gets ready. However, a job that once yielded may
not necessarily able to start when its mate is ready, because
of a lack of resources, so it may need to yield repeatedly.

Regarding impact to system utilization, the yielding job
imposes less impact than does the holding job. When the
nodes are held by a job, they cannot be used by other jobs.
The scheduler treats the held nodes as busy; other jobs can
neither run on them nor hold them. On the other hand, the
yield scheme rarely is harmful to system utilization.

C. Main Algorithm

The core coscheduling algorithm extends the existing func-
tion in the traditional resource manager, which is invoked
when a job is scheduled and ready to run. Normally, the func-
tion starts the scheduled job on the assigned nodes. But with
coscheduling, additional logic will be executed before thejob
can actually start. Algorithm 1 describes this function, which
we callRunJob, enhanced with coscheduling algorithm.

The algorithm is distributed: “self.xyz” calls a local func-
tion, and “remote.xyz” calls a remote function on the remote
machine. Each machine runs the same algorithm with a locally
configured scheme, either hold or yield. The algorithm can be
enabled or disabled by a flag.



Algorithm 1: RunJob(j, N )
Input : A scheduled jobj with assigned nodesN
Result: Job j either starts, or holds, or yields. Its remote

mate jobk, if existing, could be triggered to start
under certain condition.

1 if cosched enabled then
2 k = remote.getMateJobId(j)
3 if k then
4 mate status = remote.getMateStatus(k)
5 switch mate status do
6 case′′holding′′

7 self.startJob(j, N )
8 remote.startJob(k)
9 endsw

10 case′′queuing′′

11 case′′unsubmitted′′

12 mate started = remote.tryStartMate(k)
13 if mate started then
14 self.startJob(j, N )
15 end
16 else
17 if self.scheme == ′′hold′′ then
18 self.holdJob(j, N )
19 end
20 if self.scheme == ′′yield′′ then
21 self.yieldJob(j)
22 end
23 end
24 endsw
25 case′′unknown′′

26 self.startJob(j, N )
27 endsw
28 endsw
29 end
30 else
31 self.startJob(j, N )
32 end
33 end
34 else
35 self.startJob(j, N )
36 end

As shown in Algorithm 1, if coscheduling is not enabled or
the mate job is not found, the ready job will start normally
(lines 35 and 31, respectively), skipping the coscheduling
logic. If coscheduling is enabled and a valid mate is found,
we will first get the status of the mate, based on which the job
will act. If the remote job is in hold status, both jobs will be
started immediately (lines 7 and 8). If the mate job is waiting
in the queue or unsubmitted, a remote function will be called
to try to run the mate job. Functionremote.tryStartMate(k)
(line 12) invokes an additional scheduling iteration on the
remote machine and returnsTrue only if the mate jobk
gets started. If the mate job is started, the local job is also

started (line 14). If the mate job cannot run at this moment
(including the unsubmitted case), the local job will eitherhold
(line 17) or yield (line 20) according to the preconfigured local
coscheduling scheme. Functionself.holdJob(j,N) sets jobj
to holding status and marks the nodesN busy, not allowing
another job to use them. Functionself.yieldJob(j) invokes an
additional local scheduling iteration to try to run other jobs. If
the remote status is unknown, the algorithm continues to start
the local job (line 26).

The algorithm is fault-tolerant: a job will not wait forever
when the remote machine or its mate job is down. If the remote
system is down, line 2 will return nothing so that the ready
job will start immediately. If the mate job fails alone, the mate
status will be returned as unknown (line 25). The ready job
thus will start normally, too.

D. Scheme Combinations

In order to apply coscheduling on the coupled systems,
each machine must be preconfigured with a coscheduling
scheme. To this end, we have identified four combinations
of configuration: hold-hold, yield-yield, hold-yield, andyield-
hold. We discuss how these combinations work to achieve
coscheduling. We also point out potential problems.

1) Hold-Hold: Hold-hold means using the hold scheme on
both machines of the coupled system. In this setting, when one
job of the paired job gets ready, it will enter hold status. Once
the second job gets ready, both jobs can start immediately.

