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Abstract

We propose a multiobjective strategy for model predictive control (MPC) that we term utopia-
tracking MPC. The controller minimizes, in some norm, the distance of its cost vector to that of
the unreachable steady-state utopia point. Stability is ensured by using a terminal constraint to a
selected point along the steady-state Pareto front. One of the key advantages of this approach is
that multiple objectives can be handled systematically without having to compute the entire Pareto
front or selecting weights. In addition, general cost functions (i.e., economic, regularization) can
be used.
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1 Introduction

Conflicting objectives arise naturally in model predictive control (MPC) applications. Traditional
trade-offs include tracking performance and robustness (e.g., H2/H∞ control) or economic perfor-
mance and sustainability. Specific domains where reconciling objectives is critical include chemical
plants [5, 17] and energy systems [20, 21].

A key technical challenge in dealing with multiple objectives is that the Pareto front is computa-
tionally expensive to build in real-time environments. In addition, even when such a front is built, ex-
pert knowledge is still needed to obtain a preferred solution. Traditional approaches such as weight-
ing and expert systems are limited since the system conditions and priorities change under different
operating modes or economic environments. It is thus desired to allow the MPC controller to handle
trade-offs automatically as conditions change. Stability is another technical issue arising in MPC with
multiple objectives. In particular, with the advent of MPC formulations able to handle general cost
functions [4, 16, 8], it is natural to wonder whether multiobjective extensions are possible.

Stability of multiobjective MPC formulations has been studied by numerous researchers. In [1],
the MPC control action is chosen among the set of Pareto optimal solutions based on a time-varying,
state-dependent decision criterion. In [18], the control action minimizes the maximum of a finite
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number of objectives. In [12], the MPC controller switches objectives depending on the value of the
state vector under stabilizing constraints. This type of expert knowledge is also used in [10], where a
lexicographic formulation and logic are used to prioritize the objectives. In these works, the multiple
cost functions are assumed to be positive definite as in traditional MPC formulations.

In this work, we propose a new strategy, called utopia-tracking MPC, to handle multiple objective
functions. We establish conditions for nominal asymptotic stability and propose numerical imple-
mentation schemes.

The key idea is to minimize the distance of the cost function to that of the steady-state utopia
point (unreachable point given by the intersection of the minima of the independent objectives). A
key property of the controller is that it can exploit the system dynamics to leave the steady-state
Pareto front and get closer to the utopia point compared with any solution along the steady-state
Pareto front. Stability is ensured by using a terminal constraint to a reachable point along the Pareto
front.

Our proposed approach is novel because it can handle general cost functions (e.g., economic,
regularization, tracking) that are required to satisfy only a Lipschitz continuity property. In addition,
the strategy does not require the construction of the Pareto front, nor does it require the selection of
weighting factors.

The paper is structured as follows. We start with basic definitions in Section 2. Definitions of
steady-state multiobjective optimization are presented in Section 3. In Section 4 we analyze the sta-
bility of the utopia-tracking controller. In Section 5 we discuss computational issues. We present a
numerical study in Section 6 and close in Section 7 with conclusions and directions for future work.

2 Preliminaries

We consider a discrete-time dynamic system of the form

xk+1 = f(xk, uk), (2.1)

where xk ∈ <nx are the states and uk ∈ <nu are the controls. The mapping f : <nx×nu → <nx is
assumed to be Lipschitz in both arguments with constantLf ≥ 0 and is assumed to satisfy f(xs, us) =

xs at an equilibrium point (xs, us). We will define the vector uT := [uT0 , ..., u
T
N−1]T ∈ <N×nu .

The state and controls are required to satisfy the constraints ∀ k:

xk ∈ X , uk ∈ U . (2.2)

The sets X ⊆ <nx and U ⊆ <nu are assumed to be compact and to contain the equilibrium point.

Definition 1 (Admissible Set.) Given N + 1 time steps k = 0, ..., N , the admissible set is given by

WN := {(x,u) |xk ∈ X , uk ∈ U , xN = xs}.

The set of admissible states ZN is then given by

ZN =: {x | ∃ uN such that (x,uN ) ∈ WN}. (2.3)

Definition 2 (K-Function [9].) A continuous function α : < → < is called a K function if α(s) = 0 for
s = 0 and α(s) > 0 for s > 0 and it is strictly increasing.
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Definition 3 (p-Norm.) The p-norm ‖ · ‖p with p ≥ 1 is a K-function of the form

‖s‖p =

(
ns∑
i=1

|si|p
) 1

p

,

for a vector s ∈ <ns with elements si, i = 1, ..., ns.

