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Abstract 

 
The recent proliferation of Data Grids and the increasingly common practice of using 
resources as distributed data stores provide a convenient environment for communities of 
researchers to share, replicate, and manage access to copies of large datasets. This has 
led to the question of which replica can be accessed most efficiently. In such 
environments, fetching data from one of the several replica locations requires accurate 
predictions of end-to-end transfer times. The answer to this question can depend on many 
factors, including physical characteristics of the resources and the load behavior on the 
CPUs, networks, and storage devices that are part of the end-to-end data path linking 
possible sources and sinks. 
 

Our approach combines end-to-end application throughput observations with network 
and disk load variations and captures whole-system performance and variations in load 
patterns. Our predictions characterize the effect of load variations of several shared 
devices (network and disk) on file transfer times. We develop a suite of univariate and 
multivariate predictors that can use multiple data sources to improve the accuracy of the 
predictions as well as address Data Grid variations (availability of data and sporadic 
nature of transfers). We ran a large set of data transfer experiments using GridFTP and 
observed performance predictions within 15L error for our testbed sites, which is quite 
promising for a pragmatic system. 
 
Keywords: Grids, data transfer prediction, replica selection. 
 
1. Introduction 
 
As the coordinated use of distributed resources, or Grid computing, becomes more 
commonplace, basic resource usage is changing. Many recent applications use Grid systems 
as distributed data stores MDataGridN2, GriPhyNN2, HSSNN, LIGON2, MMRSN1, NMN2T, 
where pieces of large datasets are replicated over several sites.  For example, several highX
energy physics experiments have agreed on a tiered Data Grid architecture MHJSSNN, 
HoltmanNNT in which all data (approximately 2N petabytes by 2NN6) is located at a single Tier 
N site\ various (overlapping) subsets of this data are located at national Tier 1 sites, each with 
roughly oneXtenth the capacity\ smaller subsets are cached at smaller Tier 2 regional sites\ 
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and so on.  Therefore, any particular dataset is likely to have replicas located at multiple sites 
MRFN1, LS]SN2, LS]SN3T. 
 
Different sites may have varying performance characteristics because of diverse storage 
system architectures, network connectivity features, or load characteristics.  Users (or brokers 
acting on their behalf) may want to be able to determine the site from which particular data 
sets can be retrieved most efficiently, especially as data sets of interest tend to be large (1_
1NNN MB).  It is this replica selection problem that we address in this paper. 
 
Since large file transfers can be costly, there is a significant benefit in selecting the most 
appropriate replica for a given set of constraints MACFSN2, VTFN1T. One way a more 
intelligent replica selection can be achieved is by having replica locations expose 
performance information about past data transfers. This information can, in theory, provide a 
reasonable approximation of the endXtoXend throughput for a particular transfer. It can then 
be used to make predictions about the future behavior between the sites involved. In our 
work we use GridFTP MAFNSN1T, part of the Globus ToolkitTM MFK98, GlobusN2T for 
moving data, but the approach we present is applicable to other large file transfer tools as 
well.  
 
In this paper we present twoX and threeXdatastream predictions using regression technidues to 
predict the performance of GridFTP transfers for large file across the Grid. We start by 
deriving predictions from past history of GridFTP transfers in isolation. We build a suite of 
univariate predictors comprising simple mathematical models such as meanX and medianX
based tools that are easy to implement and achieve acceptable levels of accuracy. We then 
present a detailed analysis of several variations of our univariate forecasting tools and 
information on GridFTP logs. 
 
The univariate models do not achieve better prediction accuracy because they fail to account 
for the sporadic nature of data transfers in Grid environments. Hence, predictions based on 
simple log data may not contain enough recent information on current system trends. We 
need to be able to derive forecasts from several combinations of currently available data 
sources in order to capture information about the current Grid environment.  
 
To address this need, we use both log data and periodic data to expose the behavior of key 
components in the endXtoXend data path. We use the additional datastreams of network and 
disk behavior to illustrate how additional data can be exploited in predicting the behavior of 
large transfers. We present an inXdepth study of these data sources and our multivariate 
forecasting tools, including information about data formats, lifetime, timefspace constraints, 
correlation, statistical background on our regression tools, and the advantages and 
disadvantages of this approach. While in this paper, we have demonstrated univariate and 
multivariate predictors for the GridFTP tool, nothing in our approach limits us to any single 
protocol and the predictors can be applied to any wideXarea data movement tool. 
 