Hold-hold is effective for synchronizing two jobs, but it may
result in deadlock. Indeed, theoretically, hold-hold meets all
of the four conditions causing deadlock: mutual exclusion (a
node can be assigned only to a job), hold and wait (a job holds
some nodes and waits until its mate is ready), no preemption
(we do not have preemption), and circular wait (both machines
use hold, so that circular wait is possible). Figure 2 shows a
simple example of deadlock. Deadlock can be solved by our
enhancement discussed in next subsection.

Fig. 2. Example of deadlock. MachineA has a joba1 holding 6 nodes,
waiting for its mateb1 queuing on machineB and also requesting 6 nodes.
But machineB has another jobb2 holding 6 nodes, waiting its matea2
queuing on machineA and requesting 6 nodes.



2) Yield-Yield:Yield-yield means using the yield scheme on
both machines of the coupled system. In this setting, the paired
jobs can be started only when both get scheduled and assigned
with sufficient nodes simultaneously. Before that, both jobs
may alternately yield. But they can eventually reach the both-
ready condition, because they will eventually get the highest
priority on their respective machine if job priority increases by
time. The most commonly used FCFS (first-come, first-served)
policy [11] and some of its variations such as WFP [28] serve
this purpose well.

3) Hold-Yield and Yield-Hold:Hold-yield and yield-hold
use different schemes on different machines. In this setting, the
goal of coscheduling can also be achieved. Suppose machine
A uses hold and machineB uses yield. If joba on A gets
ready first, it will hold; when its mate jobb gets ready, they
can both start immediately. If jobb is ready first, it will yield;
when joba gets ready, it checks whetherb is ready. If it is,
both start; if not, joba holds until job b gets ready for the
next time.

E. Enhancements

In this subsection we discuss an enhancement to solve
deadlock. We also address the drawbacks of both the hold
and yield schemes.

1) Solving Deadlock: To solve deadlock, we deploy a
scheme to force the holding jobs to release their resources
periodically (e.g., every 20 minutes) so that other waiting
jobs can use the previously held resources. This preemptive
scheme can break circular wait. Consider the same example
in Figure 2. If joba1 releases its resource temporarily, joba2
can get the nodes to start; so canb2. Whenb2 completes, job
b1 can start. Thus the deadlock is solved. In order to guarantee
the nodes released by joba1 can be used by joba2, the job
that releases the nodes (i.e.,a1) should be set to the lowest
priority at that scheduling iteration. If the released nodes are
preempted by other jobs, the original holding job will be put
in queuing status. Otherwise, the job will hold by the original
holding job again.

Since deadlock can be solved, all the four configura-
tion combinations can achieve coscheduling. That means the
schemes are locally configured: an individual machine needs
to be configured only with its local scheme, without knowing
the remote configuration. This model make the coscheduling
schemes highly practical and scalable.

2) Reducing Performance Impact:To soften the impact
of coscheduling on system performance, we have deployed
several enhancements.

In order to reduce system utilization waste as well as regular
job waiting time, it is desirable to avoid having most of
the computing nodes in hold status. Therefore, we enforce
a maximum threshold for the proportion of nodes. If a job
is going to hold some more nodes so that proportion of held
nodes exceeds the threshold, the job will yield instead of hold.
With the strategy, the system can have at least a number of
nodes able to be consumed normally.

To restrict the number of alternate yields, we introduce a
maximum yielding threshold. That is, if a job yields more than
a certain amount of times, it can start holding. Another option
is to increase the priority of the job after it yields each time.

V. EVALUATIONS

In this section, we evaluate coscheduling by simulations
using the job traces collected from the production coupled
HEC systems deployed at Argonne.

A. Experiment Setup

To simulate coscheduling, we have extended Qsim [28], the
event-driven simulator along with the Cobalt resource manager
[1], to support multi-domain coscheduling simulation. For
simulation, we need only to replace the real resource managers
with the event-driven simulators, which maintains jobs from
job traces and compute nodes from the configuration files.

