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Abstract
The ever-increasing gap in performance between
CPU/memory technologies and the I/O subsystem
(disks, I/O buses) in modern workstations has exacerbated
the I/O bottlenecks inherent in applications that access
large disk resident data sets. A simultaneous development
in recent times has seen the maturity of Linux-based off-
the-shelf clusters of PCs for low-cost, high-performance
computing solutions. A common technique to alleviate the
I/O bottlenecks on such platforms is the use of parallel
file systems. One such parallel file system is the Parallel
Virtual File System (PVFS), which is a freely available
tool to achieve high-performance I/O on Linux-based
clusters.

In this paper, we describe some of the key performance
and scalability improvements that we have implemented for
the UNIX I/O interface to PVFS. To illustrate the perfor-
mance gains, we present experimental results using Bon-
nie++, a commonly used file system benchmark to test
file system throughput; a synthetic parallel I/O application
for calculating aggregate read and write bandwidths; and
a synthetic benchmark which calculates the time taken to
untar the Linux kernel source tree to measure perfor-
mance of large number of small file operations. We also
compare the I/O performance of these techniques when
using a Myrinet-based network and when using a fast
Ethernet-based network for I/O-related communications.
With these techniques we achieve aggregate read and write
bandwidth as high as 550 MB/s with Myrinet and 160 MB/s
with fast Ethernet.
Keywords: parallel file systems, kernel space threads, ag-
gregate file system bandwidth, POSIX I/O interface.

1 Introduction

In recent years, the disparity between I/O performance and
CPU performance has led to I/O bottlenecks in many ap-
plications that use large data sets. This gap is becoming
more problematic as we move to multi-processor and clus-
ter systems, where the compute power is multiplied by the

number of processing units available. A simultaneous trend
in recent times has been the shift to clusters of off-the-shelf
PCs and networking hardware, which are rapidly becom-
ing the platform of choice for demanding applications pri-
marily because of their cost effectiveness and widespread
availability. An opportunity for high-performance I/O ex-
ists on these platforms in the form of I/O subsystems in
each node. The multiple CPUs and their memories can pro-
vide processing and primary storage parallelism, while the
multiple disks can provide secondary storage parallelism
for both data access and transfer. Parallel file systems ex-
ploit this feature to hide the I/O bottlenecks from the ap-
plications. While many commercial parallel file systems
have been developed for supercomputers and parallel ma-
chines, such as PFS for the Intel Paragon [9], and GPFS
[17] for the IBM SP, and many academic endeavors, such
as Galley [14], PIOUS [12], and PPFS [7], many of these
solutions are not available or not intended for production
use on Linux-based clusters.

PVFS [4] is a freely available parallel file system that
is intended both as a research tool in parallel I/O, and as
a stable file system that can be used on production Linux
clusters. The initial goals of PVFS were to provide data
striping and file partitioning in a distributed environment
and to provide an interface that is reasonably close to the
standard UNIX I/O interface. The first prototype imple-
mentation was developed with the main goal of achieving
high-performance I/O and was intended to be run on a 4-
node Alpha cluster in 1994. In recent times, clusters of a
thousand machines and more have become more common.
Hence, the goals of PVFS have been redefined to achieve
not only high performance but also scalability. In the past,
PVFS has been optimized for bandwidth-limited parallel
applications [4] that access the file system through the MPI-
IO [10] and native library interface. PVFS has also been
optimized for parallel applications with non-contiguous [5]
access patterns. The UNIX I/O interface to PVFS is a fairly
recent addition, which was intended more for convenience
than for achieving high-performance I/O.

In this paper, we describe the key performance and scal-



ability problems that hinder the use of standard UNIX I/O
interfaces through PVFS for high-performance parallel I/O,
and we present techniques that we have implemented to al-
leviate the following:

� File system overheads, such as the amount of buffer
copying and the number of context switches between
processes and client-side daemons.

� TCP/IP connection management overheads.

� Lack of aggregation in directory read operations.