We have that with ‖s‖p = 0 if s = 0 and ‖s‖p > 0 otherwise for all p ≥ 1. In addition, we know that
the p-norm is Lipschitz continuous with constant equal to 1. Well-known norms are the L1,L2 and
the L∞ norms given by

‖s‖1 =

ns∑
i=1

|si|, ‖s‖2 =

√√√√ ns∑
i=1

(si)2, ‖s‖∞ = max{|s1|, |s2|, ..., |sns |}.

Using these definitions, we can establish the following definition of a Lyapunov function.

Definition 4 (Lyapunov Function.) A continuous function V (·) : <nx → < is called a Lyapunov function
if there exist an invariant set X and K functions αL(·), αU (·), and ∆α(·) such that, ∀x ∈ X ,

αL(‖x‖p) ≤ V (x) ≤ αU (‖x‖p) (2.4a)

∆V (x) ≤ −∆α(‖x‖p). (2.4b)

We note that the general p-norm can be used to bound the Lyapunov function since this is a K-
function and the composition of K-functions is a function of the same form.

3 Steady-State Multiobjective Optimization

Consider the following multiobjective steady-state problem:

min
x,u

[Φ1(x, u),Φ2(x, u), ...,ΦM (x, u)] (3.5a)

s.t. x = f(x, u) (3.5b)

x ∈ X , u ∈ U , (3.5c)

where the cost functions Φi : <nx×nu → <, i ∈M := {1, ...,M} are assumed to be Lipschitz continu-
ous in both arguments. We define the cost vector as,

Φ(·, ·)T := [Φ1(·, ·),Φ2(·, ·), ...,ΦM (·, ·)]T , (3.6)

with Lipschitz constant LΦ. No further assumptions are needed about the properties of these func-
tions, as in [18, 1].

The cost functions are assumed to be conflicting so that one cannot be minimized without increas-
ing the other 1. This situation gives rise to the concept of a Pareto solution.

Definition 5 (Steady-State Pareto Solution [3].) A feasible point (xp, up) for the multiobjective problem
(3.5) is said to be Pareto optimal if and only if there exists no other feasible point (x, u) such that Φi(x, u) ≤
Φi(xp, up), ∀i ∈M and Φi(x, u) < Φi(xp, up) for at least one index i ∈M.

1If any pair of functions is not conflicting, then the sum of objectives can be defined as a single objective.
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The family of Pareto solutions forms the so-called Pareto front, which represents a limiting curve
of performance in the cost space. In this work, we will not follow the traditional approach of con-
structing the Pareto front and then chosing a suitable point along it [10]. The first reason is that this
seems impractical in real-time environments. The second reason is that expert knowledge is needed
to select the point and the selection criterion might need change as the conditions of the system
change (e.g., prices). While automatic criterion selection procedures can be used with lexicographic
programming, these also are computationally expensive [11]. In this work, we try to overcome some
of these limitations by following an utopia-tracking approach [7, 5].

Definition 6 (Steady-State Utopia Point.) The steady-state utopia point is a point given by the solution
(xL,si , uL,si ) with coordinates Φi(x

L,s
i , uL,si ) in the cost space. The coordinates are given by the solution of,

min
x,u

Φi(x, u) (3.7a)

s.t. x = f(x, u) (3.7b)

x ∈ X , u ∈ U . (3.7c)

for i ∈M,

The utopia cost vector will be denoted as ΦL,s. The utopia point is unattainable since the costs are
conflicting; however, it can still be used as a reference point. For instance, it is possible to compute
the closest point along the Pareto front to the utopia point (also known as the compromise solution.)

Definition 7 (Steady-State Compromise Solution.) The steady-state compromise solution is a point
(xs, us) with cost Φ(xs, us) given by the solution of the minimum distance problem,

min
x,u
‖Φ(x, u)− ΦL,s‖p (3.8a)

s.t. x = f(x, u) (3.8b)

x ∈ X , u ∈ U , (3.8c)

in some norm ‖ · ‖p, where

‖Φ(x, u)− ΦL,s‖p =

(∑
i∈M
|Φi(x, u)− ΦL,s

i |
p

) 1
p

. (3.9)

The individual costs of the compromise solution are given by Φi(x
s, us), i ∈ M. We will de-

note the above problem as the steady-state utopia-tracking problem. A schematic representation of the
utopia-tracking approach is presented in Figure 1. We highlight that, for the single objective case, the
compromise solution and the utopia point coincide so that Φ1(xs, us) = ΦL,s

1 .

