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ABSTRACT 

The feasibility of using chemical kinetics-based prediction of emission species for real-time control of 

modern diesel engines is investigated. A previously developed fast, physics-based model is used as a representative 

example. The temporal variation of temperature required for the computation of the reaction rate constants is 

obtained from the solution of the energy equation. The effects of composition and temperature on the thermo-

physical properties of the working fluid are included in the computations. Issues relating to model complexity, 

computation time, and fidelity are discussed in the context of both equilibrium and finite rate chemistry for use in 

the real time environment. The set of model inputs and tunable parameters is assessed for real-time use against the 

standard sensor set available on modern diesel engines. Results show that use of physics-based quasi-dimensional 

models is promising but may need complex variable mappings for real-time application.         

NOMENCLATURE 

E activation energy (J/mole) 

hcg convective heat transfer coefficient W m-2 K 

HP enthalpy of the products (J) 



  

HR enthalpy of the reactants (J) 

i reaction index 

I total number of reactions 

k species index 

kf i forward rate constant of the ith reaction 

kri backward rate constant of the ith reaction 

m  instantaneous mass in the engine cylinder 

mf(θ) mass of fuel burned in crank angle θ (kg) 

nk(t) number density of species k at time t  

Nrpm rotational speed of the engine (rev/min) 

P pressure (N/m2) 

P1 pressure at BDC  

Rg gas constant (J/kg-K) 

Ru universal gas constant (J/K) 

T(θ)       average cylinder temperature at crank angle θ (K) 

Tadi         adiabatic temperature of the stoichiometric fuel-air  

Tr(θ)     temperature used to evaluate reaction rate constants at  crank angle θ (K) 

T1         temperature at the beginning of the compression stroke (K) 

V(θ) instantaneous volume at crank angle θ 

 

Greek Symbols 

βI        temperature exponent in the rate constant of the ith reaction 

γ         ratio of specific heats  



  

θ        crank angle (degrees), CAD 

υki     stoichiometric coefficient of the kth species in the ith reaction 

υ’ki    stoichiometric coefficient of the kth reactant species in the ith reaction 

υ”ki    stoichiometric coefficient of the kth product species in the ith reaction 

1. INTRODUCTION 
 

The modern diesel engine is a complex, dynamical system as such the real-time control (RTC) of diesel engines 

poses unique challenges. If we consider the four critical subsystems—injection, gas exchange, combustion, and 

emissions (including after-treatment)—and analyze the control objectives, the complexity of the processes and their 

underlying interactions quickly becomes evident. If we additionally consider the on-board diagnostics (OBD) 

requirements, as mandated by the California Air Resources Board and Environmental Protection Agency [1, 2], the 

level of complexity for Real Time Operation (RTO) is compounded. Consider for example the After-Treatment 

(AT) system. A typical AT system will comprise a diesel oxidation catalyst, a de-NOx catalyst and a diesel 

particulate filter (DPF). The active control of the de-NOx catalyst requires information on the feed gas (FG) NOx; 

similarly, the active regeneration control of the DPF requires some information on its soot loading status, which is 

influenced by the FG soot concentration. In this document FG refers to the state of the engine exhaust exiting the 

engine. The need for information on FG NOx and soot is therefore obvious. While FG NOx may be measured (at 

substantial cost) soot sensors are not yet robust enough for use in mass produced vehicles. DPF regenerations are 

typically managed based on some soot loading metric derived from the pressure drop across the DPF [3]. The need 

for model-based predictions is also critical for states that cannot be sensed or for which a robust sensor does not 

exist. Modeling needs for other operating states maybe assessed at three levels, cost of using a sensor, OBD of the 

sensor (sensors are subject to OBD measures as well [1]), and failure mode actions in the event of a sensor failure.      



  

Real-time models must be the best compromise between prediction fidelity and computational leanness.  On the one 

end of the spectrum of fast RT usable models are empirical models that attempt to capture the essential sensitivities. 

These models are typically calibration intensive and may need to be retuned if the base engine calibration is altered. 