We describe these problems and our proposed solutions in
greater detail in subsequent sections. To illustrate the per-
formance improvements, we present experimental results
obtained from the Bonnie++ [6] file system benchmark, a
synthetic parallel I/O workload, and a synthetic workload
which times the untar of the Linux kernel source tree.
The experimental results presented in this paper are from
a 16-node Intel Pentium-III Linux-based cluster of work-
stations at Clemson University. Each node on this clus-
ter consists of dual 1 GHz Intel Pentium-III microproces-
sor equipped with 1 GB RAM and two 30-GB IDE-Maxtor
hard drives. Each node also has two network interfaces, an
Intel 82557 (Ethernet Pro100) fast Ethernet interface, and
a Myrinet [3, 13] (M3M-PCI64B-2 with 2 MB of on-board
RAM operating at 1.28 Gbps) interface. All the nodes
are connected through fast Ethernet and Myrinet switches
(three 8-port M2M-SW8 switches).

The rest of this paper is organized as follows. Section
2 outlines the design and implementation of PVFS, and
Section 3 describes the performance and scalability bot-
tlenecks and the enhancements proposed to alleviate them.
Experimental results on a variety of benchmarks are pre-
sented in Section 4. Section 5 summarizes the contributions
of this paper and discusses directions for further improve-
ments.

2 PVFS: System Architecture

The goals of PVFS as a parallel file system are to provide
high-speed access to file data for parallel applications. The
main features of PVFS are that it provides a cluster-wide
name space for clients to access their data files, enables
users to control striping parameters when creating files, de-
livers scalable performance under concurrent reads/writes,
and allows for legacy binaries to operate on PVFS volumes
without having to be recompiled. PVFS is designed as a
client-server system as shown in Figure 1 and described in
greater detail below.

2.1 PVFS: Servers

PVFS uses two server components, both of which run as
user-level daemons on one or more nodes of the cluster.
One of these is a meta-data server (called MGR) to which
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Figure 1: Overall system architecture

requests for meta-data management (access rights, directo-
ries, file attributes and physical distribution of file data) are
sent. In addition, there are several instances of a data server
daemon (called IOD), one on each node of the cluster
whose disk is being used to store data as part of the PVFS
name space. This daemon listens on a TCP socket for
requests to read/write from/to its local disk using normal
Linux file system calls. There are well-defined protocol
structures for exchanging information between the clients
and the servers. For instance, when a client wishes to open
a file, it communicates with the MGR daemon which pro-
vides it the necessary meta-data information (such as the
location of IOD servers for this file, or stripe information)
to do subsequent operations on the file. Subsequent reads
and writes to this file do not interact with the MGR daemon
and are handled directly by the IOD servers. This strategy
is key to achieving scalable performance under concurrent
reads and write requests from many clients and has been
adopted by more recent parallel file system efforts.

2.2 PVFS: Clients

PVFS supports many different client APIs, such as:

� Native libpvfs API,

� Standard UNIX/POSIX API [8], and

� MPI-IO API [10, 19].

Applications written with the native library interface must
be linked with libpvfs to read and write files off of a PVFS
file system. The native API has functions analogous to the
POSIX API functions for contiguous reads and writes. In
addition, it includes support for non-contiguous reads and
writes with a single function call [5]. The MPI-IO inter-
face has been implemented on top of PVFS by using the
ROMIO [19] implementation of MPI-IO. ROMIO is de-
signed to be ported easily to new file systems by imple-
menting only a small subset of functions on the new file
system [20]. PVFS also supports the standard UNIX I/O
functions, such as open, close, read, and write, as
well as legacy UNIX utilities such as ls, cp, and rm. In-
terfacing to the UNIX I/O functions is accomplished by
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loading a Linux kernel module that hooks into the appropri-
ate place in the Linux VFS layer without having to recom-
pile the kernel and/or reboot the machine. Once mounted,
the PVFS file system can be traversed and accessed with
existing binaries just as any other file system. Many net-
work file systems like NFS have weaker consistency guar-
antees on file system data and meta-data, since they are
primarily targeted at workloads where it is not common to
have many processes accessing the same files or directo-
ries from many nodes simultaneously. PVFS, on the other
hand, cannot afford to have such weaker file system seman-
tics guarantees because it is primarily targeted at workloads
that exhibit such access patterns. Therefore, PVFS (at this
stage) does not cache file data and meta-data in the Linux
page cache; in other words, all file system accesses have
to incur a network transaction. We are, however, incorpo-
rating consistency management and client-side caching to
experiment with different file system semantics issues to
improve performance.