Remark: We emphasize that the choice of the compromise solution as equilibrium point is not
strictly necessary. Other possibilities include the Kalai-Smorodinsky solution, the egalitarian solu-
tion, and the Nash solution [6].
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Compromise

Utopia

Pareto Front

Figure 1: Schematic representation of Pareto front, compromise solution, and utopia point.

4 Multiobjective Predictive Control

We start by making the following assumption about controllability [4, 8].

Definition 8 (Weak Controllability.) There exists a K-function γ(·) such that, for every x ∈ X , there
exists (x,uN ) ∈ ZN such that

N−1∑
k=0

‖uk − us‖p ≤ γ(‖x− xs‖p).

This assumption is essential in establishing boundedness of general cost functions for MPC con-
trollers. Under this assumption, the following result can be established.

Lemma 1 Consider the general MPC problem,

min
xk,uk

T−1∑
k=0

‖ϕ(xk, uk, x
s, us)‖p (4.10a)

s.t. xk+1 = f(xk, uk), k = 0, ..., T − 1 (4.10b)

x0 = x` (4.10c)

xT = xs (4.10d)

xk ∈ X , uk ∈ U , k = 0, ..., T, (4.10e)

with Lipschitz continuous cost ϕ : <nx×nu → <. Assume there exists L ≥ 0 such that

‖ϕ(x, u, xs, us)‖p ≤ L(‖x− xs‖p + ‖u− us‖p).

If weak controllability and Lipschitz continuity of the system f(·, ·) holds, then there exists a K-function αU (·)
such that,

T−1∑
k=0

‖ϕ(xk, uk, x
s, us)‖p ≤ αU (‖x− xs‖p), (4.11)

for all (x,u) ∈ ZN .
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Proof: The proof is a straightforward extension of the upper bounding strategy used in [4, 8]. Apply-
ing the Lipschitz property assumed, the system can be propagated forward in time and substituted
in the objective. Under Lipschitz continuity of the system the result follows. �

In the following subsections, we propose three strategies to deal with multiple objectives. In the
first strategy (state-tracking MPC), the controller tracks directly the state of the compromise solution.
In the second strategy (cost-tracking MPC), the controllers track the compromise solution in the cost
space. The third strategy is the utopia-tracking MPC controller which tracks the steady-state utopia
point in the cost space using the compromise solution as terminal condition. We will see that this last
strategy can exploit the dynamic transition to leave the Pareto front and get closer to the steady-state
utopia point thus maximizing performance.

4.1 State-Tracking MPC

We consider the state-tracking (ST) problem,

min
xk,uk

VST (x`,u) :=
T−1∑
k=0

‖xk − xs‖p + ‖uk − us‖p (4.12a)

s.t. xk+1 = f(xk, uk), k = 0, ..., T − 1 (4.12b)

x0 = x` (4.12c)

xT = xs (4.12d)

xk ∈ X , uk ∈ U , k = 0, ..., T. (4.12e)

Here, ` is the current time instant, and T is the horizon length. The solution of this problem is given by
the vector u` from where the control u` is injected. The associated control law is given by u = hST (x).
The objective of the state-tracking controller is to steer the system states from the initial state x to the
compromise steady-state solution xs in minimum time.

Note that the above formulation is a generalization of traditional tracking controllers where the
L2 norm is used [15]. This norm is often chosen because of computational reasons (see Section 5.)
Any p-norm, however, can be used in principle to ensure stability as we see in the following result.

Theorem 1 (Stability of Tracking MPC.) The minimum-distance steady-state point xs under the control
law hST (x) given by the tracking MPC formulation (4.12) is an asymptotically stable equilibrium with region
of attraction ZN .

