Job Coscheduling on Coupled High-End Computing Systems

Wei Tang’ Narayan Desal,Venkatram Vishwanath,Daniel Buettnef, Zhiling Lan*

*Department of Computer Science, lllinois Institute of Textbgy
Chicago, IL 60616, USA
wtangb@it.edu, lan@it.edu
fMathematics and Computer Science Division
fArgonne Leadership Computing Facility

T Argonne National Laboratory, Argonne, IL 60439, USA
desai @ts. anl . gov, venkatv@mrcs. anl . gov, buettner @l cf. anl . gov

Abstract—Supercomputer centers often deploy large-scale the same time. Furthermore, computations in several sident
computing systems together with an associated data analysis or domains require access to heterogeneous resources tor-concu
visualization system. In this paper, we propose a coscheduling o1y execute models wherein one of more models are tailore
mechanism, providing the ability to coordinate execution between . o
jobs on different systems. The mechanism is built on top of a for GPU-based sygtems while other; are opt.|m|zed f‘?f CPU-
lightweight protocol for coordination between policy domains Pased clusters. This kind of computation requires co-ei@tu
without manual intervention. We have evaluated this system spanning heterogeneous coupled resources. Thus, many ex-
using real job traces from Intrepid and Eureka, the production jsting applications already can benefit from co-execution o

Blue Gene/P and data analysis systems, respectively, deployed af,pled systems, and more are anticipated if job co-exatuti
Argonne National Laboratory. Our experimental results quantify L )
can be conveniently achieved.

the costs of coscheduling and demonstrate that coscheduling can
be achieved with limited impact on system performance under =~ Resource managers commonly used in high-performance

varying workloads. computing systems support a rich set of descriptions for
resource requirements. However, capabilities for reptasg
interjob temporal constraints are lacking. In general,- job
High-end computing (HEC) systems are increasingly usiidering constraints (modeled as job dependencies) are sup
heterogeneous processing elements in their designs. In H@ﬁ*ted, but job co-execution is not. This latter capabiliya

typical configuration, accelerators such as GPUs are usethiarequisite for the execution model described above.
addition to the traditional CPUs. Meanwhile, the volume of In this paper, we propose a coscheduling mechanism that

data produced by high-end applications continues 10 groy,, ginates execution between jobs on different systems.
leading to an increasing demand for data analysis and visudqifically, the coscheduling can guarantee that assedciat
ization capabilities. . jobs (e.g., a compute job with the associated data anabfs)s j
The trend has driven the deployment afupled Systems oo simultaneously across the coupled systems. The mecha
where a general-purpose compute system running scientific, is puilt on top of a lightweight protocol for coordinti
computations or simulations is connected by a shared fesyg,,ss policy domains without manual intervention. Unlike
tem or over the network to a special-purpose system usgd commonly known coscheduling mechanisms to coordinate
for data analysis and visualization. Such systems aredyrea, ,cegs co-execution within a cluster of time-sharing ma-
common, such as Intrepid and Eureka at Argonne Nationglineg [21], our coscheduling involves scheduling coaatiom

Laboratory, Jaguar and Lens at Oak Ridge National Laboratafp, oo multiple independent resource management domains.
(ORNL), and Ranger and Longhorn at the Texas Advanced

Computing Center (TACC). Figure 1 depicts a typical coupled
HEC system. On such systems, many applications run in a
post hoc fashion: data generated by compute applications it
first written to storage systems and then processed by amalys
applications.

While post hoc execution is common, however, co-execution ™

is increasingly demanded. One reason is that co-executior

enables monitoring of simulations, debugging, and visual L || | | ,.| i

debugging of the simulation code at run time. Another reason Ea E Ei Eé

is that co-execution can accelerate the 1/O time [33]—one of s Eod b e

the critical bottlenecks faced by simulations—by by staging

simulation 1/0 data to the memory of a couple resourd@gd 1. Ty_pilczl COUPleld H?C Sy?tems alarge-S(C@Eh)C%mautewﬂeﬁ)l
H e ) H and a special data analysis/visualization system (ri ch share a single

and _av0|d|ng writing data to perS|stent stora.ge,. This sggt siorage system via a network.

requires that both compute and analysis applications be afi

I. INTRODUCTION




The primary challenge of such coscheduling comes from tBe Motivating Applications
combination of multiple sc_hedulmg po.I|C|es on mullt|ple '€ A variety of applications would benefit from coscheduling.
source management domains. Minimizing the coupling of tlzg

itin| involved i heduling i ne is the coupled type in which computing and data anal-
MuTtiple resource managers involved In CoSCNeduling BI8S g5 o yisyalization are conducted separately. For exampl

scalability and enables the implementation of this apgroa LASH [30] is used to simulate buoyancy-driven turbulent

across mul_tiple resource managers. Cosch_efju_lir_lg aIsg CORiclear burning; it uses VL3 [9] for visualization. PHASTA
more than independent scheduling; thus, minimizing thist 0(115] is used for parallel, hierarchic, adaptive, stabiizean-

is also another clear goal. sient analysis; it uses the visualization tool ParaView [&jth