2.3 Design of the PVFS Kernel Module

When the PVFS kernel module is loaded, it registers itself
with the Linux VFS layer. After the PVFS file system is
mounted, subsequent file system calls on the PVFS volume
are dispatched by the VFS layer to the module. The mod-
ule uses a device file to communicate the request to a user
level daemon (pvfsd) which satisfies the requests by talking
to the MGR and/or the IOD servers. This design is concep-
tually similar to the Coda design [2, 15] and is shown in
Figure 2. We briefly go over a simplified algorithm for the
read and write control paths here.

� read

1. Enqueue a read request to the character device
queue.

2. Wake up the daemon (pvfsd) if necessary.

3. Wait until interrupted by a signal or when oper-
ation is complete.

4. If operation is complete, copy the data from the
kernel buffers to the user land virtual addresses;
else return appropriate error code.

� write

1. Enqueue a write request to the character device
queue. This step also involves copying the data
from the program’s user land virtual addresses to
the kernel’s temporary buffers.

2. Wake up the daemon (pvfsd) if necessary.

3. Wait until interrupted by a signal or until the dae-
mon writes back the virtual address to which the
data to be written needs to be copied.

4. Copy the data from the kernel buffers to the dae-
mon’s virtual address.

5. Enqueue another write request to the character
device queue. This step of the write process in-
volves copying the data from the kernel’s tempo-
rary buffers to the address space of the daemon.
Wait until the operation is complete or for a sig-
nal to terminate the operation.

6. Return appropriate error codes or operation suc-
cess

� user space daemon

1. Block on the device queue waiting for a request
to appear.

2. Read the request from the character device
queue. Ascertain the operation type.

3. If it is a write request that was enqueued in Step
1, allocate a virtual address region large enough
to accommodate the write, and enqueue an ac-
knowledgment into the device queue.

4. If it is a write request that was enqueued in Step
5 or any other operation, stage the appropriate
operation, and enqueue the results of the op-
eration as an acknowledgment into the device
queue, waking up the blocked process.

It is conceivable to use the process context (i.e. the context
of the process when it is inside the kernel) to communicate
with the IOD and MGR servers to service file system re-
quests (thus avoiding the need for any daemons). However,
we did not wish to add new file descriptors on behalf of the
process without its knowledge, as such an action could have
unpleasant side effects. Moreover, a user space daemon-
based approach lends well to better code reuse, easier de-
bugging, and simplicity. On the other hand, it does not
perform well for many read/write-intensive workloads be-
cause of context switching and buffer copying overheads as



elaborated upon in Section 3. Therefore, we propose an al-
ternative kernel space approach that largely alleviates many
of the performance limitations.

3 Improving Performance

The chief performance bottlenecks that we address in the
subsequent sections are

� increased buffer copies and context switching over-
heads,

� resource/socket utilization overheads, and

� lack of aggregation in directory read operations.

3.1 Reducing Buffer Copy and Context
Switching Overheads

As illustrated earlier, a typical read/write operation incurs
at least two buffer copies before the data gets into/from the
applications address space (1 copy incurred when transfer-
ring from/to the daemon’s address space to/from tempo-
rary kernel buffers, 1 copy incurred when copying from/to
kernel buffers to/from the user program’s address space,
not including the daemon’s read/write from/to the ker-
nel socket buffers when communicating with the IOD and
MGR servers). Additionally, the write operation incurs an
extra latency because of the extra step involved in waiting
for a suitably large virtual address from the daemon’s ad-
dress space. Moreover, each of these operations involves
at least two context switches before the file data is written
out to the file system or read into the application’s address
space. A context switch forces the TLBs to be flushed,
since the address space is changed. As a result, the mem-
ory references that follow the switch are slower than they
would be had it not been for the switch. Moreover, the
cost of context switching increases with faster processors
because of the increased mismatch between processor and
memory speeds. For all these reasons, the above design is
not appropriate for a high-performance parallel file system.

