
Dynamic Process Management in an MPI Setting

W. Gropp and E. Lusk*

Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, IL 60439

Abstract
We describe an architecture f o r the runtime envi-

ronment for parallel applications as prelude to describ-
ing how parallel application might interface to their
environment in a portable way. We propose exten-
sions to the Message-Passing Interface (MPI) Stan-
dard that provide for dynamic process management,
including spawning of new processes b y a running ap-
plication and connection to existing processes to sup-
port client/server applications. Such extensions are
needed if more of the runtime environment for par-
allel programs is t o be accessible t o MPI programs or
to be themselves written using MPI. The extensions
proposed here are motivated b y real applications and
fit cleanly with existing concepts of MPI. N o changes
to the existing MPI Standard are proposed, thus all
present MPI programs will run unchanged.

1 Introduction
During 1993 and 1994 a group composed of paral-

lel computer vendors, library writers, and application
scientists created a standard message passing library
interface specification [I, 51. This group, which called
itself the MPI Forum, chose to propose a standard only
for the message-passing library, attempting to unify
and subsume the plethora of existing libraries. They
deliberately and explicitly did not propose a standard
for how processes would be created in the first place,
only for how they would communicate once they were
created.

MPI users have asked that the Forum reconsider
this issue for several reasons. The first is that worksta-
tion network users migrating from PVM to MPI are
accustomed to using PVM’s capabilities [3] for pro-
cess management. (On the other hand, dynamic pro-
cess creation is often difficult or impossible on MPP’s,
limiting the portability of such PVM programs.) A
second reason is that important classes of message-
passing applications, such as client-server systems and
task-farming jobs, require dynamic process control. A
third is that with such extensions it would be possi-
ble to write major parts of the parallel programming
environment in MPI itself.

*This work was supportedby the Applied Mathematical Sci-
ences subprogramof the Office of Energy Research, U S . Depart-
ment of Energy, under contract W-31-109-Eng-38.

In this paper we describe an architecture of the sys-
tem runtime environment of a parallel program that
separates the functions of job scheduler, process man-
ager, and message-passing system. We show how the
existing MPI specification, which can serve handily as
a complete message-passing system, can be extended
in a natural way to include an application interface
to the system’s job scheduler and process manager, or
even to write those functions if they are not already
provided. (A typical difference between an MPP and
a workstation network is that the MPP comes with a
built-in scheduler and process manager, whereas the
workstation network does not. We will make this dis-
tinction clearer in Section 2.)

The paper is organized as follows. In Section 2 we
describe in detail what we mean by each of the compo-
nents of the parallel runtime environment-job sched-
uler, process manager, and message-passing system-
and give several examples of complete systems with
very different components. Section 3 contains the ba-
sic principles behind the design of the extensions and
a summary of the types of functions now being con-
sidered by the MPI Forum. In the conclusion we sum-
marize the current status.

2 Runtime Environments of Parallel
Programs

v

A parallel program does not execute in isolation; it
must have computing and other resources allocated
to it, its processes must be started and managed,
and (presumably) its processes must communicate.
MPI standardizes the communication aspect, but says
nothing about the other aspects of the execution en-
vironment.

One reason that the MPI forum chose to (temporar-
ily) ignore these aspects is that they vary so greatly
in current parallel systems. In order to motivate the
structure of the MPI extensions that we are going to
propose in Section 3, we describe here the major com-
ponents of a parallel runtime environment and give a
number of examples of various instantiations of this
structure.
2.1 Components

One way to decompose the complex runtime envi-
ronment at a high level on today’s parallel systems is
to separate out the functions of j o b scheduler, process
manager, message-passing library, and security.

530
1063-637495 $04.00 0 1995 IEEE

Job Scheduler By the j o b schaduler we mean that
part of the system that manages iresources. It decides
which processors will be allocated to the parallel job
when it runs and when it will run. In some environ-
ments it is represented by a component of a sophis-
ticated batch queueing system; in others it is repre-
sented by the user himself, who can start jobs when-
ever and wherever he likes on a network.