Alternatively, a reduced-order model may be extracted from a more elaborate physics-based model and cast as an 

implementable empirical model such as in [4]. Another approach would be to use zero-dimensional (also called 

quasi-dimensional) models as in [5 and references therein]. These quasi-dimensional models can be made more 

realistic and accurate by the inclusion of more physics describing the state of the working fluid during the 

compression and expansion stroke. For instance, the effects of mixture composition and temperature can be included 

in computing the thermophysical properties of the working fluid. Similarly, the fuel combustion can be described by 

an appropriate parameter so as to correctly predict the CA50 values for various operating conditions.  Such a 

computationally efficient, physics-based model can be extended to include reduced reaction mechanisms for 

combustion and emission species formation. The temporal variation of temperature calculated by the solution of the 

energy equation can be used to compute the species concentrations with either finite-rate chemistry or equilibrium 

assumptions. In this work, we focus on the utility of such reduced order zero-dimensional models for RTO in the 

context of NOx emission prediction for RTC. 

2. REVIEW OF ENGINE MODEL TYPES, CAPABILITIES, AND LIMITATIONS IN THE 
CONTEXT OF RTC 

 

Most models used in RTC are typically empirical as a result of operational constraints and often impose 

significant calibration burden. Using a fast physics-based approach can greatly aid in the development of robust and 

reliable models required for RTC. However, the development of such physics-based models is fraught with 

difficulties. This is largely due to the complex role that fluid-mechanics and combustion play in the formation of 

NOx, soot and other unburned hydrocarbons in diesel engines. There is a close coupling of several physical and 

chemical processes such as droplet break-up, atomization, vaporization, and mixing followed by chemical reactions 



  

that leads to the formation of various combustion products. Additionally, the formation of pollutants such as NOx 

and soot are also strongly impacted by the operating conditions (RPM, load, fuel injection, EGR fraction, etc.), 

cylinder geometry, and mixture composition. Detailed numerical simulations coupling the fluid-dynamics and 

chemical reactions can provide an in-depth analysis of the spatial and temporal gradients of fluid-dynamics variables 

(temperature, pressure, gas velocities) along with species composition. However, these insights come at 

considerable computational cost. For example detailed mechanisms describing the pyrolysis of the fuel and the 

subsequent formation of NO require hundreds of reactions and species [6]. Inclusion of turbulence and mixing 

during the compression and expansion strokes also adds to the computational load. Typically, such simulations can 

take hours or days, depending on the available computational resources and complexity of the models. While these 

complex multidimensional models provide a great deal of insight into the mixing and combustion processes, the 

required computational time and resources preclude their use in real-time control. On the other hand, low-

complexity, computationally fast, physics-based models (called quasi-dimensional models) can play a pivotal role in 

evaluating the impact of various operating conditions and engine parameters on performance and emission 

characteristics. Experimental data and detailed numerical simulations can play an important role in developing and 

validating such models. Typically, these quasi-dimensional models ignore spatial variation of fluid-dynamic 

variables and species concentrations.  Temporal variation of an average cylinder pressure can be computed from the 

energy equation. Based on this temperature, an average engine temperature can be obtained [5]. The prediction of 

cylinder pressure and temperature can be made more accurate by computing mixture-averaged quantities of 

thermophysical properties such as enthalpy, internal energy, and ratio of specific heats. Combustion of the fuel and 

formation of pollutants is usually modeled using phenomenological considerations and reduced chemistry 

mechanisms.  



  

3. ISSUES WITH QUASI-DIMENSIONAL MODELS  
 

Since these low-dimensional models must mimic high-dimensional complex physical and chemical processes 

occurring during fuel injection and its subsequent combustion, they typically rely on a few tunable parameters, . 

Ideally, these  not only must constitute the minimal set of parameters necessary for desired prediction fidelity but 

also must satisfy certain critical properties, namely,  

                    (1)   

for the model to be usable in RTC. Thus the “k” parameters, , may be modeled as some function  of the “i” 

nominally available variables, ,  that belong to the set of nominally sensed or modeled variables . A continuity 

constraint of order “ ” maybe imposed on  with, . Depending on the usage of within the model 

structure,  guarantees smoothness of interpolation for transient operation over the operating space of the plant.   

The set of variables, , includes all the directly sensed variables available from a standard sensor set as well as the 

set of inferred or modeled variables, such as exhaust gas flow rate that maybe inferred from the sensed variables, 

fresh air flow and injected fuel mass.  Typically the  may be identified a priori and then used in the model. This 

may work well for scalar ; however, if must be realized from a parameter space as a function of the operating 

conditions (as is often the case), then the impact of the projected on the model prediction must be assessed in 

light of the overall prediction error.  