Beginning with Linux kernel version 2.4, two APIs, ker-
nel thread (which was essentially a front end for the clone
system call) and daemonize are exported to kernel modules
to create kernel threads with no user space context asso-
ciated with them. This approach allows modules to cre-
ate active entities that execute completely inside the ker-
nel. Since they have no associated user space component,
context switching overheads are less. In addition, since
they run inside the kernel address space, they can use the
temporary kernel buffers directly to stage reads or writes
without any extra copying. Moreover, in recent times
there have been trends to incorporate many traditional user
space services into the kernel, most notably Web servers
such as khttpd [21] and TUX [11], for the sake of perfor-
mance. Therefore, this mechanism can be used to avoid

buffer copying, system call, and context switching over-
heads. Another consequence of executing in kernel space
is the fact that we can remove the character device inter-
face altogether and have the daemon operate on the queues
directly. With the new mechanism, the read/write control
path is briefly described below:

� read

1. Enqueue a read request to the queue.

2. Wake up the kernel space daemon (kpvfsd) if
necessary.

3. Wait until interrupted by a signal or when oper-
ation is complete.

4. If operation is complete, copy the data from the
kernel buffers to the user land virtual addresses;
else return appropriate error code.

� write

1. Enqueue a write request to the queue. This step
also involves copying the data from the pro-
gram’s user land virtual addresses to the kernel’s
temporary buffers.

2. Wake up the kernel space daemon (kpvfsd) if
necessary.

3. Wait until interrupted by a signal or when oper-
ation is complete.

4. Return appropriate error codes or operation suc-
cess.

� kernel space daemon

1. Block on the queue waiting for a request to ap-
pear.

2. Read the request directly from queue. Ascertain
the operation type.

3. Stage the read/write operation directly to/from
the kernel buffers.

4. Enqueue the results of the operation as an ac-
knowledgment into the queue, waking up the
blocked process.

Note that in the above algorithm, we have removed the ad-
ditional step for writes that was needed in the user space
daemon case, and thus we expect to see higher benefits for
writes than for reads. This method is shown in Figure 3.
Since the kernel space daemon talks to the IOD and the
MGR servers in order to satisfy the file system requests, it
needs to use kernel space system calls to create and ma-
nipulate TCP sockets. The performance benefits of invok-
ing kernel space system calls are mainly due to avoidance
of costly user space/kernel space transitions and the asso-
ciated data passing. In Section 4, we present experimen-
tal results from Bonnie++ and a read/write-intensive syn-
thetic parallel workload to illustrate the benefits of the ker-
nel space approach.
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3.2 Resource Utilization Management

As stated earlier, the client-side daemon uses TCP sockets
to connect and exchange information with the IOD servers.
The previous implementation managed connections to the
IOD servers at the granularity of a file i.e., it kept as many
socket connections per file as there are number of IOD
servers over which the file is striped. While such an ap-
proach is simple, it suffers from serious scalability and per-
formance issues when there are many simultaneous open
files and IOD servers. It is a scalability issue for two rea-
sons, namely, the limited number of open file descriptors
that is usually permitted for a process, and the poor scal-
ability of the select system call with a large number of
file descriptors [1] on the servers. It is a performance issue
because of the overhead involved in setting up and tear-
ing down connections to the servers for every new file that
is accessed. The overhead is even greater for clients that
access the file system through the PVFS library, since the
number of file descriptors is potentially increased by a fac-
tor proportional to the number of processes that are execut-
ing on the node.