To achieve these goals, we designed a distributed algoritlg% benefit from co-execution. Specifically, running sirdt-

and implemented it in an existing resource manager. Vgﬁsly with the compute application, the analysis/vis\alon

application can process the output data at run time. Further
re, if both applications are alive, the two can exchange

evaluated our mechanism with event-driven simulationagusi
real job traces from the production Blue Gene/P [7] and d

analysis systems deployed at Argonne National Laboratog)/.Iarge amount of data via the network instead of using

Our ex_perlmen_tal _re;ults_demonstrate that coscheduling C::iﬂ"permanent storage system, thus accelerating the I/O time
be ach|eyed with limited impact on system performance u 3]. Currently, co-execution is fulfilled mainly by makiray
der varying workloads. We also quantified the performan Eservation manually or submitting one job immediateliaft

sensitivity Of_ coschedu!ing to var lous configurations. the related job starts (it works only when one of the systems
The remainder of this paper is organized as follows. Se@'lightly loaded)

tion Il presents background, including some sample coupledAnother type of motivating application is the coupled com-

systems and motivating applications. Section Il discass utation using heterogeneous resources across the differe

some relevar_n work. Section IV descrlb(_es our coscheduli ystems. An example is the weather forecasting models run
design. Section V evaluates coscheduling performance ¥

¢ based simulati Section VI ludes th NASA [4] wherein multiple climate analysis models are
race-based simufations. section Vi conciudes the paper xecuted concurrently and their results are fed into one or
points out future work.

many prediction models where each model is typically an
Il. BACKGROUND independent parallel program. A key requirement to attaat-r

. . . . - time climate prediction during hurricanes is to schedule th
We begin with a discussion of several existing coupl

¢ We then d i ; licati that motivar rious executable concurrently. Moreover, some of theetsod
systems. We then describe a Tew applications that motvagg,y pe optimized to run on GPU-based systems while others
our study of coscheduling.

are tailored for CPU-based systems.
A. Examples of Coupled Systems Furthermore, with coscheduling, some existing work in

Many supercomputing centers have a large-scale syste mIRre loosely coupled systems, such as Grid [13], can also
y sup puting 9 y applied to our coupled HEC system. One example is

charge of simulation and another system responsible far dgt, W0 (Globus-enabled MPI) [18], which provides for
analysis and visualization. One example is Intrepid anckaur MPl-style interprocess Communication7 between computing

at ArgOr?”‘? National Laboratory. resources. Moreover, applications similar to metacompguti
Intrepid is a 556 TF Blue Gene/P system [7] operated by t fO] can also be applied to the coupled HEC environment

Argonne for the U.S. Department of Energy INCITE program . .
. - with coscheduling.

[2]. The system comprises 40,960 quad-core nodes, gVING \ summary, a number of existing applications can benefit
a total of 163,840 cores. It was ranked 13th in the IatePt h é/ lina: and i i 9 pph duli boost
Top500 list released in November 2010 [6]. Eureka is a d gm coscheduling, and in return, COSCheduiing can boos
analysis cluster, comprising 100 computing nodes with 83_‘ e emergence of more apphcatlons taking advantage of the
Xeon cores, 3.2 TB memory, and 200 NVIDIA Quadro F eterogeneous resources in coupled HEC systems.
5600 GPUs. It is currently the largest installation of GPUs.
A Myrinet switch complex connects Intrepid, Eureka, and a
storage system consisting of PVFS [19] servers and storagdhe term “coscheduling” is commonly used to denote
nodes. Therefore, Intrepid and Eureka can exchange dataaompecific mechanism proposed for concurrent systems that
the shared file system or through the network directly. schedules related processes to run on different processors

Other such deployments exist in other supercomputi@j the same time [21]. It has a strict version named gang
centers. For example, TACC has Ranger and Longhorn. Rangeeduling [34] and other versions or enhancements prdpose
is a SunBlade system with 62,976 cores, currently rankeldl 1%0 the literature, such as demand-based coscheduling [25],
in the Top500 list. Longhorn is a 256-node Dell cluster witllynamic coscheduling [24], buffered coscheduling [22]d an
128 GPUs. ORNL deploys Jaguar and Lens. Jaguar is a Cfxible coscheduling [12].
XT5 system with 224,162 cores, currently ranked second inThese mechanisms share a similar goal with our coschedul-
the Top500 list. NICS/UTK has Kraken and Verne. Kraken igg: running related processes (in our case jobs) simultane
a Cray XT5 with 98,928 cores, ranked eighth in the Top500usly. The difference is that the former are used for time-
Verne is a 5-node Dell cluster. sharing systems belonging to a single scheduling domain,