In the experiment, we use real system configurations; that
is, 40,960 nodes on Intrepid and 100 nodes on Eureka are
available for scheduling. The job traces were collected from
the production Intrepid and Eureka systems within the year of
2010. On Intrepid, the job size ranges from from 512 nodes
to 32,768 nodes. On Eureka, the job size ranges from 1 node
to 100 nodes.

The scheduling policy used on both schedulers is the same
as those used on the real machines, namely, WFP [28] plus
backfilling. The coscheduling algorithm can be plugged in and
out, so that we can compare the performance with and without
coscheduling. To break the hold-hold deadlock, we set the held
nodes’ releasing period at 20 minutes.

B. Capability Validation

We ran a large number of simulation cases to verify the
coscheduling mechanism. A simulation case is determined by
three configurations: a combination of the scheme configura-
tions, a combination of system utilization rates on both ma-
chines, and the proportion of paired jobs. We tuned the scheme
configuration for four options: hold-hold, hold-yield, yield-
hold, and yield-yield. We also tuned the system utilization
rate and proportion of paired jobs to various values. We ran
each case 10 times.

All simulations cases ran successfully to completion, and the
output logs show that all the paired jobs start at the same time
with their own mate jobs no matter which one gets ready first.
That means that coscheduling is achieved by all configurations
of schemes under various workloads.

Furthermore, deadlock is solved with the enhancement
described in subsection IV-E1. Without the enhancement,
deadlocks are highly likely to be observed when the simulation
time span more than 10 days. When deadlock occurs, the job
queues on both machines keep growing, but no job can start.
With the enhancement, this phenomenon never happens. In the
experiment, we set the releasing interval to 20 minutes, which
can be tuned freely by system owners.

The other enhancements turned out to be optional to achieve
coscheduling. The simulations ran successfully when we set



the nodes that could be used for holding as the whole system.
Even when the threshold was not for maximum yielding times,
no starvation was observed. That is, all the paired jobs on the
system using the yield scheme start naturally in the scheduling
simulation, without waiting until in the cooling-down phase of
the simulation.

Although coscheduling can be achieved for all simulation
cases, the performance varies with configuration. In the rest
of this section, we briefly describe the metrics used and then
present a set of results to quantify the performance and cost
of the coscheduling under some typical system loads and
proportion of paired jobs.

C. Evaluation Metrics

Four metrics were used in the performance evaluation.

• Waiting time (wait): the time period between when the
job is submitted and when it is started.

• Slowdown (slowdown): a job’s response time (waiting
time plus running time) divided by the job’s running
time. It captures the fact that a long job can endure
longer waiting than a short job can. The averagewait

andslowdown among all the jobs can measure the overall
system performance of job scheduling.

• Paired job synchronization time (sync time): the extra
time a job has to wait for its mate in a coscheduling
setting. By examining the average synchronization time
among all the paired jobs, we can measure the perfor-
mance cost to the paired jobs.

• Service unit loss: the wasted computing capabilities
caused by holding. We measure this metric in node-hours
and system utilization rate. This metric reflects the impact
of coscheduling on system utilization.

D. Performance under Various System Loads

In this part of our experiments we measure the performance
impact brought by coscheduling under different Eureka system
load. Because the current Intrepid system load is high and
stable but the Eureka system load low and unstable (it is
highly likely to vary in the future), we wish to study how
coscheduling behaves when the Eureka load varies. This
information will help us decide the way to choose job traces.

We set the time span as one month. For Intrepid, we used
the real job trace in a month containing 9,219 jobs. For Eureka,
we used half-synthetic job traces to simulate various workload
on Eureka. That is, by adjusting the job arrival intervals we
can pack the workload in multiple months into one month.