The new implementation manages connections at a node
granularity; in other words, we keep as many connections
as there are IOD servers, and reuse the connections for all
files. This approach has not only improved performance
for workloads that manipulate a large number of files, but
has also improved the scalability when there are many si-
multaneously open files and IOD servers. In Section 4, we
present experimental results from a synthetic benchmark
that times the untar of the Linux kernel source tree to
illustrate the benefits of the IOD connection management.

3.3 Aggregation of Directory Read Opera-
tions

A final improvement in performance is in the aggregation
of directory read operations on a PVFS file system. As
stated earlier, since PVFS is primarily targeted at work-
loads where it is normal to have many clients accessing the
same files and directories concurrently, it does not cache di-

rectory entries on the client machine’s dentry cache. While
such a design greatly simplifies consistency semantics is-
sues, it comes at the cost of performance. Aggregation in
directory read operations is hindered by the fact that there
is no API which returns the number of entries under a di-
rectory. The problem is also compounded by the fact that
PVFS reports the sizes of directories as 0. Hence, glibc
wrappers for the getdents system call make estimates
based on the size reported by a stat on the directory, and
repeatedly make the system call until all the entries have
been exhausted or there is an error. Therefore, the previous
implementation makes a network call for obtaining every
directory entry that was extremely slow. Since the mem-
ory for copying the directory entry is allocated by glibc
and the sizes of directory entries as reported by the ker-
nel is dependent on what struct dirent definition is
being used by the system, the VFS layer passes an opaque
(opaque to the file system) pointer to the directory entry and
an opaque call back function (filldir t) to the underly-
ing file system which returns an error when space provided
by glibc is exhausted. Thus, the underlying file system
must repeatedly call the opaque function until it returns
an error. The new implementation makes a request to the
MGR server to fetch a fixed number of directory entries at
a time (currently 64) to amortize the network transfer costs,
and repeatedly invokes the filldir t function until it re-
turns an error. In Section 4, we illustrate the performance
benefits of this approach by timing a recursive listing of
a PVFS file system directory containing the Linux kernel
source tree.

4 Experimental Results

All these experiments were conducted on a 16-node Intel
Pentium-III based cluster running Linux kernel 2.4.18 us-
ing both the fast Ethernet-based network and a Myrinet-
based network. The platform was configured to run the
MGR server on one of the nodes (on port 3000) and two
instances of the IOD servers on all the nodes (one each for
the Myrinet and the Ethernet interfaces on ports 7000 and
7001). Only one IOD server was used per node for each
test run. In effect, we created two separate 16 IOD server
PVFS file systems on the platform.

4.1 Aggregate Bandwidth Tests

Our first test program is a parallel MPI program that de-
termines the aggregate read/write bandwidths for vary-
ing block sizes, iteration count, and number of clients
(pvfs test.c from the PVFS distribution). Each process
opens a new PVFS file that is common to all processes,
concurrently writes data blocks to disjoint regions of the
file, closes the file, reopens the file, reads the same data
blocks back from the file, and then closes the file. The
tasks of the parallel application synchronize before and af-
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Figure 4: Myrinet: aggregate read bandwidth

ter each I/O operation. Times for the read/write operations
on each node are recorded over five trial runs and the max-
imum averaged time over all the tasks is used to compute
the bandwidth achieved. In the first experiment, we var-
ied the block sizes and ran the experiment by using the
POSIX I/O interface using both the user space and kernel
space daemons for a fixed number of clients. The graphs
in Figures 4 and 5 plot the file system read and write band-
width as a function of the block size for the POSIX in-
terface when using Myrinet for 8 and 16 clients. Figures
6 and 7 plot the same for fast Ethernet. While there is
a clear benefit of using a kernel-space approach for both
the networks, the benefits are more apparent for a faster
network like Myrinet. In the case of Myrinet, we achieve
around 20% improvement in read bandwidth for 8 clients;
the improvement falls off slightly when using 16 clients.
Writes with Myrinet give nearly 40% improvement, which
again drops with increased number of clients. The per-
formance improvements for a smaller number of clients
can be attributed to the removal of an additional step from
the write process. For a larger number of clients, the dif-
ference gets smaller because the dominating bottlenecks
are possibly due to the servers. We achieved nearly 500
MB/sec read bandwidth and 550 MB/sec write bandwidth
using Myrinet. The benefits when using a fast Ethernet-
based network are not significant, however, indicating that
the network transfer speeds are a bottleneck. The benefits
accrued as a result of reduced context switches and copy
overheads start to show up only at intermediate ranges of
block sizes. In this case, we achieve anywhere from 2 to
10% improvement in bandwidth, and larger improvements
are observed for writes only (for the same reason as above).
We achieve nearly 150 MB/sec read and 160 MB/sec write
bandwidth using fast Ethernet.
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Figure 5: Myrinet: aggregate write bandwidth