4. MODEL PERFORMANCE NEEDS  

4.1 Computation of species concentrations 
 

Quasi-dimensional models used for RTC should be robust and fast. Solution of the energy equation (expressed 

in terms of the pressure and crank angle) provides the temperature and pressure required to compute species 

concentrations using either finite-rate chemical kinetics or equilibrium assumptions [5, 7].  Computations of the 



  

species concentration can be time-consuming depending on the method of solution. For instance, Anderson et al. [7] 

computed temporal NOx concentration based on equilibrium assumptions using a look-up table. This procedure can 

be time-consuming and cumbersome. A reduced chemistry NOx model (6 reactions, 8 species) was used in [8] to 

compute the temporal NOx concentration. Use of a robust implicit solver with variable time-stepping showed that 

finite-rate chemistry computations could be performed in about 60 milliseconds. Inclusion of reaction pathways to 

compute soot and CO would increase the computational time. Single-step or two-step phenomenological soot 

models can be used in conjunction with the mechanism described in [8] to obtain the temporal variation of both soot 

and NOx. Impact of residual gas composition and initial conditions on the overall accuracy of the predicted NOx 

have to be carefully examined.  One approach worth exploring is the use of equilibrium chemistry computations in 

the duration between EOC and EVO to predict engine-out NOx. Equilibrium concentrations depend only on the 

temperature, pressure and initial mixture composition. In a recent study, it was seen that equilibrium concentration 

of 20 species commonly encountered in combustion of hydrocarbon air mixtures could be obtained reliably in about 

3–4 milliseconds [9].  The crank angle most appropriate for computing engine-out NOx would have to be 

determined experimentally and would be one of the adjustable parameters in the quasi-one-dimensional model. 

Studies in [9] showed that the CO and concentration of soot precursors (such as C2H2 and CnHn-1) were not well 

predicted by equilibrium chemistry computations. 

4.2 Sensor set assumptions  

Whatever the modeling approach, it is critical that the modeling needs do not violate the standard sensor set 

assumptions, unless a clear and significant benefit can be demonstrated by adding additional sensors. While the cost 

constraint associated with sensors is obvious to most, what is typically ignored is the fact that all sensors that 

measure emissions must be monitored. Hence, adding sensors not only greatly increases the OBD burden but also 

makes the original equipment maker liable for warranty costs. Moreover, the possibility of a sensor failure cannot be 

ignored; hence all embedded codes for RTC must include a failure mode action associated with each sensor. It is 



  

therefore obvious that models that do not comply with these requirements are best suited for offline analysis and 

cannot be used in RTC implementations. For completeness we discuss the standard sensor set found on most 

modern diesel engines and describe the variables that need sensing but must be predicted because of the 

inavailability of a robust sensor. 

4.3 Gas exchange processes and combustion related parameters 

Typically the gas exchange pathway is well instrumented. Information on fresh air and fuel flow rates and the 

essential manifold temperatures and pressures are available. In some applications the exhaust manifold pressure and 

temperature are predicted, and the exhaust gas flow rate often is inferred from air and fuel flows.  The burnt gas 

fraction (BGF), or equivalently the oxygen content in the intake charge, is a critical parameter for diesel engines and 

is often inferred because of the lack of a reliable and robust EGR flow rate sensor. The intake oxygen may be sensed 

using an intake UEGO, which is a standard UEGO customized for use in the moist intake manifold environment. In 

Table 1we list the essential gas exchange parameters. The combustion-related parameters of interest and their 

associated needs are outlined in Table 2. 