Proof: Under weak controllability, the cost function satisfies conditions of Lemma 1. Consequently,
it is bounded from above by a K-function. The existence of a K-function as lower bound is trivial
for this choice of cost function. To show that the cost function is nonincreasing we establish the
following:

VST (x`+1,u`+1)− VST (x`,u`)

=
`+T∑

k=`+1

(‖xk − xs‖p + ‖uk − us‖p)−
`+T−1∑
k=`

(‖xk − xs‖p + ‖uk − us‖p)

≤ − (‖x` − xs‖p + ‖hST (x`)− us‖p)
≤ −α(‖x` − xs‖p).
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The first inequality follows from the terminal constraint. The last inequality follows since ‖x`−xs‖p+

‖hST (x`)− us‖p ≥ ‖x` − xs‖p. The proof is complete. �

We note that the objective of state-tracking MPC is to reach the steady-state point in minimum
time and not in an economically optimal manner. Here, economic performance is interpreted as the
distance to the utopia point since this is the limiting point. In addition, the controller performance
is affected by the trade-off between the state and control regularization terms, and it often requires
weighting factors. The proposed multiobjective formulations of the following subsections can be
used to avoid these limitations.

4.2 Cost-Tracking MPC

To deal with the limitations of tracking MPC in dealing with multiple objectives, we first propose the
following cost-tracking (CT) MPC controller:

min
xk,uk

VCT (x`,u) :=
T−1∑
k=0

‖Φ(xk, uk)− Φ(xs, us)‖p (4.13a)

s.t. xk+1 = f(xk, uk), k = 0, ..., T − 1 (4.13b)

x0 = x` (4.13c)

xT = xs (4.13d)

xk ∈ X , uk ∈ U , k = 0, ..., T. (4.13e)

The control law of this controller is given by u` = hCT (x`). The objective of the controller is to
minimize the cost distance to the compromise steady-state solution. We will see that the cost function
is a natural Lyapunov function.

Assumption 1 There exists a K-function αL(·) such that

‖Φ(x, u)− Φ(xs, us)‖p ≥ αL(‖x− xs‖p). (4.14)

Theorem 2 Under weak controllability and Assumption 1, the steady-state xs under the control law hCT (x)

given by the multiobjective MPC formulation (4.13) is an asymptotically stable equilibrium point with region
of attraction ZN .

Proof: From Assumption 1, the cost function is bounded from below by a K-function. Under weak
controllability, Lemma 1 holds immediately with L = LΦ. Consequently, the cost is bounded from
above by a K-function. To show that the cost is nonincreasing, we establish the following:

VCT (x`+1,u`+1)− VCT (x`,u`) =
`+T∑

k=`+1

‖Φ(xk, uk)− Φ(xs, us))‖p −
`+T−1∑
k=`

‖Φ(xk, uk)− Φ(xs, us))‖p

≤ −‖Φ(x`, u`)− Φ(xs, us)‖p
≤ −αL(‖x` − xs‖p).

The last inequality also follows from Assumption 1. The proof is complete. �
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A key property of the cost-tracking approach is that the nature of the cost functions does not affect
the upper bound assumption of the minimum distance cost. Assumption 1 is the most restrictive
assumption that we have found and it is often difficult to verify in practice. In [8], the authors propose
to use a regularization term for the case in which the condition does not hold. In particular, the lower
bound condition can be guaranteed to hold under the satisfaction of the so-called strong second
order condition [22]. This condition requires that the optimization problem is locally stable so that
the optimal solution is well-defined. In other words, the cost is zero only at x = xs and strictly
positive otherwise.

4.3 Utopia-Tracking MPC

We now consider an alternative utopia-tracking (UT) formulation that minimizes directly the distance
to the utopia point:

min
xk,uk

VUT (x`,u) :=

T−1∑
k=0

∥∥Φ(xk, uk)− ΦL,s
∥∥
p

(4.15a)

s.t. xk+1 = f(xk, uk), k = 0, ..., T − 1 (4.15b)

x0 = x` (4.15c)

xT = xs (4.15d)

xk ∈ X , uk ∈ U , k = 0, ..., T. (4.15e)

The control law is given by u` = hUT (x`). Since this controller minimizes the distance to the utopia
directly, it can exploit the system dynamics to leave the steady-state Pareto front and get closer to the
utopia point.

The main technical difficulty in establishing stability of the UT controller is that the cost function
VUT (x, u) is nonzero at x = xs, u = us since the utopia point ΦL,s is unreachable. Consequently, the
cost function does not qualify as a Lyapunov function. To establish stability for this formulation, we
follow the approach proposed in [4]. An alternative strategy for linear systems was presented in [16].