I11. RELATED WORK



where nodes and job queues are managed by a singlejobs. In such a job pair, one job is submitted to one system,
source manager. Driven by the use of coupled systems, amd the other job to the other system. These two associated
coscheduling fulfills the need to start associated jobssacrgobs need to be started at the same time even though they are
multiple scheduling domains (i.e., different resource atpgrs scheduled separately on different systems.
with independent scheduling policies). We need a coscheduling mechanism to guarantee all the
Advance resource co-reservation has been widely proposesociated jobs in the same pair start at the same time withou
to coordinate resource allocation across multiple systenmsanual reservation. Meanwhile, the mechanism must lineit th
MacLaren [20] presented the Highly-Available Resource Caide effect on system utilization and the response timestf b
allocator (HARC), a system for creating and managing r@aired and nonpaired jobs.
source reservations used for metacomputing applicatibdls [ To fulfill coscheduling, we need to make the resource
or workflow applications. Foster et al. [14] proposed GARANanagers aware of the information of associated jobs. More
a general-purpose architecture for reservation and dicta essentially, we need a protocol to coordinate and syncheoni
Yoshimoto et al. [35] presented GUR, a system for coschedtite scheduling of the associated job.
ing compute resources in a Grid computing environment using .
user-settable reservations similar to travel arrangesnent B Basic Schemes
While co-reservation can be used to start related jobsIn job scheduling, we say that a job is “scheduled,” or
on multiple systems at the same (reserved) time, howev&gady,” when a job is selected by the scheduler to start.next
it is not suitable in coupled HEC systems. First, becaugescheduled job can have the highest priority or have been
the two coupled systems are administratively heterogesjeogiven the opportunity of backfilling [31]. The job should be
co-reservations on both machines involve expensive manasabkigned with a designated number of nodes. Normally, when
efforts in policy negotiation. Second, excessive use oéresa job is scheduled, it can start immediately. With coschiegul
vation will leave temporal fragmentations on the computinigowever, a scheduled job may not be started because it may
resources, thereby leading to worse response times folaregumeed to wait for its mate job.
jobs [26]. Our work fits the coupled HEC environment well When a job is ready to run but its remote mate cannot, we
because it is free from manual intervention and will leave rfwave two basic coscheduling schemes, “hold” and “yield,” to
temporal resource fragmentation. choose from. With hold, when a job is ready but its mate job
Metascheduling [32] also involves scheduling jobs on muis not, it will hold the needed computing nodes, not allowing
tiple clusters. It aims at optimizing computational wordts them to be used by others, until the remote mate gets ready in
by combining an organization’s multiple distributed resmu the future. With yield, it will give up the chance to run withto
managers into a single, aggregated view, allowing batch jobccupying any nodes and allowing the scheduler to schedule
to be directed to the best location for execution. Existingnother job.
work includes GridWay by Globus Alliance [16], LoadLeveler Regarding minimizing paired job synchronization, hold is
by IBM [17], and Moab by Adaptive Computing Inc. [3]. better than yield. A holding job will start immediately once
However, these schedulers require a global job submissitéimate job gets ready. However, a job that once yielded may
portal. A unique feature of our work is that we removaot necessarily able to start when its mate is ready, because
the restriction of a global submission portal by enablingf a lack of resources, so it may need to yield repeatedly.
independent job submission on each resource. Regarding impact to system utilization, the yielding job
The term coscheduling is also used in other problem dwaposes less impact than does the holding job. When the
mains with various objects, such as coscheduling of compuedes are held by a job, they cannot be used by other jobs.
tation and data [23], coscheduling CPU and network capacithe scheduler treats the held nodes as busy; other jobs can
[8][27], and coscheduling CPUs and GPUs for heterogeneausither run on them nor hold them. On the other hand, the
computing [29]. The object of our coscheduling is assodiatgield scheme rarely is harmful to system utilization.
jobs that need co-execution on different machines in calple , )
HEC systems. C. Main Algorithm
The core coscheduling algorithm extends the existing func-
tion in the traditional resource manager, which is invoked
In this section we define job scheduling, present our covéhen a job is scheduled and ready to run. Normally, the func-
coscheduling algorithm and its various configurations, ari$n starts the scheduled job on the assigned nodes. But with
discuss enhancements and potential drawbacks. coscheduling, additional logic will be executed before jtite
can actually start. Algorithm 1 describes this function,ickh
A. Problem Statement we call Run.Job, enhanced with coscheduling algorithm.
Suppose two systems (machined) and B are running  The algorithm is distributed: “self.xyz” calls a local func
workloads of parallel jobs. Jobs on each system are managied, and “remote.xyz” calls a remote function on the remote
by different resource managefs, and R, respectively.R; machine. Each machine runs the same algorithm with a locally
and R, use independent scheduling policies. Among all theonfigured scheme, either hold or yield. The algorithm can be
jobs on the two systems, there exist some pairs of associagedbled or disabled by a flag.