0 500 1000 1500 2000 2500 3000
20

40

60

80

100

120

140

160

Total size read in MB

A
gg

re
ga

te
 th

ro
ug

hp
ut

 in
 M

B
/s

ec

pvfsd−kernel−8−clients
pvfsd−kernel−16−clients
kpvfsd−kernel−8−clients
kpvfsd−kernel−16−clients

Figure 6: Fast Ethernet: aggregate read bandwidth
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4.2 Bonnie++

Our second benchmark is the Bonnie++ benchmark, which
performs a series of tests on the file system and reports a
number of metrics. The first six tests simulate file sys-
tem activity that has been observed to be a bottleneck in
I/O-intensive applications. Bonnie++ performs a series of
tests on a file of a known size and reports the number of
kilobytes processed per second and the percentage of CPU
use. The second set of six tests simulate operations such
as create, stat, and unlink, which are observed to
be common bottlenecks on proxy Web cache servers such
as Squid [18], news servers such as INN [16] and email
servers. The reader is referred to [6] for more information
on Bonnie++.

4.2.1 File I/O Tests

The file I/O tests that are reported by Bonnie++ are of three
kinds, namely, sequential writes, sequential reads, and ran-
dom seeks. The sequential writes are done either per char-
acter (using putc) or per block (using write) or are
rewritten (using read, overwrite, write). The sequen-
tial reads are done either per character (using getc) or
per block (using read). The random seek test forks a cer-
tain number of processes, each of which do a total of 8,000
lseek’s to random locations in the file. After the seek, the
block is read, dirtied, and written back in 10% of the cases.
In all these experiments, Bonnie++ was configured to use
a chunk size of 16 KB, and we varied the file size from
32 MB to 512 MB. Since PVFS does not cache file data on
the client machine, none of these tests —with the exception
of the putc test— should be affected significantly by any
buffering/caching effects, since data is always transferred
over the network. Hence, performance remains unaffected
not only with file size, but also with memory size which is
required as a parameter to Bonnie++ (unless it is set to such
an extremely low value that Bonnie++ will start thrash-
ing). Hence, we show representative results for selected file
sizes. Throughput metrics for the read/write tests in Bon-
nie++ are in KB/sec, while seek throughputs are measured
as the rate per second. These experiments were conducted
for both the kernel space and user space daemon implemen-
tation on both a Myrinet-based and fast Ethernet-based net-
work. We show the percentage performance improvements
obtained with fast Ethernet in Figure 8 and Myrinet in Fig-
ure 9. Absolute throughput numbers are shown in Figures
13 and 14 in Section 7. We expected that the percentage im-
provement with a kernel-space approach would be felt only
when the reads and writes were done using the blocked I/O
method and not when using a per character-based method,
since the main savings of this approach are the reduction
in copying and context switching overheads, which are not
too dominant with a per character-based approach. We see
from the graphs, that while rewrites and blocked reads per-
formed exceptionally well with a kernel-space approach,
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Figure 9: Myrinet: Percentage increase in throughput for
Bonnie++

where we achieve nearly 90% improvement using fast Eth-
ernet and around 200% improvement using Myrinet, we
do not see a significant improvement in the performance
of blocked writes, an anomalous behavior that we cannot
yet explain. We also see a significant improvement in the
random seek test of nearly 60% in both the networks. (As
expected, the per character-based techniques do not achieve
any significant benefits with this approach). The increase
in performance with this approach does come with a price.
Figures 10 and 11 show the absolute percentage CPU uti-
lization for the same tests. We see that in almost all the
cases, we incur a slightly higher CPU utilization overhead,
which we surmise is due to the fact that in most cases the
transfer is being performed over less time.
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Figure 10: Fast Ethernet: CPU utilization for Bonnie++