We then evaluate our prediction approaches using several different metrics. Comparing the 
normalized percentage errors of our various predictions, we find that the univariate 
predictions have error rates of at most 25h and that all the univariate predictors performed 
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similarly. With multivariate predictions, we observed that combining GridFTP logs and disk 
throughput observations provided us with gains of up to 4h when compared with the best of 
univariate predictors. Combining logs with network throughput data provides further gains 
up to 6h, and predictions based on all three data sources had up to 9h reduction in error. To 
study the degree of variance in error rates, we computed confidence levels and observed that 
the variance is smaller with more accurate predictors for the sites we examined. We further 
developed a triplet metric comprising the throughput, percentage error rate, and confidence 
level as a measure of a given sitejs predictive merit. 
  
2. Related Work 
 
The goal of this work is to obtain accurate predictions of file transfer times between a storage 
system and a client.  Achieving this can be challenging because numerous devices are 
involved in the endXtoXend path between the source and the client, and the performance of 
each (shared) device along the endXtoXend path may vary in unpredictable ways. 
 
One approach to predicting this information is to construct performance models for each 
system component (CPUs at the level of cache hits and disk access, networks at the level of 
the individual routers, etc.) and then to use these models to determine a schedule for all data 
transfers MSCNNT, similar to classical scheduling MAdve93, Cole89, CQ93, Crovella99, ML9N, 
Schopf97, TB86, ]LP96T. In practice, however, it is often unclear how to combine this data 
to achieve accurate endXtoXend measurements. Also, since system components are shared, 
their behavior can vary in unpredictable ways MSB98T. Further, modeling individual 
components in a system may not capture the significant effects these components have on 
each other, thereby leading to inaccuracies MGT99T.  
 
Alternatively, observations from past application performance of the entire system can be 
used to predict endXtoXend behavior. The use of wholeXsystem observation has relevant 
properties for our purposes.  These predictions can, in principle, capture both evolution in 
system configuration and temporal patterns in load.  A byXproduct of capturing entire system 
evolution is enhanced transparency, in that we can construct such predictions without 
detailed knowledge of the underlying physical devices. This technidue is used by Downey 
MDowney97T and Smith et al. MSFT98T to predict dueue wait times and by numerous tools 
(Network Weather Service MWolski98T, NetLogger MNetLoggerN2T, Web1NN 
MWeb1NNProjectN2T, iperf MTFN1T, and Netperf MJonesN2T) to predict the network behavior of 
small file transfers. 
 
Although tools such as the Network Weather Service (NWS) measure and predict network 
bandwidth, a substantial difference in performance can arise between a small NWS probe 
(lightweight with 64 KB size) and an actual file transfer using GridFTP (with tuned TCP 
buffers and parallelism). We show this in Figure 1, which depicts 64 KB NWS 
measurements, indicating that the bandwidth is about N.3 MBfsec, and endXtoXend GridFTP 
measurements for files ranging from 1 to 1NNN MB in size, indicating a significantly higher 
transfer rate. In this case, NWS by itself is not sufficient to predict endXtoXend GridFTP 
throughput. In addition, we see a much larger variability in GridFTP measurements, ranging 
from 1.5 to 1N.2 MBfsec (because of different transfer sizes and also load variations in the 
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endXtoXend components), so that it is unlikely that a simple data transformation will improve 
the resulting prediction. 
 
The univariate predictors presented in this work are similar to the basic predictors used by 
NWS and similar tools to predict the behavior of time series data. Because our data traces are 
not periodic in nature, however, we also use predictions based on multiple datastreams. This 
approach is similar to work done by Faerman et al. MFSWS99T, which used the NWS and 
adaptive linear regression models for the Storage Resource Broker MBMRS98T and SARA 
MSARAN2T. Faerman and his colleagues compared transfer times obtained from a raw 
bandwidth model (Transfer-Time = ApplicationDataSize/NWS-Probe-
Bandwidth, with 64 KB NWS probes) with predictions from regression models and 
observed accuracy improvements ranging from 2Nh to almost 1NNh for the sites examined. 
The work presented here goes beyond that work, however, by exploring several filling 
technidues to mitigate adverse effects of sporadic transfers.  
 