We made three new Eureka traces with system utilization
rates, 0.25, 0.5, and 0.75, to present low, medium, and high
system load, respectively. For making each new trace, we mul-
tiplied a same fraction to each job arrival interval in the real
Eureka trace, so that the shape of job arrival distribution was
the same with the real trace. In each simulation, we associated
the two jobs on different machines if their submission times
were within 2 minutes. The resulting proportion of paired jobs
was between 5% and 10%.

Fig. 3. Scheduling performance (avg. wait) by Eureka system load.

Now we will present the results. Figure 3 shows the average
waiting time. The bars on the x-axis represent simulations
using coscheduling. They are in three groups. Each group
represents a system load on Eureka, measured by a system uti-
lization rate of 0.25, 0.50, and 0.75, respectively. Withineach
group are four bars, representing the coscheduling scheme
combinations: HH means using hold on both machine, YY
means using yield on both machines, HY means using hold
on Intrepid and yield on Eureka, and YH means using yield
on Intrepid and hold on Eureka. The y-axis shows the average
waiting minutes of total jobs.

Figure 3(a) shows the average waiting times for Intrepid.
The horizontal line represents the baseline (61 minutes) that
is simulated without coscheduling (or no paired jobs at all).
The bar values are all above the base, meaning that using
coscheduling degrades the overall performance with respect
to average waiting time. The line with points on it shows
the difference between coscheduling results and the base.
Specifically, under low (0.25) and medium (0.50) system loads,
the coscheduling causes extra average waiting of less than 4
minutes and 10 minutes, respectively. But under high load
(0.75), the difference grows to 42 minutes.

Figure 3(b) shows the average waiting times for Eureka. In
this figure, each bar group has its own baseline because the
system utilization rate on Eureka varies. No matter what the
system utilization rate is, the differences between coscheduling
results and bases are small. YY under 0.50 has 7 minutes more
average waiting, and HH under 0.75 has 8 minutes more; other
results with coscheduling are all under 5 minutes.

Figure 4 shows the average slowdown for both Intrepid and
Eureka. The trend of these results is similar to that for the
average waiting time. The base slowdown on Intrepid is 6.1,
which means an average job’s response time on Intrepid is
6.1 times its running time. The base average slowdowns on



Fig. 4. Scheduling performance (avg. slowdown) by Eureka load.

Eureka are 1.7, 12.5, and 37.1 for three workloads.
For Intrepid, the increase average slowdown is under 0.6,

1.5, and 6.3 for the three groups. Only under the high
Eureka load does the slowdown on Intrepid show a significant
increase; but the absolute value are all under 12.4, which is
not high. For Eureka, the slowdowns of coscheduling are fairly
close to those of the bases.

Combining Figure 3 and Figure 4, we can make the
following observations. First, the impact of coschedulingon
overall system performance is reasonably low. On Intrepid,the
increased average waiting time is mostly under 10 minutes,
with only one exception under high Eureka load. Even for
that case, if we avoid using hold on Intrepid, we can limit
the increased average waiting to under 25 minutes. Eureka
requires even less extra waiting time: most times are under
5 minutes, and the maximum time is 8 minutes. Slowdown
has a similar trend. Therefore, the results indicate that wecan
deploy the coscheduling mechanism on current systems with
low impact.

Second, for medium and high system loads, we observe
that using hold has worse waiting time or slowdown than
using yield under the same system utilization and same remote
scheme. This result suggests that although using hold can
cause less synchronization time for those paired jobs, it
impacts resource utilization by holding some idle nodes, so
that other regular jobs will suffer more waiting time; thus,the
overall averages of wait and slowdown are affected. Under low
system load, however, this trend is not observed. The main
reason is that consuming resources does not have much effect
on waiting jobs when the system load is low.

Figure 5 shows the average paired job synchronization
times. There are six groups of bars. Each group is labeled on
the x-axis by a configuration combining the system utilization
rate (0.25, 0.50, and 0.75) with the remote machine scheme

Fig. 5. Average paired job synchronization time by Eureka load.

(H or Y). Within each group are two bars, each representing a
coscheduling scheme on the local machine (H or Y), indicated
by the legend.