Process Manager Once processors have been allo-
cated to a program, user proces:ses must be started
on those processors, and managed after startup. By
“managed” we mean that signals must be deliverable,
that s tdin , stdout, and stderr must be handled
in some reasonable way, and that orderly termina-
tion can be guaranteed. A minimal example is rsh,
which starts processes and reroutes s tdin , stdout,
and stderr back to the originating process. A more
complex example is given by poe on the IBM SP2 or
prun on the Meiko CS-2, which start processes on pro-
cessors given to them by the job scheduler and manage
them until they are finished.

In some cases the situation is muddied by combin-
ing the functions of job scheduler <md process manager
in one piece of software. Examples of this approach
are the batch queueing systems such as Condor [7],
DQS [4], and LoadLeveler (IBM’s scheduler for the
SP-2). Nonetheless, it will be convenient to consider
them separately, since although they must communi-
cate with one another, they are separate functions that
can be independently modified.

Message-Passing Library By the message puss-
ing library we mean the library .used by the applica-
tion program for its interprocess communication. Pro-
grams containing only calls to a, message-passing li-
brary can be extremely portable] since they fit cleanly
into a variety of job scheduler-process manager en-
vironments. MPI defines a standard interface for
message-passing libraries.

Security An important function of the runtime en-
vironment is security. The security system ensures
that the job scheduler does not allocate resources to
users or programs that should not have them, that
the process manager does indeed control the processes
that it starts, and that the message-passing library de-
livers messages only to their proper destinations.

These components need to communicate among
themselves and with the user, but the timing and the
paths of such communication vary from one environ-
ment to another. Some of the paths are illustrated in
Figure 1.

For example, the job scheduler and the process
manager must communicate so t!hat the process man-
ager can know where to start the user processes. The
process manager and the message-passing library com-
municate in order for the message-passing library to
know where the processes are and how to contact
them. The user may interact only with the job sched-
uler (as in the case of LoadLeveler, an IBM scheduler ,
directly with the process manager (poe, prun), or on 1‘ y

User

Figure 1: Structure of the Runtime Environment

with the application program (p4). Finally, it may be
useful for the application program to dynamically re-
quest more resources firom the job scheduler.
2.2 Examples of Runtime Environments

To illustrate how the above framework allows us to
describe a wide variety of actual systems, we give here
some examples.

ANL’s SP2 The SP2 at Argonne National Labo-
ratory is scheduled by a locally written job scheduler
quite different from the LoadLeveler product delivered
with the SP2. It ensures that only one user has ac-
cess to any SP node at a time and requires users to
provide time limits for their jobs so that the machine
can be tightly scheduled. Users submit scripts to the
scheduler] which sets up calls to poe, IBM’s process
manager on the SP. The poe system interacts with
a variety of message-passing libraries, including two
based on MPI.

The Meiko CS-2 at LLNL Job scheduling is done
by the user himself who inspects the state of the ma-
chine interactively and claims a partition with a fixed
number of processors. He then invokes the process
manager with the prun command, specifying exactly
how many processes he wishes to execute in the given
partition. prun starts processes that use Meiko’s im-
plementation of Intel’s NX library, or MPI programs
that run on top of this library.

Paragon at Caltech There are three schedulers for
the Paragons operated by the CSCC at Caltech. The
first two are for interactive use. Programs may be
started by simply giving the number of nodes as an
argument or by creating a named partition of a par-
ticular shape and then running within that partition.
System calls to create :partitions and run programs are
provided. Partitions may be gang-scheduled.

The other is the NQS batch system, which is used
during the production shift (evenings and weekends).
Users submit jobs to a particular queue; NQS allocates
the necessary resources and starts jobs. The jobs are
usually shell scripts because they start in the user’s

53 1

home directory; a script is necessary to run a program
in a different directory.

Workstation network managed by DQS
DQS [4] is a batch scheduler for workstation networks
developed at Florida State University. Users submit
jobs to it and it allocates the necessary resources and
starts jobs. I t has an interface to p4 that allows it to
start parallel jobs written using p4 but not (currently)
any other library. Similarly, Condor, a batch sched-
uler, can start PVM jobs on the network it manages
at the University of Wisconsin, but no other parallel
programs.