IV. COSCHEDULINGDESIGN



Algorithm 1: RunJob(, N)
Input: A scheduled johj with assigned nodes/

started (line 14). If the mate job cannot run at this moment
(including the unsubmitted case), the local job will eitheid

Result Jobj either starts, or holds, or yields. Its remote (line 17) or yield (line 20) according to the preconfigureddb
mate jobk, if existing, could be triggered to start coscheduling scheme. Functieal f.hold Job(j, N) sets jobj

under certain condition.

to holding status and marks the nod®&sbusy, not allowing
another job to use them. Functied f.yieldJob(j) invokes an

1 if cosched_enabled then
2 k = remote.getMateJoblg) additional local scheduling iteration to try to run othelbgo If
3 if k& then the remote status is unknown, the algorithm continues tt sta
4 mate_status = remote.getMateStatusy the local job (line 26).
5 switch mate_status do The algorithm is fault-tolerant: a job will not wait forever
6 case” holding” when the remote machine or its mate job is down. If the remote
7 self.startJobf, V) system is down, line 2 will return nothing so that the ready
8 remote.startJol{ job will start immediately. If the mate job fails alone, thata
9 endsw status will be returned as unknown (line 25). The ready job
10 case” queuing” thus will start normally, too.
11 case” unsubmitted”
12 mate_started = remote.tryStartMated D. Scheme Combinations
13 if mate_started then
14 \ self.startJobf, N) In order to apply coscheduling on the coupled systems,
15 end each machine must be preconfigured with a coscheduling
16 else scheme. To this end, we have identified four combinations
17 if self.scheme == "hold" then of configuration: hold-hold, yield-yield, hold-yield, arnyield-
18 \ self.holdJobf, N) hold. We discuss how these combinations work to achieve
19 end coscheduling. We also point out potential problems.
20 if self.scheme == "yield” then 1) Hold-Hold: Hold-hold means using the hold scheme on
21 | self.yieldJob) both machines of the coupled system. In this setting, when on
22 end job of the paired job gets ready, it will enter hold statusc®n
23 end the second job gets ready, both jobs can start immediately.
24 endsw Hold-hold is effective for synchronizing two jobs, but it gna
25 case”unknown” result in deadlock. Indeed, theoretically, hold-hold rseai
26 | self.startJoby, N) of the four conditions causing deadlock: mutual exclusian (
27 endsw node can be assigned only to a job), hold and wait (a job holds
28 endsw some nodes and waits until its mate is ready), no preemption
29 end (we do not have preemption), and circular wait (both machine
30 else use hold, so that circular wait is possible). Figure 2 shows a
31 | self.startJobf, V) simple example of deadlock. Deadlock can be solved by our
32 end enhancement discussed in next subsection.
33 end
34 else A
3 ‘ self.startJolf, N) wait for starting together ®
36 end BB
B B b1 (waiting6) [ | [ ]
o . L \ OO
As shown in Algorithm 1, if coscheduling is not enabled or wait for releasing nodes wait for releasing nodes
the mate job is not found, the ready job will start normally ] [ "N |
(lines 35 and 31, respectively), skipping the coscheduling O O a2 waitng) EE

logic. If coscheduling is enabled and a valid mate is found,
we will first get the status of the mate, based on which the job
will act. If the remote job is in hold status, both jobs will be
started immediately (lines 7 and 8). If the mate job is waitin

in the queue or unsubmitted, a remote function will be calledg. 2.