Swany and Wolski have also approached multivariate predictors by constructing cumulative 
distribution functions of past history and deriving predictions from them as an alternative to 
regressive models. This approach has been demonstrated for 16 MB HTTP transfers with 
improved prediction accuracy when compared with their univariate prediction approach 
MSWN2T. Further, they have applied their models to our datasets, comprising various file 
sizes, and have observed comparable prediction accuracy. 
 
3. Data Sources 
 
In this section, we describe our three primary data sources. We use the GridFTP server to 
perform our data transfers and log its behavior every time a transfer is made, thereby 
recording the endXtoXend transfer behavior. Since these events are very sporadic in nature, 
however, we also need to capture data about the current environment to have accurate 
predictions. Hence, we use the Network Weather Service probe data as an estimate of 
bandwidth for small data transfers and the iostat disk throughput data to measure disk 
behavior. 
 
3.1. GridFTP Logs 
 
GridFTP MAFNSN1T is part of the Globus Toolkitm MFK98, GlobusN2T and is widely used as 
a secure, highXperformance data transfer protocol MACFSN2, AFNSN1, DataGridN2, 
GriPhyNN2T. It extends standard FTP implementations with several features needed in Grid 
environments, such as security, parallel transfers, partial file transfers, and third party 
transfers. We instrumented the GT 2.N wuftpXbased GridFTP server to log the source address, 
file name, file size, number of parallel streams, stripes, TCP buffer size for the transfer, start 
and end timestamps, nature of the operation (readfwrite), and logical volume toffrom which 
file was transferred (Table 1) MVSFN2T. 
 
The GridFTP monitoring code is nonintrusive. The majority of the overhead is in the timing 
routines, with a smaller percentage spent gathering the information mentioned above and 
performing a write operation. The entire logging process consumes on average of 
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approximately 25 milliseconds per transfer, which is insignificant compared with the total 
transfer time.  
 
Although each log entry is well under 512 bytes, transfer logs can grow duickly in size at a 
busy site. We do not currently implement a log management scheme, but it would be 
straightforward to use a circular buffer, such as in the NWS. An alternative strategy used by 
NetLogger is to flush the logs to persistent storage (either disk or network) and restart 
logging. 
 
3.2. NWS 
 
The Network Weather Service MWolski98T monitors the behavior of various resource 
components by sending out lightweight probes or duerying system files at regular intervals. 
NWS sensors exist for components such as CPU, disk, and network. We used the network 
bandwidth sensor with 64 KB probes to estimate the current network throughput. NWS 
throughput measurements, although not representative of the transfer bandwidth obtainable 
for large files (1N MB to 1 GB), are representative of the network link characteristics. 
Further, NWS is intended to be a lightweight, noninvasive monitoring system (only a few 
milliseconds of overhead) whose measurements can then be extrapolated to specific cases 
such as ours. 
 
3.3. Iostat  
 
Traditionally, in large wideXarea transfers, network transport has been considered to weigh 
heavily on the endXtoXend throughput achieved. Current trends in disk storage and 
networking, however, suggest that disk accesses will factor rather strongly in the future. 
Network throughput is far outpacing advances in disk speeds. Therefore, as link speeds 
increase, the network latency significantly drops, and disk accesses are likely to become the 
bottleneck in large file transfers across the Grid MGSNNT.  
 
To address this issue, we include disk throughput data in our prediction approach. The iostat 
tool is part of the sysstat MSYSSTATN2T systemXmonitoring suite and collects disk IfO 
throughput data by monitoring the blocks readfwritten fromfto a particular disk. Iostat can be 
configured to periodically monitor disk transfer rates, block readfwrite rates, and so forth of 
all physically connected disks. We use the disk transfer rate that represents the throughput of 
the disk. This also has an overhead of only a few milliseconds. 
 