Figure 5(a) shows the results for Intrepid. When Intrepid
uses hold, the average job synchronization time varies under
different Eureka system utilization. As the system load gets
higher, the sync time increases, from under 10 minutes to
nearly 50 minutes, then to above 150 minutes. Comparing bars
within each group, we see that using yield on the local machine
results in more average sync time than using does hold, given
that the remote scheme and system load are the same. This
result is consistent with the design of these two schemes: hold
is better regarding extra waiting time than yield is.

Figure 5(b) shows the results for Eureka. When Eureka
uses hold, the average job sync time varies from 35 to 111
minutes. When Eureka uses yield, the overhead varies from
52 to 137 minutes. In the same group, using hold consumes
less overhead than using yield, except for the 0.75/H group,
in which the two bars are almost the same.

Figure 6 shows the service unit loss on both Intrepid and
Eureka. The x-axis is the same as in the previous figure. The
primary y-axis shows the service unit loss measured by node-
hours. The secondary y-axis shows the corresponding system
utilization rate loss compared with the total system node-hours
over the whole time span. The figures show only the loss
caused by using hold on the local machine.

Figure 6(a) shows the results for Intrepid. When system
load gets higher, the lost node-hours on Intrepid in a month
increase from 135,000 to 1.2 million node-hours. In terms of
system utilization rate, they represent 0.46% to 4.6% of the
total node-hours in a month on Intrepid.

Figure 6(b) shows the results for Eureka. The lost node-
hours appear unrelated to the system utilization rate. The high
load case causes the least node-hour loss. Specifically, the



Fig. 6. Service unit loss by Eureka load.

total node-hour loss in a month ranges from 25,000 to 35,000,
which corresponds to 3.5% to 4.9% of the total node-hours in
a month on Eureka.

As indicated in Figure 5 and Figure 6, using the hold scheme
results in less average synchronization time for paired jobs
than using yield, but it causes extra loss in system utilization.
This trade-off needs to be balanced by system owners based
on system priorities and user needs.

E. Performance under Various Paired Job Proportions

We conducted several simulations to explore the impact of
coscheduling under different proportions of paired jobs. This
study can provide insight to system owners to control the
coscheduling configuration under certain conditions.

For Intrepid, we use the same job trace as used previously.
For Eureka, we generate a special workload that has the same
number of jobs and is within the same time span as the Intrepid
trace. By doing so, we can conveniently tune the proportion
of paired jobs on both traces. The system utilization rate of
this special Eureka workload is around 0.5, representing the
medium load. For the various simulations, we set the paired
job proportions to 2.5%, 5%, 10%, 20%, and 33%.

Figure 7 shows the average waiting minutes for both In-
trepid and Eureka under different proportions of paired jobs.
The x-axis is similar to that of Figure 3; the only difference
is that the system utilization rates in Figure 3 is replaced here
by proportions of paired jobs.

Figure 7(a) shows the average waiting times for Intrepid.
Clearly, the higher the paired job ratio is, the more the relative
waiting time increase is on Intrepid. When the paired job ratio
is 10% or less, the average waiting time is under 76 minutes,
meaning 3–14 minutes more than the base; the relative increase
is 5%–22%. When the paired job ratio is 20%, the average
waiting times increase to 90–100 minutes, or 26–38 minutes

Fig. 7. Average waiting times by paired job proportion.

more than the base. When one-third of the total jobs (33%) are
paired, the average waiting time gets considerably worse with
the hold scheme (up to 187 minutes). If the yield scheme (YH
or YY) is used, the average waiting in this case is comparable
to the case with 20% paired jobs (around 100 minutes).

Figure 7(b) shows the average waiting times for Eureka.
Similarly, the higher the paired job ratio is, the more the
relative waiting time increase is on Eureka. The trend is similar
to that of Intrepid. The overall performance is not significantly
impacted when the proportion of paired jobs is under 20%,
regardless of which coscheduling scheme is used. With 33%
paired job proportion, using hold (HH and YH) can cause a
noticeable performance degradation, and using yield (HY and
YY) can achieve performance similar to the 20% proportion
case.