5. DESCRIPTION OF THE UNDERLYING MODEL 

The numerical model used to study the compression and power stoke of a single-cylinder diesel engine is 

described in detail in [5]. Details of the model are presented here for completeness. Briefly, a zero-dimensional 

model was used to compute temporal variation of the temperature and pressure fields during the compression and 

power strokes. Temporal variation of the engine pressure and temperature during the compression and power stroke 

can be obtained by a numerical solution of the energy equation. Effects of temperature and mixture composition on 

the thermophysical properties of the working fluid were included in the solution of the energy equation. Temporal 

variation of the thermophysical properties of all the species in the gas mixture were obtained by using 

thermodynamic coefficients from the CHEMKIN database. Fuel combustion chemistry was modeled by a single-



  

step global reaction. The mass of fuel burned in each crank angle was determined using a fuel burn rate parameter so 

as to match the value of CA50 reported experimentally. The temporal evolution of NOx was computed by using 

finite-rate chemical kinetics, coupled with a solution of the energy equation. NOx formation was modeled by using a 

six step mechanism with eight species instead of the traditional equilibrium calculations based on the Zeldovich 

mechanism. The basic equations solved are given below. 

                     (2) 

                        (3) 

A fuel burn rate parameter was used to determine the number of fuel molecules burned during a given crank angle 

step and was used to compute Qin. The fuel burn rate parameter is defined as the ratio between the molecules of 

hydrocarbons (Np) at the end of a given crank-angle step to the number of molecules (Nr) at the start of the crank 

angle step. The difference between Np and Nr equals the number of fuel molecules burned during a given crank 

angle step. The burn rate parameter was computed by using an exponential form. 

                         (4) 

In Eq. (4) Ab is a constant, and θig defines the start of ignition. Hence br = 1 implies no fuel burnt (Np = Nr), and br 

= 0 implies complete combustion of the injected fuel.   For this work θig was established from the ignition delay θid = 

(θig – θsoi), where θsoi defines the crank angle of the start of injection.  The ignition delay model used in this work 

was taken from [10] and is noted in Eq (5), the ignition delay varied in the range of 3 to 5 CAD after the start of 

injection.  

                     (5)                     

 

The Qloss in Eq. (2) is defined as follows.  



  

                         (6) 

The value of the cylinder wall temperature, Tw, was set equal to the initial gas temperature at BDC (Tw ∼ 350K). The 

instantaneous values of volume, area, and displacement, required for the solution of Eq. (2), are given by the slider-

crank model and described in [5]. The convective heat transfer coefficient was expressed as 

                       (7) 

where the velocity of the burned gas, w, is given by the following. 

                       (8) 

In Eq. (8), Pm is the motoring pressure. Specific heats, enthalpies, and internal energy of individual species in the 

working fluid were computed by using polynomials. Mixture-averaged values of the specific heat of the working 

fluid were averaged by using mole fractions as in [5, 8]. A similar procedure was used to compute the mixture-

averaged values of enthalpy and internal energy of the working fluid. The average temperature of the gas in the 

cylinder can be obtained by  

                        (9) 

 For each crank angle, the evolution of the concentration of species k is described by the rate equation 

                        (10) 

Here is the net production rate of species k due to all the I reactions considered in a given kinetics model, 

computed as shown below. 

                      (11) 

                       (12) 



  

                       (13) 

The reaction rate constants kfi and kri, shown in Eq. (12), can be expressed in a form shown in Eq. (13). These rates 

are computed by using known constants and temperature obtained from the energy equation. As discussed in [8], the 

reaction rate constant in Eq. (13) is computed by using the average cylinder temperature for all crank angles except 

for θig < θ < θsc during which period T r(θ) = Tadi(θ). 

The model as discussed was exercised against steady-state data from [7]. For completeness we reproduce the 

model prediction from [8]. Model prediction was conducted for a  validation data set comprising nine test points, as 

indicated in Table 3. Figure 1 shows the cylinder pressure evolution over the nine test cases concatenated to create a 

transient cycle. The cylinder pressure as shown is normalized against the cylinder pressure at BDC. In Fig. 2 we 

compare the predicted NOx with the measured engine-out values.  For information about the more extended model 

prediction capabilities with respect to EGR, air, and injection parameter variations, the reader is referred to the 

discussions in [8].  

6. DISCUSSION ON THE MODEL IN THE CONTEXT OF RTC 

We now present the rigorous exercise of assessing the proposed model for compatibility as an embeddable code 

for RTO. We begin with an examination of the tuning parameters and then assess the RT run time for the proposed 

model. The set of input parameters needed for this model is listed in Table 4, which shows that the input parameter 

set does not violate the criterion of availability as a standard variable. The tunable parameters used in this model are 

defined in Tab.5. The three critical parameters that can significantly influence the model prediction fidelity are Ab, 

θSC, and θig. These parameters were identified a priori  by optimization-based fitting. The convective heat transfer 

parameter, hcg, is influenced by the two parameters c1 and c2, whose values are fixed by the Woschni model. The 

assessment of the model’s RTC utility, from a calibration effort perspective, therefore essentially involves the 



  

sensitivity of the modeled processes to the parameters, Ab, θSC, θid , or θig. Note that since we know θsoi, θid and θig are 

dependent parameters, and hence identifying θid determines θig.  