We define the partial Lagrange function of the steady-state utopia-tracking problem (3.8):

L(x, u, λ) := ‖Φ(x, u)− ΦL,s‖p + (x− f(x, u))λ,

where λ ∈ <nx is a Lagrange multiplier. At xs, us, λs we have that the partial Lagrange function
reaches a minimum given by L(xs, us, λs) = ‖Φ(xs, us)−ΦL,s‖ since 0 = xs − f(xs, us). With this, an
artificial origin has been introduced if (x, u) = (xs, us). We need the following assumptions.

Assumption 2 (Strong Duality.) There exists a multiplier λs such that the pair us, xs uniquely solves,

min
x,u
L(x, u, λs), s.t. (x, u) ∈ X × U .

From strong duality we have that L(x, u, λs)− L(xs, us, λs) ≥ 0, ∀(x, u) ∈ X × U . We require the
following assumption:

Assumption 3 There exists a K-function αL(·) such that

L(x, u, λs)− L(xs, us, λs) ≥ αL(‖x− xs‖p). (4.16)
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We can now define the utopia-tracking MPC problem (4.15) in terms of the partial Lagrange func-
tion:

min
uk

VUT (x,u) :=

T−1∑
k=0

(L(xk, uk, λ
s)− L(xs, us, λs)) (4.17a)

s.t. xk+1 = f(xk, uk), k = 0, ..., T − 1 (4.17b)

x0 = x (4.17c)

xT = xs (4.17d)

xk ∈ X , uk ∈ U , k = 0, ..., T. (4.17e)

The control law is given by u` = hUT (x`). As shown in [4] (see Lemma 2), formulations (4.17) and
(4.15) are equivalent.

Theorem 3 Under weak controllability, strong duality, and Assumption 3, the steady-state xs under the
control law hUT (x) given by utopia-tracking MPC formulation (4.17) is an asymptotically stable equilibrium
point with region of attraction ZN .

Proof: From Assumption 3, the cost is bounded from below by a K-function. To prove that it is
bounded above, we first establish the following:∥∥∥∥∥

T−1∑
k=0

(L(xk, uk, λ
s)− L(xs, us, λs))

∥∥∥∥∥ ≤
T−1∑
k=0

‖L(x, u, λs)− L(xs, us, λs)‖p.

We also have that

‖L(x, u, λs)− L(xs, us, λs)‖p
≤
∥∥‖Φ(x, u)− ΦL,s‖p + (x− f(x, u))λ−

(
‖Φ(xs, us)− ΦL,s‖p + (xs − f(xs, us))λs

)∥∥
≤
∥∥‖Φ(x, u)− ΦL,s‖p − ‖Φ(xs, us)− ΦL,s‖p

∥∥
p

+ ‖(x− f(x, u))λs − (xs − f(xs, us))λs‖p

≤ ‖Φ(x, u)− Φ(xs, us)‖p + Lf (‖x− xs‖p + ‖u− us‖p) ‖λs‖p
≤ (LΦ + Lf‖λs‖p) (‖x− xs‖p + ‖u− us‖p) .

Consequently, Lemma 1 holds with L = LΦ + ‖λs‖p, and the cost is bounded above. To show that it
is nonincreasing we establish the following:

VUT (x`+1,u`+1)− VUT (x`,u`)

=
`+T∑

k=`+1

(L(xk, uk, λ
s)− L(xs, us, λs))−

`+T−1∑
k=`

(L(xk, uk, λ
s)− L(xs, us, λs))

≤ − (L(x`, u`, λ
s)− L(xs, us, λs))

≤ −αL(‖x− xs‖p).

The last inequality follows from Assumption 3. The proof is complete. �

As with the cost-tracking controller, the most restrictive assumption that we have found is As-
sumption 3. Under strong duality and second order conditions the condition holds.
Remark: In the case of a single objective, the compromise solution and the utopia solution coincide.
Consequently, the cost-tracking and the utopia-tracking controllers are equivalent.
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5 Computational Considerations

The choice of the norm in the controller cost has important implications for computational perfor-
mance. In particular, the L2 norm is smooth, whereas L1 and L∞ are not. Another issue is that
the cost functions can have drastically different values. Here we propose reformulations to overcome
these limitations. In addition, since the utopia-tracking controller works in the cost space, we propose
to use terminal constraints on the costs directly.