3.4. Correlation 
 
A key step in analyzing whether a combination of datastreams will result in better predictions 
is to evaluate how highly correlated they are. The correlation coefficient is a measure of the 
linear relationship between two variables and can have a value between _1.N and S1.N 
depending on the strength of the relation. A coefficient near zero suggests that the variables 
may not be linearly related, although they may exhibit nonlinear dependencies MEdwards84, 
OM88T. The correlation coefficient for two datastreams G and N is computed by using the 
formula 
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          !NG – (!N!G/size) 
       corr =    _______________    _______________  , 

             "(!G2 – (!G)2/size) "(!N2 – (!N)2/size) 
 
where size is the number of values in the data stream.  
 
We compute the rankXorder correlation for each of our datasets. Rank correlation provides a 
distributionXfree, nonparametric alternative to determine whether the observed correlation is 
significant MEdwards84T. Rank correlation converts data to ranks by assigning a specific rank 
to each value in the datastream, as determined by the position of the value when the 
datastream is sorted. Table 2 shows a tabulated listing of the 95h confidence interval for the 
correlation coefficients for the three datasets we collected between our transfer points. The 
confidence interval denotes that the correlation for 95h of the sample falls within a certain 
upper and lower limit. We can see a moderate correlation between GridFTP, NWS, and disk 
throughput datastreams. 
 
4. Predictors 
 
We evaluated a wide set of prediction technidues for wideXarea data transfers. This section 
presents the univariate predictions and the multivariate prediction technidues we used in our 
experiments. 
 
 
4.1. Univariate Predictors 
 
In this section we describe some of the predictors we developed, categorize possible 
approaches by basic mathematical technidues, and detail the advantages and disadvantages of 
each technidue.  
 
4.1.1. Mathematical Functions 
 
Mathematical functions for predictions are generally grouped into meanXbased, medianX
based, and autoregressive technidues. We use several variations of each of these models in 
our experiments. 
 
MeanXbased, or averaging, technidues are a standard class of predictors that use arithmetic 
averaging (as an estimate of the mean value) over some portion of the measurement history 
to estimate future behavior.  The general formula for these technidues is the sum of the 
previous n values over the number of measurements. MeanXbased predictors are easy to 
implement and impose minimally on system resources. 
 
A second class of standard predictors is based on evaluating the median of a set of values.  
Given an ordered list of t values, if t is odd, the median is the (tS1)f2 value\ if t is even, the 
median is half of the tf2 value added with the (tS1)f2 value. MedianXbased predictors are 
particularly useful if the measurements contain randomly occurring asymmetric outliers that 
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are rejected. However, they lack some of the smoothing that occurs with a meanXbased 
method, possibly resulting in forecasts with a considerable amount of jitter MHP91T. 
 
The third class of common predictors is autoregressive models MGP94, HP91, Wolski98T. We 
use an autoregressive integrated moving average (ARIMA) model technidue that is 
constructed using the eduation  

G' = a + bGt-1, 
where Gp is the GridFTP prediction for time, t, GtX1 is the previous data occurrence, and a and 
b are the regression coefficients that are computed based on past occurrences of G using the 
method of least sduares. This approach is most appropriate when there are at least fifty 
measurements and the data is measured with edually spaced time intervals. Our data does not 
meet these constraints, but we include this technidue to do a full comparison. The main 
advantage of using an ARIMA model is that it gives a weighted average of the past values of 
the series, thereby possibly giving a more accurate prediction. However, in addition to 
reduiring a larger data set than the other technidues to achieve a statistically significant 
result, the model can have a much greater computational cost. 
 
4.1.2. Context-Insensitive Variants 
 
When evaluating a data set, the values can be filtered in several ways to include only data 
that is relevant to the current prediction environment. We evaluate two general ways of 
altering our base formulas to do filtering: context-insensitive variants that include data 
independent of the meaning of the data, primarily temporal filtering, and context-sensitive 
variants, in which data is culled based on the context of the values. 
 
 More recent values are often better predictors of future behavior than an entire dataset, no 
matter which mathematical technidue is used to calculate a prediction. Hence, many different 
variants exist in selecting a set of recent measurements to use in a prediction calculation, 
creating several different contextXsensitive variants on our original prediction models. 
 