AN - mu

wait for starting together

Example of deadlock. Machiné has a joba; holding 6 nodes,

; ; waiting for its mateb; queuing on machind3 and also requesting 6 nodes.
to. try to ru.n the mate JOb' I:_antIOFBmote.tTySt_artMate(k‘) But machineB has another jotby holding 6 nodes, waiting its matex
(line 12) invokes an additional scheduling iteration on th&euing on machinet and requesting 6 nodes.

remote machine and returriBrue only if the mate jobk
gets started. If the mate job is started, the local job is also



2) Yield-Yield:Yield-yield means using the yield scheme on To restrict the number of alternate yields, we introduce a
both machines of the coupled system. In this setting, thegai maximum yielding threshold. That is, if a job yields morertha
jobs can be started only when both get scheduled and assigaemtrtain amount of times, it can start holding. Anotherapti
with sufficient nodes simultaneously. Before that, bothsjohis to increase the priority of the job after it yields eachdim
may alternately yield. But they can eventually reach thébot
ready condition, because they will eventually get the higghe V. EVALUATIONS
priority on their respective machine if job priority incres by In this section, we evaluate coscheduling by simulations
time. The most commonly used FCFS (first-come, first-serveaing the job traces collected from the production coupled
policy [11] and some of its variations such as WFP [28] serH¢EC systems deployed at Argonne.
this purpose well. )

3) Hold-Yield and Yield-Hold:Hold-yield and yield-hold A EXPeriment Setup
use different schemes on different machines. In this ggttie~ To simulate coscheduling, we have extended Qsim [28], the
goal of coscheduling can also be achieved. Suppose mactnent-driven simulator along with the Cobalt resource rgana
A uses hold and machinB uses yield. If joba on A gets [1], to support multi-domain coscheduling simulation. For
ready first, it will hold; when its mate job gets ready, they Simulation, we need only to replace the real resource masage
can both start immediately. If jobis ready first, it will yield; Wwith the event-driven simulators, which maintains jobsnfro
when joba gets ready, it checks whetheéris ready. If it is, job traces and compute nodes from the configuration files.
both start; if not, joba holds until jobb gets ready for the In the experiment, we use real system configurations; that

next time. is, 40,960 nodes on Intrepid and 100 nodes on Eureka are
available for scheduling. The job traces were collecteanfro
E. Enhancements the production Intrepid and Eureka systems within the yéar o

) _ _ 2010. On Intrepid, the job size ranges from from 512 nodes
In this subsection we discuss an enhancement t0 SOWe3> 768 nodes. On Eureka, the job size ranges from 1 node
deadlock. We also address the drawbacks of both the held100 nodes.
and yield schemes. The scheduling policy used on both schedulers is the same
1) Solving Deadlock: To solve deadlock, we deploy aas those used on the real machines, namely, WFP [28] plus
scheme to force the holding jobs to release their resourggsckfilling. The coscheduling algorithm can be plugged id an
periodically (e.g., every 20 minutes) so that other waitingyt, so that we can compare the performance with and without

jobs can use the previously held resources. This preemptgscheduling. To break the hold-hold deadlock, we set the he
scheme can break circular wait. Consider the same exampifjes’ releasing period at 20 minutes.

in Figure 2. If joba; releases its resource temporarily, jop
can get the nodes to start; so dan Whenb, completes, job B. Capability Validation
b1 can start. Thus the deadlock is solved. In order to guaranteQ/Ve ran a |arge number of simulation cases to Verify the
the nodes released by joh can be used by job,, the job coscheduling mechanism. A simulation case is determined by
that releases the nodes (i.e;) should be set to the lowestthree configurations: a combination of the scheme configura-
priority at that scheduling iteration. If the released r®dee tions, a combination of system utilization rates on both ma-
preempted by other jobs, the original holding job will be pughines, and the proportion of paired jobs. We tuned the sehem
in queuing status. Otherwise, the job will hold by the orain configuration for four options: hold-hold, hold-yield, ide
holding job again. hold, and yield-yield. We also tuned the system utilization
Since deadlock can be solved, all the four configuraate and proportion of paired jobs to various values. We ran
tion combinations can achieve coscheduling. That means #w:h case 10 times.
schemes are locally configured: an individual machine needsall simulations cases ran successfully to completion, #wed t
to be configured only with its local scheme, without knowingutput logs show that all the paired jobs start at the same tim
the remote configuration. This model make the coschedulipgth their own mate jobs no matter which one gets ready first.
schemes highly practical and scalable. That means that coscheduling is achieved by all configuratio
2) Reducing Performance Impacflo soften the impact of schemes under various workloads.
of coscheduling on system performance, we have deployed~urthermore, deadlock is solved with the enhancement
several enhancements. described in subsection IV-E1. Without the enhancement,
In order to reduce system utilization waste as well as reguldeadlocks are highly likely to be observed when the simuortati
job waiting time, it is desirable to avoid having most ofime span more than 10 days. When deadlock occurs, the job
the computing nodes in hold status. Therefore, we enforgaeues on both machines keep growing, but no job can start.
a maximum threshold for the proportion of nodes. If a jolVith the enhancement, this phenomenon never happens. In the
is going to hold some more nodes so that proportion of hedkperiment, we set the releasing interval to 20 minuteschvhi
nodes exceeds the threshold, the job will yield instead &f.hocan be tuned freely by system owners.
With the strategy, the system can have at least a number offhe other enhancements turned out to be optional to achieve
nodes able to be consumed normally. coscheduling. The simulations ran successfully when we set



the nodes that could be used for holding as the whole system. @(a) Intrepid avg. wait
Even when the threshold was not for maximum yielding times, o e These ference
no starvation was observed. That is, all the paired jobs en th 10

system using the yield scheme start naturally in the sciveglul &
simulation, without waiting until in the cooling-down pleasf
the simulation.