32 128 512
0

10

20

30

40

50

60

70

80

90

File Size in MB

P
er

ce
nt

ag
e 

C
P

U
 u

til
iz

at
io

n

Seq Write/Per Chr CPU(kpvfsd)
Seq Write/Per Chr CPU(pvfsd)
Seq Write/Block CPU(kpvfsd)
Seq Write/Block CPU(pvfsd)
Seq ReWrite CPU(kpvfsd)
Seq ReWrite CPU(pvfsd)
Seq Read/Per Chr CPU(kpvfsd)
Seq Read/Per Chr CPU(pvfsd)
Seq Read/Block CPU(kpvfsd)
Seq Read/Block CPU(pvfsd)
Random Seeks CPU(kpvfsd)
Random Seeks CPU(pvfsd)

Figure 11: Myrinet: CPU utilization for Bonnie++
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Figure 12: Myrinet: small file operation throughput

4.2.2 File Creation Tests

We used two file creation tests from Bonnie++: sequen-
tial test, where a random number of alpha-numeric charac-
ters follow a seven-digit number to construct the file name,
and a random test where the random characters precede
the seven-digit number. The sequential tests create the
files in increasing numeric order, stat them in the read-
dir order, and unlink them in the same order. The ran-
dom tests create the files in random order (appears ran-
dom because of the alpha-numeric characters in front of the
seven-digit number in the filename), stat them in random
order, and unlink all the files in random order. In these
tests, it is also possible to specify the maximum size and the
minimum size of the files that are created, in which case the
files are written to at creation and read back after the stat.
We report this experiments run for the Myrinet network
only, since the results are not significantly different for the
fast Ethernet-based network. The output from this test is
the operation rate measured per second and is parameter-
ized by the number of files, which we varied from 1024 to
4096. Since these tests don’t really transfer large amounts
of data, the benefits of using a kernel space approach is not
expected to be significant, and Figure 12 reinforces the be-
lief. Further, we see particularly low transaction rates for
create operations and small file operations; this will be fur-
ther investigated in the next section. There is no significant
change in the CPU utilization for this workload.

4.3 IOD Connection Management

While the scalability benefits of managing connections to
the IOD server at a node granularity is apparent, we wanted
to quantify the performance benefits of this approach. Ta-
ble 1 lists the time taken with and without the connection
management for untarring the Linux 2.5.39 kernel source
tree on a PVFS volume for both the user space and ker-



Table 1: Linux kernel untar
Fast Ethernet Myrinet

pvfsd 1067.50sec 959.40sec
no-mgmt.
pvfsd 1017.96sec 903.41sec
mgmt.
kpvfsd 1045.55sec 933.64sec
no-mgmt.
kpvfsd 1008.50sec 885.90sec
mgmt.

Table 2: Myrinet: Average time spent waiting in queue (in
�sec)

Upcall count pvfsd pvfsd kpvfsd kpvfsd
type no-single single no-single single
create 15695 41931 38605 41411 38493
setmeta 17764 3052 3025 2975 2970
write 30640 2745 2717 2674 2637
read 1140 2277 3180 2124 2185
mkdir 2070 1693 1681 1652 1666
getmeta 152607 978 912 944 878
lookup 35531 374 367 335 330