Figure 8 shows the average slowdown for both Intrepid and
Eureka under different proportions of paired jobs. Figure 8(a)
shows the results for Intrepid. The trend is similar to the
waiting times. For the first three proportions, the average
slowdowns are under 7.5. For the last two relatively high
proportions, the slowdowns are mostly between 7.9 to 12.9,
except with hold-hold.

Figure 8(b) shows the average slowdown for Eureka. Again,
the higher the paired job ratio is, the more the relative waiting
time increase is on Eureka. For the first three proportion cases,
the difference in average slowdown is only in the single digits.
For the last two relatively high proportion cases, the average
slowdown shows a double-digit increase. Again, hold-hold is
the worst case under the high system load.

Comparing Figure 7 and Figure 8, we can see that
coscheduling will not impact system performance significantly
with 20% proportion of paired jobs. When the paired jobs
proportion gets higher than one-third (33%), however, the per-
formance degradation is noticeable. We recommend disabling



Fig. 8. Avg. slowdowns by paired job proportion.

the coscheduling feature under this condition, or at least not
using the hold scheme. Indeed, as shown in the figure, when
the proportion is 10% or more, the hold scheme shows more
negative impact than does the yield scheme.

Figure 9 shows the average paired job synchronization time
for both Intrepid and Eureka. The x-axis is similar that in
Figure 5 except that the system utilization rate is replacedby
the proportion of paired jobs.

Figure 9(a) shows the results for Intrepid. When Intrepid
uses hold, the average sync time mostly ranges between
75 and 88 minutes, except for HH with 124 minutes. The
range is narrower than that in Figure 5(a), indicating that the
average sync time for paired jobs is more sensitive to the
system load than to the proportion of job pairs. But here, too,
the observation applies that using hold as the local scheme
consumes less average sync time than using yield.

Figure 9(b) shows the results for Eureka. When Eureka uses
hold, the average paired job sync time varies from 60 to 122
minutes. There is a slight trend for overhead to increase as
the paired job proportion increases, but the slope is not as
significant as in Figure 5(b). Similarly, all the cases using
hold as the local scheme are better than using yield in terms
of sync time.

Figure 10 shows service unit loss on both Intrepid and
Eureka. On both machines, the loss of service unit increases
as the proportion of paired jobs gets higher. Specifically, the
results on Intrepid range from 200,000 to 2.7 million node-
hours, or 0.7% to 9.3% of the total node-hours in a month;
the losses on Eureka range from 800 to 15,000 node-hours, or
1% to 21% of total node-hours in a month.

We consider the service unit loss acceptable when the
proportion of paired jobs is under 10%, when the loss rate is
under 3% on Intrepid and 5% on Eureka. When the proportion
is 20%, the loss rate is also fairly acceptable. But when paired

Fig. 9. Paired job average synchronization time by paired jobproportion.

Fig. 10. Service unit loss by paired job proportion.

job become more than 33%, if the coscheduling feature cannot
be disabled, we recommend using the yield scheme on both
machines in order to avoid loss of service units.

VI. SUMMARY

We have designed and implemented a coscheduling mech-
anism used in a coupled high-performance computing sys-
tem where a large-scale computing system co-resides with
a special-purpose data analysis or visualization system. The
goal of coscheduling is to simultaneously start associated
jobs that are submitted to different machines belonging to



different scheduling domains. We have proposed two basic
schemes for coscheduling: hold and yield. Any combination of
schemes on the coupled systems can achieve the coscheduling
goal without manual intervention. Our algorithm is practical
and scalable because of the lightweight protocol and simple
interfaces. It facilitates systems using different resource man-
agers or schedulers to interface in order to coschedule jobs.
For example, with our protocol, jobs submitted to a compute
resource running LSF can be coscheduled with job submitted
to an analysis resource running PBS.