5.1 Formulations

The solution of the individual problems (3.7) also yields upper bounds ΦU,s
i , i ∈ M, given by the

maximum of the remaining costs not minimized. Consequently, we can use these together with the
utopia costs ΦL,s

i , i ∈M, to scale the controller cost without affecting its properties.
The scaled L2 problem has the following form:

min
xk,uk

T−1∑
k=0

∥∥∥∥Φ(xk, uk)− Φ(xs, us)

ΦU,s − ΦL,s

∥∥∥∥
2

:=

T−1∑
k=0

√√√√∑
i∈M

(
Φi(xk, uk)− ΦL,s

i

ΦU,s
i − ΦL,s

i

)2

(5.18a)

s.t. xk+1 = f(xk, uk), k = 0, ..., T − 1 (5.18b)

x0 = x` (5.18c)

xT = xs (5.18d)

xk ∈ X , uk ∈ U , k = 0, ..., T. (5.18e)

The square root in the objective function can introduce numerical ill-conditioning since the first
derivative diverges as the argument approaches zero. A typical alternative is to minimize the square
of the norm. The solution can differ from that of the L2 norm, but the stability theory developed in
the preceding section still applies in this case.

To deal rigorously with the L2 variant of (5.21), we consider the following formulation:

min
xk,uk

T−1∑
k=0

zk (5.19a)

s.t. xk+1 = f(xk, uk), k = 0, ..., T − 1 (5.19b)

x0 = x` (5.19c)

xT = xs (5.19d)

z2
k =

∑
i∈M

(
Φi(xk, uk)− ΦL,s

i

ΦU,s
i − ΦL,s

i

)2

, k = 0, ..., T − 1 (5.19e)

zk ≥ 0, k = 0, ..., T − 1 (5.19f)

xk ∈ X , uk ∈ U , k = 0, ..., T, (5.19g)

which is better-conditioned. Here,

T−1∑
k=0

∥∥∥∥Φ(xk, uk)− Φ(xs, us)

ΦU,s − ΦL,s

∥∥∥∥
2

=
T−1∑
k=0

zk. (5.20)
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It is possible to reformulate the L1 variant as follows. Introducing variables y+
k,i, y

−
k,i ≥ 0, i ∈ M, we

can define the absolute value y+
k,i − y

−
k,i = Φi(xk, uk)− ΦL,s

i [19]. After scaling we have

min
xk,uk

T−1∑
k=0

∑
i∈M

(y+
k,i + y−k,i) (5.21a)

s.t. xk+1 = f(xk, uk), k = 0, ..., T − 1 (5.21b)

x0 = x` (5.21c)

xT = xs (5.21d)

y+
k,i − y

−
k,i = (Φi(xk, uk)− ΦL,s

i )/(ΦU,s
i − ΦL,s

i ), k = 0, ..., T − 1, i ∈M (5.21e)

y+
k,i, y

−
k,i ≥ 0 k = 0, ..., T − 1, i ∈M (5.21f)

xk ∈ X , uk ∈ U , k = 0, ..., T, (5.21g)

where
T−1∑
k=0

∥∥∥∥Φ(xk, uk)− Φ(xs, us)

ΦU,s − ΦL,s

∥∥∥∥
1

=

T−1∑
k=0

∑
i∈M

(y+
k,i + y−k,i). (5.21h)

We can reformulate the L∞ variant as [2] follows:

min
xk,uk

T−1∑
k=0

ηk +
T−1∑
k=0

∑
i∈M

(y+
k,i + y−k,i) (5.22a)

s.t. xk+1 = f(xk, uk), k = 0, ..., T − 1 (5.22b)

x0 = x` (5.22c)

xT = xs (5.22d)

y+
k,i − y

−
k,i = (Φi(xk, uk)− ΦL,s

i )/(ΦU,s
i − ΦL,s

i ), k = 0, ..., T − 1, i ∈M (5.22e)

y+
k,i + y−k,i ≤ ηk, k = 0, ..., T − 1 (5.22f)

xk ∈ X , uk ∈ U , k = 0, ..., T, (5.22g)

where
T−1∑
k=0

∥∥∥∥Φ(xk, uk)− Φ(xs, us)

ΦU,s − ΦL,s

∥∥∥∥
∞

=
T−1∑
k=0

ηk. (5.23)

A similar formulation for the L∞ problem was used in [18].
We emphasize that the steady-state utopia point can be computed off-line or asynchronously

as done in steady-state real-time optimization. Consequently, this computation does not involve
additional on-line costs for the controller.