60

minutes

40

ey

Although coscheduling can be achieved for all simulation %
cases, the performance varies with configuration. In the res S ay w w HHOHY YH vy HHORY YR vy
of this section, we briefly describe the metrics used and then 025 050 075
present a set of results to quantify the performance and cost (b) Eureka avg. wait
of the coscheduling under some typical system loads and oo Thase afieenee
proportion of paired jobs. 10

80

C. Evaluation Metrics

60

minutes

40

Four metrics were used in the performance evaluation. N
o Waiting time {vait): the time period between when the o N
job is submitted and when it is started. e
o Slowdown §lowdown): a job’s response time (waiting
time plus running time) divided by the job’s running Fig. 3. Scheduling performance (avg. wait) by Eureka systeal.|
time. It captures the fact that a long job can endure
longer waiting than a short job can. The averageit

andslowdown among all the jobs can measure the overall \q\, we will present the results. Figure 3 shows the average
system performance of job scheduling. waiting time. The bars on the x-axis represent simulations
« Paired job synchronization time (sync timejie extra \,qing coscheduling. They are in three groups. Each group
time a job has to wait for its mate in a coschedulinge, esents a system load on Eureka, measured by a system uti-
setting. By examining the average synchronization timg aiion rate of 0.25, 0.50, and 0.75, respectively. Withéch
among all the paired jobs, we can measure the perfQfron are four bars, representing the coscheduling scheme
mance cost to the paired jobs. _ .. combinations: HH means using hold on both machine, YY
« Service unit loss the wasted computing capabilitieSyeang ysing yield on both machines, HY means using hold
caused by holding. We measure this metric in node-hoy§ |nyepid and yield on Eureka, and YH means using yield
and system utilization rate. This metric reflects the impagh, nrepid and hold on Eureka. The y-axis shows the average
of coscheduling on system utilization. waiting minutes of total jobs.
Figure 3(a) shows the average waiting times for Intrepid.
The horizontal line represents the baseline (61 minutes) th
In this part of our experiments we measure the performanieesimulated without coscheduling (or no paired jobs at all)
impact brought by coscheduling under different Eurekaesyst The bar values are all above the base, meaning that using
load. Because the current Intrepid system load is high aodscheduling degrades the overall performance with réspec
stable but the Eureka system load low and unstable (ittts average waiting time. The line with points on it shows
highly likely to vary in the future), we wish to study howthe difference between coscheduling results and the base.
coscheduling behaves when the Eureka load varies. THBipecifically, under low (0.25) and medium (0.50) systemépad
information will help us decide the way to choose job tracethe coscheduling causes extra average waiting of less than 4
We set the time span as one month. For Intrepid, we usedhutes and 10 minutes, respectively. But under high load
the real job trace in a month containing 9,219 jobs. For Earel0.75), the difference grows to 42 minutes.
we used half-synthetic job traces to simulate various vea#tl  Figure 3(b) shows the average waiting times for Eureka. In
on Eureka. That is, by adjusting the job arrival intervals wthis figure, each bar group has its own baseline because the
can pack the workload in multiple months into one month. system utilization rate on Eureka varies. No matter what the
We made three new Eureka traces with system utilizatigystem utilization rate is, the differences between catulieg
rates, 0.25, 0.5, and 0.75, to present low, medium, and hig¢sults and bases are small. YY under 0.50 has 7 minutes more
system load, respectively. For making each new trace, we maverage waiting, and HH under 0.75 has 8 minutes more; other
tiplied a same fraction to each job arrival interval in thalre results with coscheduling are all under 5 minutes.
Eureka trace, so that the shape of job arrival distributi@s w Figure 4 shows the average slowdown for both Intrepid and
the same with the real trace. In each simulation, we assstiaEureka. The trend of these results is similar to that for the
the two jobs on different machines if their submission timesverage waiting time. The base slowdown on Intrepid is 6.1,
were within 2 minutes. The resulting proportion of pairedgo which means an average job’s response time on Intrepid is
was between 5% and 10%. 6.1 times its running time. The base average slowdowns on

D. Performance under Various System Loads



(a) Intrepid avg. slowdown (a) Intrepid avg. job synchronization time
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Fig. 4. Scheduling performance (avg. slowdown) by Eurekd.loa Fig. 5. Average paired job synchronization time by Eurekalloa

Eureka are 1.7, 12.5, and 37.1 for three workloads. (H or Y). Within each group are two bars, each representing a

For Intrepid, the increase average slowdown is under 0@scheduling scheme on the local machine (H or Y), indicated
1.5, and 6.3 for the three groups. Only under the hidghy the legend.