total 255447 3778 3532 3705 3482

nel space daemon-based approaches. From Table 1, we see
that this strategy did improve performance but not signifi-
cantly (nearly 3% for fast Ethernet and 5% for Myrinet). In
order to investigate the reasons for the insignificant perfor-
mance improvements for this workload, we instrumented
the kernel module to count the number of requests of each
type and compute the average time spent by the request-
ing process for its request to be serviced. These statistics
are made accessible to user-space through the proc file sys-
tem. Table 2 lists the time spent (in �seconds) by a process,
while waiting for its request to be serviced by the daemon
(Myrinet-based network) for this workload. This general
purpose file system workload is characterized by meta-data
intensive operations and small file data transfers. As the
table illustrates, the meta-data operations, and in particu-
lar, the create operation dominates over the rest. A create
operation is directed to the single MGR server, which then
checks permissions, and fans out requests to the appropri-
ate IOD servers directing them to open this file. Once it gets
acknowledgements from all the IOD servers, it sends back
an acknowledgement to the client, which includes amongst
other things, the locations of the IOD servers and physi-
cal distribution of file data. Thus, the poor performance of
meta-data operations can be attributed to the following rea-
sons; serialization imposed by the single MGR server, com-
munication overhead with the IOD servers, and the lack of
a client-side meta-data cache. Moreover, PVFS was de-
signed with a goal of providing high-performance parallel
I/O for large data transfers, and it has not been well-tuned
for small file operations (The 2.5.39 kernel source tree has
an average file size of around 10 KB) or for meta-data in-
tensive operations.

Table 3: Recursive directory listing
Fast Ethernet Myrinet

pvfsd-unpatched 881.32sec 878.69sec
kpvfsd-unpatched 879.78sec 877.19sec
pvfsd-patched 177.18sec 158.77sec
kpvfsd-patched 173.22sec 153.81sec

4.4 Aggregation of Directory Read Opera-
tions

The performance improvements obtained by aggregating
directory read operations are shown in Table 3. It lists the
time taken to recursively list a PVFS directory, which con-
tains the Linux 2.5.39 kernel source code for both a fast
Ethernet-based network and a Myrinet-based network. The
Linux kernel source tree has around 15,000 files spread
over 2,070 directories. The command we used to time this
experiment was, time ls -aR /mnt/pvfs/linux-
2.5.39/ > /dev/null. As expected, directory ag-
gregation increases performance by almost a factor of 5.
The kernel space approach, however, does not significantly
improve the performance (as compared to a user space ap-
proach) in both the networks, since the volume of data
transferred is not very large. We note here that, this is still
much slower than for a network file system with client-side
caching of directory entries. For instance, the time taken
to recursively list the same kernel source tree on NFS on
the same platform is nearly 10 seconds. Hence, a lot of
performance tuning still remains to be done.

5 Concluding Remarks and Future Work

PVFS is an actively supported, high-performance, robust,
and usable parallel file system for Linux-based commod-
ity clusters. It supports a number of different APIs, most
notably the UNIX/POSIX I/O API and the MPI-IO API,
which allow legacy binaries as well as high-performance
scientific applications to access PVFS file systems. In this
paper, we have addressed several performance and scalabil-
ity problems of the PVFS kernel module that allows appli-
cations to access PVFS file system with the standard UNIX
I/O interfaces.

Considerable room for improvement and tuning remains.
While PVFS has been optimized for applications that de-
mand high file system bandwidths, it is still largely untuned
for small file operations and meta-data intensive operations,
which are important for many general purpose applications
like mail and news servers. Performance could be increased
further by having a pool of kernel threads (possibly limited
by the number of CPUs, and having each thread bound to a
CPU) that services requests from per CPU request queues
or by employing an event driven non-blocking approach to
servicing requests out of order from the request queue. We
are also exploring the incorporation of client-side caching



and distributed consistency schemes to ensure good per-
formance without compromising on file system data and
meta-data consistency semantics.

6 Availability

Source code, documentation, and mailing-list informa-
tion for PVFS are available from the following Web site:
http://www.parl.clemson.edu/pvfs.

7 Appendix

We plot the absolute throughput numbers obtained with
Bonnie++ on a fast Ethernet-based network and a Myrinet-
based network in Figures 13 and 14, respectively.
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Figure 13: Fast Ethernet: throughput for Bonnie++
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Figure 14: Myrinet: throughput for Bonnie++
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