We have evaluated the coscheduling mechanism by means
of trace-based simulations using real configurations and work-
loads from the production coupled systems deployed at Ar-
gonne. National Laboratory. Our experimental results demon-
strate that coscheduling can be achieved with limited impact on
system performance under varying workloads. The quantified
results of coscheduling performance under specific configura-
tions and system conditions are instructive to system owners
in using coscheduling.

Achieving coscheduling not only benefits a number of
existing applications using the coupled systems but also can
drive the emergence of new applications to take advantage of
(administratively) heterogeneous resources. In the future, we
plan to extended our coscheduling mechanism to support more
sophisticated inter-job temporal constraints. Further, we will
examine the possibility of extending our algorithm to support
N-way coscheduling on more than two scheduling domains.
Ultimately, we plan to deploy our coscheduling mechanism on
the production systems at Argonne and measure the benefit to
real applications.

ACKNOWLEDGMENTS

The work at IIT is supported in part by U.S. NSF grants
CNS-0834514, CNS-0720549, and CCF-0702737. We grate-
fully acknowledge the use of the resources of the Argonne
Leadership Computing Facility at Argonne National Labora-
tory. The work at Argonne National Laboratory was supported
by the Office of Advanced Scientific Computing Research,
Office of Science, U.S. Department of Energy, under Contract
DE-AC02-06CH11357 and an Argonne National Laboratory
Director’s Postdoctoral Fellowship.

REFERENCES

[1] Cobalt resoure manager.http://trac.mcs.anl.gov/projects/cobalt
[2] DOE INCITE program.http://www.er.doe.gov/ascr/incite
[3] Moab resource manager.http://www.adaptivecomputing.com
[4] NASA MAP program.http://map.nasa.gov/
[5] ParaView–Scientific Visualization.http://www.paraview.org
[6] TOP500 Supercomputing web site,http://www.top500.org
[7] Blue Gene Team, “Overview of the IBM Blue Gene/P project,”IBM

Journal of Research and Development, 2008.
[8] J. Basney and M. Livny, “Improving goodput by co-scheduling CPU and

network capacity,”International Journal of High Performance Computing
Applications, 13(3), 220–230, 1999.

[9] J. Binns, F. Dech, M. Papka, J. Silverstein, and R. Stevens, “Developing
a distributed collaborative radiological visualization application,” in From
Grid to HealthGrid,pp. 70–79, 2005.

[10] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith,
and S. Tuecke, “A resource management architecture for metacomputing
systems,” inProc. of Job Scheduling Strategies for Parallel Processing
(JSSPP), 1998.

[11] Y. Etsion and D. Tsafrir, “A short survey of commercial cluster
batch schedulers,” Technical Report 2005-13, the Hebrew University of
Jerusalem, 2005.

[12] E. Frachtenberg, D. Feitelson, F. Petrini, and J. Fernandez, “Flex-
ible coscheduling–mitigating load imbalance and improving utilization
of heterogeneous resources,” inProc. of IEEE International Parallel &
Distributed Processing Symposium (IPDPS), 2003.

[13] I. Foster and C. Kesselman,The Grid: Blueprint for a New Computing
Infrastructure, Morgan Kaufmann Publishers, 1999.

[14] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and A. Roy,
“A distributed resource management architecture that supports advance
reservations and co-allocation,” inProc. of International Workshop on
Quality of Service, 1999.

[15] J. Fu, N. Liu, O. Sahni, K. Jansen, M. Shephard, and C. Carothers,
“Scalable parallel I/O alternatives for massively parallelpartitioned solver
systems,” in Proc. of Int’l Parallel & Distributed Processing Symp.
Workshops (IPDPSW), 2010.

[16] E. Huedo, R. Montero, I. Llorente, “A framework for adaptive execution
in grids,” Software–Practice & Experience 34(7), 631–651, 2004.

[17] IBM, “Workload management with LoadLeveler,”
http://www.redbooks.ibm.com/redbooks/pdfs/sg246038.pdf

[18] N. Karonis, B. Toonen, and I. Foster, “MPICH-G2: A Grid-enabled
implementation of the Message Passing Interface,”Journal of Parallel and
Distributed Computing, 63(5), 551–563, 2003.