Eureka load does the slowdown on Intrepid show a significantFigure 5(a) shows the results for Intrepid. When Intrepid
increase; but the absolute value are all under 12.4, whichuises hold, the average job synchronization time variesrunde
not high. For Eureka, the slowdowns of coscheduling aréyfairdifferent Eureka system utilization. As the system loadsget
close to those of the bases. higher, the sync time increases, from under 10 minutes to

Combining Figure 3 and Figure 4, we can make theearly 50 minutes, then to above 150 minutes. Comparing bars
following observations. First, the impact of coschedulmy within each group, we see that using yield on the local mahin
overall system performance is reasonably low. On Intrepigl, results in more average sync time than using does hold, given
increased average waiting time is mostly under 10 minutdbat the remote scheme and system load are the same. This
with only one exception under high Eureka load. Even faoesult is consistent with the design of these two schemdd: ho
that case, if we avoid using hold on Intrepid, we can limis better regarding extra waiting time than yield is.
the increased average waiting to under 25 minutes. Eurekaigure 5(b) shows the results for Eureka. When Eureka
requires even less extra waiting time: most times are undeses hold, the average job sync time varies from 35 to 111
5 minutes, and the maximum time is 8 minutes. Slowdowminutes. When Eureka uses yield, the overhead varies from
has a similar trend. Therefore, the results indicate thatave 52 to 137 minutes. In the same group, using hold consumes
deploy the coscheduling mechanism on current systems wlglss overhead than using yield, except for the 0.75/H group,
low impact. in which the two bars are almost the same.

Second, for medium and high system loads, we observeFigure 6 shows the service unit loss on both Intrepid and
that using hold has worse waiting time or slowdown thaBureka. The x-axis is the same as in the previous figure. The
using yield under the same system utilization and same emptimary y-axis shows the service unit loss measured by node-
scheme. This result suggests that although using hold dawurs. The secondary y-axis shows the corresponding system
cause less synchronization time for those paired jobs, uitilization rate loss compared with the total system noders
impacts resource utilization by holding some idle nodes, swer the whole time span. The figures show only the loss
that other regular jobs will suffer more waiting time; thtise caused by using hold on the local machine.
overall averages of wait and slowdown are affected. Under lo Figure 6(a) shows the results for Intrepid. When system
system load, however, this trend is not observed. The mad@ad gets higher, the lost node-hours on Intrepid in a month
reason is that consuming resources does not have much effiectease from 135,000 to 1.2 million node-hours. In terms of
on waiting jobs when the system load is low. system utilization rate, they represent 0.46% to 4.6% of the

Figure 5 shows the average paired job synchronizatibotal node-hours in a month on Intrepid.
times. There are six groups of bars. Each group is labeled orFigure 6(b) shows the results for Eureka. The lost node-
the x-axis by a configuration combining the system util@ati hours appear unrelated to the system utilization rate. Tdite h
rate (0.25, 0.50, and 0.75) with the remote machine schetbad case causes the least node-hour loss. Specifically, the
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total node-hour loss in a month ranges from 25,000 to 35,008¢re than the base. When one-third of the total jobs (33%) are
which corresponds to 3.5% to 4.9% of the total node-hours jraired, the average waiting time gets considerably worse wi
a month on Eureka. the hold scheme (up to 187 minutes). If the yield scheme (YH

As indicated in Figure 5 and Figure 6, using the hold schenoe YY) is used, the average waiting in this case is comparable
results in less average synchronization time for paired jolo the case with 20% paired jobs (around 100 minutes).
than using yield, but it causes extra loss in system utibpat  Figure 7(b) shows the average waiting times for Eureka.
This trade-off needs to be balanced by system owners ba&kahilarly, the higher the paired job ratio is, the more the
on system priorities and user needs. relative waiting time increase is on Eureka. The trend islaim
to that of Intrepid. The overall performance is not signifitta
impacted when the proportion of paired jobs is under 20%,

We conducted several simulations to explore the impact @gardless of which coscheduling scheme is used. With 33%
coscheduling under different proportions of paired joblsisT paired job proportion, using hold (HH and YH) can cause a
study can provide insight to system owners to control theticeable performance degradation, and using yield (HY an
coscheduling configuration under certain conditions. YY) can achieve performance similar to the 20% proportion

For Intrepid, we use the same job trace as used previousigse.