The tunable parameters of interest are considered for compliance with RTO properties. The parameter θSC is the 

most critical parameter for this model since it is the only parameter fitted by using a cost function that minimizes a 

model prediction metric, FG NOx in this case. Hence, once reasonable values for all other parameters have been 

achieved, the single parameter optimization of θSC implicitly considers any errors attributable to the parameters such 

as Ab, and θid.   We will now assess properties of the tunable parameters for compliance for use in RTO against the 

data set in Table 3. We begin by assessing the parameter Ab, which is identified by matching the burn rate model 

against a measured heat release rate. In this work the CA50 value was used for identification.  Figure 3 shows the Ab 

and θSC values identified for the nine cases as in Table 3.  Clearly, these values cannot be interpreted as scalars, and 

therefore the underlying models (or surfaces) must be established for use in RTC such that the appropriate values for 

Ab(k) and θSC(k) are available at each time step "k".   

For illustration we show the impact of the base model prediction if the value of θSC is fixed to 3.5 CAD in Fig. 4.   

Large prediction errors were observed relative to the nominal prediction errors from the base model. In Test Case 9, 

for example, the prediction error increased from -35% to approximately -250%. The prediction error was defined as 

follows.  

                           (14)  

It is clear that robust parameter update schemes must be identified and embedded in the real-time code.  

In Fig 5 we show schematically the process for creating the Ab and θSC empirical models. It is also clear from the 

spread of the Ab and θSC parameters in Fig. 3 that the associated empirical models will be complex surfaces. In our 

initial exercise we used a Gaussian process model to identify θSC.  The underlying θSC model that allowed the best 

base model predictions over the validation data set was indeed a complex surface without any immediate physical 



  

significance associated to the mapping from the inputs to θSC.  Similar checks with variations in parameters c1 and c2 

did not yield any significant model prediction errors. This result was expected since the parameters c1 and c2 relate 

to a nominal process and the associated model as in Eqs. (7) and (8) is well established.   The impact of, θig and θid is 

realized through Ab. 

7. PERFORMANCE OF A FULLY EMPIRICAL NOX MODEL IMPLEMENTED IN RTC   
 
A comparison of the kinetics-based model with a fully empirical and RT implemented model is necessary. Here we 

compare the predictions of the FG NOx. The empirical model considered is based on the model in [4]. The 

implemented version of the model was extended to include several parametric sensitivities and deployed in several 

vehicles. The implementation burden included numerous 2-D surface and 1-D curves as well as several scalar 

parameters. This led to a substantial calibration effort where the prediction error was constrained be less than the 

requirements cascaded from OBD and AT control needs. This then necessitated the design of a full-scale automated 

calibration optimizer as well as an acceptable prediction error cost function for the calibration optimizer. As one 

would suspect, the prediction model was sensitive to base engine calibration changes.   

Once tuned, however, the prediction was superior to both the steady-state and transient cycles, including off-

cycle drives. Figure 6 shows a sample prediction of the model over a transient cycle. The prediction error, as in Eq. 

(14), never exceeded ±20%. The sensor valid flag indicates when the sensor output is valid.  This compares well 

with the steady-state prediction error of the kinetics-based model that varied in the range +30% to -35%.  

The fully empirical model associated with the predictions in Fig. 6 was implemented in RTC. The model was 

run at a 50 ms time step. Adding the model to the overall engine and aftertreatment control and diagnostics strategy 

on the processor computational burden did not have a significant impact. For the kinetics-based model, however, the 

impact of time marching of the species equations at each crank angle did turn out to be computationally expensive. 