Basic workstation network with PVM One rea-
son for PVM’s popularity is that it can be viewed as
a completely self-contained system that supplies its
own process management and can be used to imple-
ment a job scheduler as well. On systems that have
neither of these functions pre-installed, PVM can pro-
vide a complete solution. A user creates a “virtual
machine” by starting “daemons” on an assortment of
machines and then schedules jobs to run on it and
manages his processes with the help of the daemons.
The virtual machine itself can be reconfigured from
inside the user program. A difficulty with this ap-
proach is that the user is assumed to have the neces-
sary permissions to execute such functions. This may
be the case on a workstation network, but seldom on
an MPP. Conflicts between existing process mana ers
and PVM can inhibit the portability to MPP’sf of

will be provided by PVM. Some process-management
extensions to PVM are described in [6].

self-contained programs that assume a1 \ functionality

Workstation network with CARMI The Con-
dor system at the University of Wisconsin has been
an early progenitor of dynamic process-management
systems. A recent, sophisticated, related system is
CARMI, described in [8]. It currently supports PVM
application programs.
2.3 Applications Requiring Direct Com-

munication with the Runtime System
The existing MPI specification is adequate for most

parallel applications. In these applications, the job
scheduler and process manager, whether simple or
elaborate, allocate resources and manage user pro-
cesses without interacting with the application pro-
gram. In other applications, however, it is necessary
that the user level of the application communicate
with the job scheduler and process manager. Here
we describe three broad classes of such applications.

Task Farming By a “task farm” application we
mean a program that manages the execution of a set
of other, possibly sequential, programs. This situation
often arises when one wants to run the same sequential
program many times with varying input data. We call
each invocation of the sequential program a task, It is
often simplest to “parallelize” the existing sequential
program by writing a parallel “harness” program that

in turn devotes a separate, transient process to each
task. When one task finishes, a new process is started
to execute the next one. Even if the resources allo-
cated to the job are fixed, the “harness” process must
interact frequently with the process manager (even if
this is just rsh, to start the new processes with the
new input data). In many cases this harness can be
written in a simple scripting language like csh or perl,
but some users prefer to use Fortran or C.

Dynamic number of processes in parallel job
The program wishes to decide inside the program to
adjust the number of processes to fit the size of the
problem. Furthermore, it may continue to add and
subtract processes during the computation to fit sep-
arate phases of the computation, some of which may
be more parallel than others. In order to do this, the
application program will have to interact with the job
scheduler (however it is implemented) to request and
acquire or return computation resources. I t will also
have to interact with the process manager to request
that process be started, and in order to make the new
processes known to the message-passing library so that
the larger (or smaller) group of processes can commu-
nicate.

Client/Server This situation is the opposite of the
situations above, where processes come and go upon
request. In the client/server model, one set of pro-
cesses is relatively permanent (the server, which we
assume here is a parallel program). At unpredictable
times, another (possibly parallel) program (the client)
begins execution and must establish communication
with the server. In this case the process manager must,
provide a way for the client to locate the server and
communicate to the message-passing library that it
must now support communications with a new collec-
tion of processes.

It is currently possible to write the parallel clients
and servers in MPI, but because MPI does not pro-
vide the necessary interfaces between the application
program and the job scheduler or process manager,
other nonportable, machine specific libraries must be
called in order for the client and server to communi-
cate with one another. On the other hand, MPI does
contain several features that make it relatively easy
to add such interfaces, and we propose both a simple
interface and a more complex but flexible one.

3 Extending MPI for Dynamic Process
Management

In this section we will first describe requirements
for the interface which influence some of the decisions.
Then we will describe very generally the families of
new MPI extensions that will meet the requirements.
Note that we think of ourselves as providing an inter-
face to existing job scheduling and process manage-
ment systems. If they do not exist, then we may want
to be able to write them in MPI. Some proposals for
spawning new processes in an “MPI way” have previ-
ously been made in [2], [9] and [5]. Our proposals here
offer considerably more functionality and flexibility.

532

3.1 Requirements
Of course the most basic requirement is that we

be able to write portable applications in the above
classes, that can run in a variety of job scheduling -
process management environments. In addition, we
would like our interface to have a number of other
properties.