For Eureka, we generate a special workload that has the samEigure 8 shows the average slowdown for both Intrepid and
number of jobs and is within the same time span as the Intrefiidreka under different proportions of paired jobs. Figui@) 8
trace. By doing so, we can conveniently tune the proporti@hows the results for Intrepid. The trend is similar to the
of paired jobs on both traces. The system utilization rate wfaiting times. For the first three proportions, the average
this special Eureka workload is around 0.5, representieg telowdowns are under 7.5. For the last two relatively high
medium load. For the various simulations, we set the pair@doportions, the slowdowns are mostly between 7.9 to 12.9,
job proportions to 2.5%, 5%, 10%, 20%, and 33%. except with hold-hold.

Figure 7 shows the average waiting minutes for both In- Figure 8(b) shows the average slowdown for Eureka. Again,
trepid and Eureka under different proportions of pairedsjobthe higher the paired job ratio is, the more the relative ingit
The x-axis is similar to that of Figure 3; the only differencdime increase is on Eureka. For the first three proportiorsas
is that the system utilization rates in Figure 3 is replacexth the difference in average slowdown is only in the singletdigi
by proportions of paired jobs. For the last two relatively high proportion cases, the ayera

Figure 7(a) shows the average waiting times for Intrepigdlowdown shows a double-digit increase. Again, hold-hsld i
Clearly, the higher the paired job ratio is, the more thetrada the worst case under the high system load.
waiting time increase is on Intrepid. When the paired jotorati Comparing Figure 7 and Figure 8, we can see that
is 10% or less, the average waiting time is under 76 minutegischeduling will not impact system performance signifilyan
meaning 3—14 minutes more than the base; the relative sereaith 20% proportion of paired jobs. When the paired jobs
is 5%—-22%. When the paired job ratio is 20%, the averageoportion gets higher than one-third (33%), however, thie p
waiting times increase to 90-100 minutes, or 26—38 minutsgmance degradation is noticeable. We recommend digablin

E. Performance under Various Paired Job Proportions
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using the hold scheme. Indeed, as shown in the figure, wher 30000 0%

the proportion is 10% or more, the hold scheme shows more 200 8%

negative impact than does the yield scheme. g 2000000 o
Figure 9 shows the average paired job synchronization time § 1:500.000 o

for both Intrepid and Eureka. The x-axis is similar that in & " % g

Figure 5 except that the system utilization rate is repldmed e v 8
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Figure 9(a) shows the results for Intrepid. When Intrepid proportion of paired jobs /remote scheme

uses hold, the average sync time mostly ranges betweel (b) Eureka loss of service unit

75 and 88 minutes, except for HH with 124 minutes. The Flnode hour sy, Ui

range is narrower than that in Figure 5(a), indicating that t 12222 o

average sync time for paired jobs is more sensitive to the o0 o,

system load than to the proportion of job pairs. But here, too z " 15% §

the observation applies that using hold as the local scheme £ o 0% ¢

consumes less average sync time than using yield. " a0 s 8
Figure 9(b) shows the results for Eureka. When Eureka uses 2002 -

hold, the average pall’ed ]Ob SynC tlme Val’leS from 60 to 122 2.5%/H2.5%/Y 5%/H 5%/ 10%/H 10%/Y 20%/H 20%/Y 33%/H 33%/Y

proportion of paired jobs / remote scheme

minutes. There is a slight trend for overhead to increase as
the paired job proportion increases, but the slope is not as
significant as in Figure 5(b). Similarly, all the cases using
hold as the local scheme are better than using yield in terms
of sync time. _ . .
Figure 10 shows service unit loss on both Intrepid adab b_ecome more than 33%, if thg coschedullng feature cannot
Eureka. On both machines, the loss of service unit increadls disabled, we recommend using the yield scheme on both
as the proportion of paired jobs gets higher. Specificag, tmachmes in order to avoid loss of service units.
results on Intrepid range from 200,000 to 2.7 million node-
hours, or 0.7% to 9.3% of the total node-hours in a month;
the losses on Eureka range from 800 to 15,000 node-hours, oWe have designed and implemented a coscheduling mech-
1% to 21% of total node-hours in a month. anism used in a coupled high-performance computing sys-
We consider the service unit loss acceptable when ttem where a large-scale computing system co-resides with
proportion of paired jobs is under 10%, when the loss rate asspecial-purpose data analysis or visualization systdm. T
under 3% on Intrepid and 5% on Eureka. When the proportigmal of coscheduling is to simultaneously start associated
is 20%, the loss rate is also fairly acceptable. But whenrepairjobs that are submitted to different machines belonging to

Fig. 10. Service unit loss by paired job proportion.

VI. SUMMARY
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