[19] S. Lang, P. Carns, R. Latham, R. Ross, K. Harms, and W. Allcock, “I/O
performance challenges at leadership scale,” inProc. of Supercomputing
Conference (SC’09), 2009.

[20] J. MacLaren, “HARC: The highly-available resource co-allocator,” in
Proc. of GADA’07, LNCS 48(04), Springer-Verlag, 1385–1402, 2007.

[21] J. Ousterhout, “Scheduling techniques for concurrentsystems,” inProc.
of ICDCS’82, 1982.

[22] F. Petrini and W.-C. Feng, “Buffered coscheduling: A new methodology
for multitasking parallel jobs on distributed systems,” inProc. of IEEE
IPDPS’00, 2000.

[23] A. Romosan, D. Rotem, A. Shoshani, and D. Wright, “Co-scheduling
of computation and data on computer clusters,” inProc. of International
Conference on Scientific and Statistical Database Management, 2005.

[24] P. Sobalvarro, S. Pakin, W. Weihl, and A. Chien, “Dynamiccoscheduling
on workstation clusters,” inProc. of Job Scheduling Strategies for Parallel
Processing (JSSPP), 1998.

[25] P. Sobalvarro and W. Weihl, “Demand-based coschedulingof parallel
jobs on multiprogrammed multiprocessors,” inProc. of Job Scheduling
Strategies for Parallel Processing (JSSPP), 1995.

[26] W. Smith, I. Foster, and W. Taylor, “Scheduling with advanced reserva-
tions,” in Proc. of IEEE IPDPS’00, 2000.

[27] N. Taesombut and A. Chien, “Evaluating network information models
on resource efficiency and application performance in lambda-Grids,” in
Proc. of ACM/IEEE Supercomputing Conference (SC’07), 2007.

[28] W. Tang, Z. Lan, N. Desai, and D. Buettner, “Fault-aware, utility-based
job scheduling on Blue Gene/P systems,” inProc. of IEEE Int’l Conf. on
Cluster Computing (Cluster’09), 2009.

[29] G. Teodoro, R. Sachetto, O. Sertel, M. Gurcan, W. Meira,U. Catalyurek,
and R. Ferreira, “Coordinating the use of GPU and CPU for improving
performance of compute intensive applications,” inProc. of IEEE Int’l
Conf. on Cluster Computing (Cluster’09), 2009

[30] D. Townsley, R. Bair, A. Dubey, R. Fisher, N. Hearn, D. Lamb, and
K. Riley, “Large-scale simulations of buoyancy-driven turbulent nuclear
burning,” Journal of Physics: Conference Series, 125(1), 2009.

[31] D. Tsafrir, Y. Etsion, and D. Feitelson, “Backfilling using system-
generated predictions rather than user runtime estimates,”IEEE Trans-
actions on Parallel and Distributed Systems 18(6), 789–803, 2007.

[32] S. Vadiyar and J. Dongarra, “A metascheduler for the grid,” in Proc.
of 11th IEEE International Symposium on High Performance Distributed
Computing (HPDC), 2002.

[33] V. Vishwanath, M. Hereld, K. Iskra, D. Kimpe, V. Morozov,M. Papka,
R. Ross, and K. Yoshii, “Accelerating I/O forwarding in IBM Blue Gene/P
systems,” inProc. of ACM/IEEE Supercomputing Conference (SC’10),
2010.

[34] Y. Wiseman and D. Feitelson, “Paired gang scheduling,” in IEEE Trans.
Parallel and Distributed Systems, 14(6), 581–592, 2003.

[35] K. Yoshimoto, P. A. Kavatch, and P. Andrews, “Co-scheduling with user
settable reservations,” inProc. of Job Scheduling Strategies for Parallel
Processing (JSSPP), 2005.



The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National
Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated
under Contract No. DE-AC02-06CH11357. The U.S. Governmentretains for itself, and others acting on its
behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative
works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the
Government.