The fixedXlength, or sliding window, average is calculated by using only a set number of 
previous measurements to calculate the average. The number of measurements can be chosen 
statically or dynamically depending on the system. We use only static selection technidues in 
this work. Options for dynamically selecting window size are discussed in MWolski98T. The 
degenerative case of this strategy involves using only the last measurement to predict the 
future behavior. Work by Downey and HarcholXBalter MHD96T shows that this is a useful 
predictor for CPU resources, for example. 
 
Instead of selecting the number of recent measurements to use in a prediction, we also 
consider using only a set of measurements from a previous window of time. Unlike other 
systems where measurements are taken at regular intervals MDONN, Wolski98T, our 
measurements can be spaced irregularly. Using temporal windows for irregular samples can 
reflect trends more accurately than selecting a specific number of previous measurements 
because they capture recent fluctuations, thereby helping to ensure that recent (and, one 
hopes, more predictive) data is used. Much as the number of measurements included in a 
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prediction can be selected dynamically, the window of time used can be decided 
dynamically.  
 
As shown in Table 3, we use fixedXlength sets of the last 1 (last value), 5, 15, and 25 
measurements. We use temporalXwindow sets of data of the last 5 hours, 15 hours, 25 hours, 
5 days, and 1N days. We consider both meanXbased and medianXbased predictors over 
previous n measurements\ meanXbased predictors over the previous 5, 15, and 25 hours\ and 
autoregression (AR) over the previous 5 and 1N days, since this function reduires a much 
larger dataset to produce accurate predictions than our other technidues. 
 
4.1.3. Context-Sensitive Variants 
 
Filtering a data set to eliminate unrelated values often results in a more accurate prediction. 
For example, a prediction of salary is more accurate when factors such as previous training, 
education, and years at the position are used to limit the dataset of interest. By doing this we 
generate several contextXsensitive variants of our original prediction models. 
 
With the GridFTP monitoring data, initial results showed that file transfer rates had a strong 
correlation with file size. Studies of Internet traffic have also revealed that small files achieve 
low bandwidths whereas larger files tend to have high bandwidths MBMK96, CSA98, GMN1T. 
This difference is thought to be primarily due to the startup overhead associated with the 
TCP start mechanism that probes the bandwidth at connection startup. Recent work has 
focused on classXbased isolation of TCP flows MYMN1T and on startup optimizations 
M]QKNN, ]QK99T to mitigate this problem.  As a proof of concept, we found 5h_1Nh 
improvement on average when using fileXsize classification instead of the entire history file 
to calculate a prediction. This is discussed in Section 5. 
 
For our GridFTP transfer data we ran a series of tests between our testbed sites to categorize 
the data sizes into a small number of classes. We categorized our data into four sets: N_5N 
MB, 5N_25N MB, 25N_75N MB, and more than 75N MB based on the achievable bandwidth. 
We note that these classes apply to the set of hosts for our testbed only\ further work is 
needed to generalize this notion. 
 
4.2. Multivariate Predictors 
 
The obvious downside of univariate predictors has nothing to do with the predictors 
themselves but more so with the nature of data transfers on the Grid. Because of the sporadic 
nature of transfers, predictors based on log data alone may fail to factor in current system 
trends and fluctuations. To mitigate the adverse effects of this problem, we introduce other 
periodic datastreams to expose the behavior of components in the endXtoXend data path and to 
reveal the current environment on the Grid. 
 
We developed a set of multivariate predictors using regression models to predict from a 
combination of several data sources _ GridFTP log data and network load data, GridFTP log 
data and disk load data, or a combination of all three. The datastreams reduire some 
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preprocessing before the regression technidues can be applied to them. This includes time 
matching the data streams and fillingXin technidues. 
 
4.2.1 Matching 
 
Our three data sources (GridFTP, disk IfO, and NWS network data) are collected exclusive of 
each other and rarely have the same timestamps. To use regressive models on the data 
streams, however, we need to have a oneXtoXone mapping for the values in each stream. 
Hence, we are reduired to match values from the three sets such that for each GridFTP value, 
we find disk IfO and network observations that were made around the same time. 
 