Determinism The semantics of dynamic process
creation must be carefully designed to avoid race con-
ditions. In MPI, every process irr a member of some
communicator; when we allow MPI to create or de-
stroy processes, all of the communicators that that
process belongs to change. In order to keep collective
operations on communicators meaningful (for exam-
ple, what does a reduction mean when a process joins
the reduction during the operation; for that matter,
how is “during” defined), all changes to communica-
tors are collective operations. In PVM terms, we will
not allow a new process to join a group while a collec-
tive operation over that group is in progress. (Error
handling is dealt with separately.)

Scalability and performance It must be possible
to deal with large numbers of processes by exploiting
potential scalability in the job scheduler or process
manager. In addition, since eaclh of the steps of al-
locating resources and starting processes can be very
time consuming, we allow each of these steps to be
non-blocking so that other work can take place during
these steps.

3.2 Overview of Mew MlPI Functions
The original version of this pitper contained a de-

tailed proposal for new MPI functions to meet these
requirements. Such details are omitted here both be-
cause of space limitations and because the MPI Fo-
rum has begun meeting since then and has evolved
that original proposal into a new current draft. In
particular, many important new contributions have
been made by Bill Saphir of the NASA Ames Re-
search Center, and considerable work has been done
by A1 Geist of Oak Ridge National Laboratory. The
MPI Forum’s discussion groups are open, and any-
one desiring to keep abreast of the current discus-
sion can do so by sending the inessage “subscribe
mpi-dynamic” to majordomohcs . an1 .gov. Here we
give a brief overview of the evolving specification, as
it stands in the summer of 1995.

Interactions with the job scheduler will occur
through functions that allow the user program to dis-
cover pre-allocated resources and to request new ones.
Interaction with the process manager occur through
functions that create processes 011 allocated resources.
It will possible to start both non-IVIPI process and MPI
processes, thus allowing a distributed process manager
itself to be written in MPI. It will also be possible
to establish MPI communications with the new pro-
cesses. We will use MPI inter-communicators as
a way to manage the distinction between two groups
of processes when one group collectively creates the

other group (creating new processes) or else estab-
lishes communication with an existing group (client-
server). It is likely that there will be a convenience
function that combines resource allocation, process
creation, and communication establishment through
an MPISPAWN that is similar in functionality to
pvmxpawn. Functions will also be provided to estab-
lish MPI communicatiam among independently started
processes, allowing parallel client-server applications.

4 Summary
We have outlined an approach to dynamic process

management in MPI, focusing on the environments in
which dynamic process management takes place and
some of the types of applications that will use it. We
concluded with a brief summary of the current scope
of discussions now going on in the MPI Forum.

References
Message Passing Interface Forum. MPI: A
message-passing interface standard. International
Journal of Supercomputing Applacations, 8(3/4),
1994.

Hubertus Franke, Peter Hochschild, Pratap Pat-
tnaik, Jean-Pierre Prost, and Marc Snir. MPI on
IBM SPl/SP2: Current status and future direc-
tions. unpublished.

A1 Geist, Adam Beguelin, Jack Dongarra, We-
icheng Jiang, Bob Manchek, and Vaidy Sun-
deram. P V M : Parallel Virtual Machine-A User’s
Guide and Tutorial for Network Parallel Comput-
ing. MIT Press, 1994.

Tom Green and Jeff Snyder. DQS, a distributed
queuing system. Technical Report FSU-SCRI-92-
115, Florida State University, August 1992.

William Gropp, Ewing Lusk, and Anthony Skjel-
lum. Using MFI: Portable Parallel Programming
with the Message Passing Interface. MIT Press,
1994.

R. Konuru, J. Casa, R. Prouty, S. Otto, and
J . Walpole. A user-level process package for PVM.
In SHPCC94, pages 48-55. IEEE Press, May 1994.

M. Litzkow and M[. Solomon. Supporting check-
pointing and porcess migration outside the Unix
kernel. Usenit Winter Conference, 1992.

Jim Pruyne and Mhon Livny. Parallel processing
on dynamic resources with carmi. (submitted for
publication).

Anthony Skjellum, Nathan E. Doss, Kishore
Viswanathan, Aswini Chowdappa, and Pu-
rushotham V. Bangalore. Extending the message
passing interface (MPI). Mississippi State Univer-
sity, 1994.

533