5.2 Terminal Constraint

In finite arithmetic, the terminal constraints (4.15d) are difficult to handle, particularly in large-scale
problems. Experimentally, we have observed that the controller problems can be solved more reliably
by using terminal constraints of the form

Φi(xT , uT ) = ΦL,s
i , i ∈M, (5.24)
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where uT ∈ U is an additional variable. This has the advantage that a significantly lower number
of constraints needs to be handled. In addition, it seems more practical to work directly with cost
values. A rigorous equivalence with traditional state terminal constraints is beyond the scope of this
work. In particular, it can be a concern that different states can reach the same cost and thus the states
might never stabilize. Intuitively, however, it seems that as long as the solution of the problem (3.8)
is locally unique (solution satisfies strong second-order conditions [14]), the states should converge
to the compromise steady-state solution.

6 Numerical Case Study

We simulated the performance of the three proposed controllers using free-radical polymerization
reactor [13]. The dynamic model has the following form:

dCm(t)

dt
= −(kp + kfm) · Cm(t) · P0(t) +

F

V
· (Cm,in − Cm(t)) (6.25a)

dCi(t)

dt
= −ki · Ci(t) +

Fi(t)

V
· Ci,in −

F

V
· Ci(t) (6.25b)

dD0(t)

dt
= (0.5ktc + ktd) · P0(t)2 + kfm · Cm(t) · P0(t)− F

V
·D0(t) (6.25c)

dD1(t)

dt
= Mm · (kp + kfm) · Cm(t) · P0(t)− F

V
·D1(t). (6.25d)

Here, Cm(t) is the monomer concentration, Ci(t) is the initiator concentration, D0(t) is the zeroth
moment and D1(t) is the first moment. These are the states. The control variable is Fi(t), the initiator
flowrate. The term P0(t) takes into account the total concentration of live polymer chains,

P0(t) =

√
2 · ηi · ki · Ci(t)

ktd + ktc
. (6.26)

The model parameter values can be found in [13]. We assume that it is desired to maximize conver-
sion Φ1(t) = X(t) = (Cm,in − Cm(t))/Cm,in while simultaneously maximizing the profit function,

Φ2(t) = 2500 + 3500 ·X(t)0.6 + 8.82× 10−4Mw(t)0.65 − 3000 · Fi(t)
0.5, (6.27)

where Mw(t) = D1(t)/D0(t) is the polymer molecular weight.
We converted the model into discrete time form using Euler discretization. All the controller

implementations are available at http://www.mcs.anl.gov/˜vzavala. We found that the L1

and the L∞ norm reformulations are computationally more robust compared with the L2 norm. In
all our numerical experiments, we used the L∞ norm. By monitoring the second order conditions
with IPOPT, we have observed that the solutions are locally stable.

We tested the ST, CT, and UT controllers using a closed-loop scenario considering two initial
points at the extremes of the Pareto front. The trajectories for the CT and UT controllers are presented
in Figure 2. In the transition from the initial point at the lower end of the Pareto front, both controllers
leave the front since they can exploit the system dynamics to get to the compromise solution. We also
note that the UT controller is able to get much closer to the steady-utopia point and then converges to
the compromise solution. In the transition from the second initial point, the difference in performance
is less pronounced. This can be due to the inability of the controller to visit the region surrounding
the upper end of the Pareto front.
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Figure 2: Phase plot of utopia-tracking (gray line) and cost-tracking controllers (dotted line). The
utopia point is the large dot.

We found that the ST controller is stable but its performance is not competitive. In Figure 3 we
present the evolution in time of the distance of the controllers to the utopia point ‖Φ − ΦL,s‖∞. As
can be seen, the performance of the UT controller is superior, while the poorest performance is given
by the ST controller.

7 Conclusions and Future Work

We have proposed a new strategy, which we term utopia-tracking MPC, to handle multiple objective
functions in predictive control. We have established conditions for nominal asymptotic stability and
propose numerical implementation schemes. The approach is able to handle general cost functions
(e.g., economic, regularization, tracking) that are required to satisfy only a Lipschitz continuity prop-
erty. In addition, the strategy does not require the construction of the Pareto front in real time and
avoids the need of tuning weights. Interesting directions of future work are robustness and stability
under different terminal conditions.
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