For each GridFTP data point (TG, G), we match a corresponding disk load (TD, D) and 
NWS data point (TN, N) such that TN and TD are the closest to TG. By doing this, the triplet 
(Ni,Dj,Gk) represents an observed endXtoXend GridFTP throughput (Gk) resulting from a data 
transfer that occurred with the disk load (Dj) and network probe value (Ni).  

 
At the end of the matching process, the three datastreams have been combined into the 
seduence that looks like 

(Ni,Dj,Gk)(Ni+1, Dj+1, _)K(Ni+m, Dj+m, Gk+1), 
where Gk, and GkS1 are two successive GridFTP file transfers, Ni and NiSm are NWS 
measurements, and Dj and DjSm are disk load values that occurred in the same timeframe as the 
two GridFTP transfers. The seduence also consists of a number of disk load and NWS 
measurements between the two transfers for which there are no eduivalent GridFTP values, 
such as (Ni+1, Dj+1, _). Note that these interspersed network and disk load values are 
timeXaligned. Also note that we have described the matching process with reference to all three 
data sources. In the case where a prediction uses a different number of datastreams, similar 
matching technidues can be employed. 

 
4.2.2. Filling-in Techniques 

 
After matching the datastreams, we need to address the tuples that do not have values for the 
GridFTP data _ that is, the NWS data or disk IfO data collected in between the sporadic 
GridFTP transfers. Regression models expect a oneXtoXone mapping between the data values, 
so we can either discard the network and IfO data for which there are no eduivalent GridFTP 
data (our NoFill technidue, Figure 2) or fill in synthetic transfer values using either an average 
over the past dayjs data (Avg), or the last value (LV). Once filled in, the seduence is as 
follows: 

(Ni,Dj,Gk)(Ni+1, Dj+1, GFill)K(Ni+m, Dj+m, Gk+1) 
 
where GFill is the synthetic GridFTP value. Data, once matched and filled in, is fed to 
regression models (Figure 3). 
 



 1N

 
4.2.3. Linear Regression 
 
Linear regression attempts to build linear models between dependent and independent 
variables. The following eduation builds linear models between several independent 
variables N1, N2,…, Nk and dependent variable G as follows:  

G'=a+b1N1+b2N2+…+bkNk, 
where G' is the prediction of the observed value of G for the corresponding values of N1, 
N2,…, Nk. The coefficients a, b1, b2, and bk are calculated by using the method of least 
sduares MEdwards84T. For our case, we built linear models between NWS (N), disk (D), and 
GridFTP (G) data as explained above, with N and D as independent variables. 
 
4.2.4. Polynomial Regression Models 
 
To improve prediction accuracy, we also developed a set of nonlinear models adding 
polynomial terms to the linear eduation. For instance, a duadratic model is as follows:  

G'=a+b1N+b2N
2. 

Cubic and duartic models have additional terms b3N
3 and b4N

4, respectively. Similar to the 
linear model, the coefficients in duadratic, cubic, and duartic models b2, b3, and b4 are 
computed by using the method of least sduares. Adding polynomial terms to the regression 
model can reach a saturation point (no significant improvement in prediction accuracy 
observed), suggesting that a particular model sufficiently captures the relationship between 
the two variables MOM88, Pankratz91T. Figure 4 shows a bar graph that compares error, 
complexity of algorithm, and components included for the site pair, Lawrence Berkeley and 
Argonne National Laboratories.  
 
5. Measurements and Evaluation 
 
We evaluated the performance of our regression technidues on datasets collected over three 
distinct twoXweek durations: August 2NN1, December 2NN1, and January 2NN2. In the 
following subsections we describe the experimental setup, prediction error calculations, and 
the results obtained from these datasets. 
 
5.1. Experimental Setup 
 
The experiments we ran consisted of controlled GridFTP transfers, NWS network sensor 
measurements, and disk throughput monitoring between four sites in our testbed (Figure 5): 
Argonne National Laboratory (ANL), the University of Southern California Information 
Sciences Institute (ISI), Lawrence Berkeley National Laboratory (LBL) and the University of 
Florida at Gainesville (UFL).  
 