In this work, an implicit time-marching scheme with variable time-stepping was used to reduce the computational 

burden. The total computational time for each operating condition in the transient depends on the number of crank-



  

angle steps during the compression and expansion stroke. The typical computational time for a compression and 

expansion stroke for simulations reported in [8] was about 60 milliseconds. From a standpoint of robustness of the 

implicit chemistry solver, the tuning parameters for the variable time-stepping must chosen to be stable for a range 

of operating parameters. Hence, the computational time per cycle of the transient can be around 100 milliseconds. 

One could investigate the use of equilibrium chemistry computations as an alternative to finite-rate chemistry. 

The advantage of equilibrium chemistry is that the species composition depends on the temperature, pressure, and 

initial concentration of the cylinder charge. Therefore, one could compute the equilibrium NOx concentration a few 

crank-angle degrees after the end of combustion and relate it to the engine-out NOx. This approach requires the 

computation of equilibrium chemistry at a single point and could lead to substantial savings in computational time.  

The chemistry-based modeling approach (finite-rate or equilibrium), however, has a clear advantage when it 

comes to calibration effort. Not only was the fully empirical model was very sensitive to the engine calibration 

level, but it also showed some engine-to-engine variability. The kinetics-based model, on the other hand, has the 

benefit of capturing most of the essential sensitivities through physics-based modeling. Hence the calibration effort 

reduces to creating response surfaces for two to three parameters only, as discussed. Additionally, these parameters 

can be expected to be relatively insensitive to engine calibration tweaks and engine-to-engine variations within a 

given engine model type. 

8. CONCLUSIONS 

The selection of the best modeling approach for RTC can be a challenging task. The essential trade-offs between 

the RT usage, calibration effort, commonality, and adaptability to different engine models are important 

considerations—but so are the considerations on prediction fidelity over steady-state and transient operations as 

imposed by control and diagnostic requirements. In this work we discussed in some detail a kinetics-based model in 

the context of RTC. We showed that it may be possible via order reduction to design physics-based models with a 

much reduced tunable parameter set. This approach promises a greatly reduced calibration burden. The 



  

implementation burden on a RT processor was not assessed, but desktop runs showed promise. Currently we are 

assessing the performance of the proposed kinetics-based model under a fully transient cycle. This work will be 

followed by embedding the model in a processor for RTC. 
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TABLE 1: ESSENTIAL GAS EXCHANGE PARAMETERS 

Variable Availability 

Fresh air flow rate Sensed 

EGR flow Modeled or sensed 

Intake charge flow Modeled 

Intake charge 
temperature 

Modeled 

Intake O2 or BGF Currently predicted maybe sensed 

Intake pressure Sensed 

Intake temperature Sensed 

EGR temperatures Sensed or predicted 

Turbo charger RPM Mostly predicted, maybe sensed 

              
 



  

TABLE 2: ESSENTIAL COMBUSTION-RELATED PARAMETERS 

Variable Availability 

Fuel flow rate Available  

FG NOx Sensed or predicted 

FG HC Predicted if needed 

FG CO Predicted if needed 

FG O2  FG NOx 

Exhaust manifold temperature Sensed or predicted 

Exhaust manifold pressure Sensed or predicted 

Combustion pressure Unavailable 

Combustion temperature Unavailable 

 



  

TABLE 3: TESTCASE OPERATING CONDITIONS 
 

N (rpm) EGR 
(%) 

Fuel  
(mg) 

SOI 
(CAD) 

P1 
(Bar) 

Measured 
NOx (ppm) 

1090 4 120 171.5 2.5 1700 

1090 23 65 171 2.5 900 

1350 4 65 174 1.5 800 

1350 3 72 178 1.5 700 

1090 41 72 164 1.6 300 

1090 26 66 167 1.5 1000 

1090 26 66 171 1.4 650 

1090 25 68 175 1.4 425 

1090 25 68 179 1.4 300 

 
 



  

TABLE 4: MODEL INPUTS 
 

Variable Availability 

Cylinder geometry Available 

Engine speed Available 

Pressure at BDC Intake pressure 

Fresh air temperature Sensed 

EGR fraction Predicted 

EGR temperature Sensed 

Fuel injection rate Available 

Injection timing 
parameters 

Available 

     
 



  

TABLE 5: MODEL TUNABLE PARAMETERS 

Parameter Use 

Ab Model burn rate 

θSC Stoichiometric combustion duration 

θid  Ignition delay 

θig Start of ignition  θid 
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