GridFTP experiments included transfers comprising several file sizes ranging from 1N MB to 
1 GB, performed at random time intervals within 12Xhour periods. We calculated buffer sizes 
by using the formula 
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RTT * "bottleneck bandwidth in the link" 
with roundtrip times (RTT) values obtained from ping and with bottleneck bandwidth 
obtained by using iperf MTFN1T. Figure 5 shows the roundtrip times and bottleneck bandwidth 
for our site pairs. Our GridFTP experiments were performed with tuned TCP buffer settings 
(1 MB based on the bandwidth delay product) and eight parallel streams to achieve enhanced 
throughput. Logs of these transfers were maintained at the respective sites and can be found 
at MTracesN2T. 
 
Configuring NWS among a set of resources involved setting up a nameserver and memory to 
which sensors at various sites registered and logged measurements MWolski98T. In our 
experiments, we used ANL as a registration and memory resource. NWS network monitoring 
sensors between these sites were set up to measure bandwidth every five minutes with 64 KB 
probes.  
 
Disk IfO throughput data was collected by using the iostat tool logging transfer rates every 
five minutes. Logs were maintained at the respective servers. 
 
For each data set and predictor, we used a 15Xvalue training set\ that is, we assumed that at 
the start of a predictive technidue there were at least 15 GridFTP values in the log file 
(approximately two days worth of data). 
 
5.2. Metrics 
 
We calculate the prediction accuracy using the normalized percentage error calculation: 
    ! | MeasuredBW – PredictedBW | 
 % Error =                   * 100, 

(size * MeanBW) 
where size is the total number of predictions and the Mean is the average measured GridFTP 
throughput. In this subsection we show results based on the August 2NN1 dataset. Complete 
results for all three datasets can be found in the appendix and at MTracesN2T. 
 
In addition to evaluating the error of our predictions, we evaluate information about the 
variance in the error. Depending on the use case, a user may be more interested in selecting a 
site that has reasonable performance bandwidth estimates with a relatively low prediction 
error than in selecting a resource with higher performance estimates and a possibly much 
higher error in prediction. In such cases, it can be useful if the forecasting error can be stated 
with some confidence and with a maximumfminimum variation range. These limits can also, 
in theory, be used as catalysts for corrective measures in case of performance degradation.  
 
In our case, we can also use these limits to verify the inherent cost of accuracy of the 
predictors. By comparing the confidence intervals of these prediction error rates, we can 
determine whether the accuracy achieved is at the cost of greater variability, in which case 
there is little gain in increasing the component complexity of our prediction approach.  
 
Thus, for any predictor (for any site pair and a given dataset), the information denoted by the 
following triplet can be used as a metric to gauge its accuracy: 
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Accuracy-Metric = [PredictedThroughput, AvgPast % Error-Rate, 
ConfidenceLimit], 

 
where PredictedThroughput is the predicted GridFTP value (higher the better), with a certain 
percentage prediction error (the lower the better) and a percentage confidence interval for the 
error (the smaller the better).  
 
5.3. Univariate Predictor Performance 
 
Figure 6 shows bar charts of percentage error for our various univariate predictors at the 
various site pairs. The major result from these predictions is that even simple technidues have 
a worstXcase prediction of about 25h, duite respectable for pragmatic prediction systems.    
 
Figure 7 shows the result of sorting the data by file size, since GridFTP throughput varied 
with transfer file sizes. We grouped several file sizes into categories:  N_5N MB as 1NM, 5N_
25N MB as 1NNM, 25N_75N MB as 5NNM, and more than 75N MB as 1G, based on the 
achievable bandwidth. We observe almost up to 1Nh increase in accuracy with context 
sensitive filtering. 
 
Figure 8 shows the relative performance of the predictors to determine which predictor 
performed better by computing the best and worst predictor for each data transfer. On 
average, predictors that had a high best percentage also had a high worst percentage.  
 
In general, for our univariate predictors, we did not see a noticeable advantage of limiting 
either average or median technidues using a sliding window or time frames. The ARIMA 
models did not see improved performance for our data, although they are significantly more 
expensive compared to simple means and medians. This is likely due to the irregular nature 
of our data. Average and median based predictors (and their temporal variants) for a GridFTP 
dataset size of 5N values was computed under a millisecond, while autoregression on the 
same set consumed a few milliseconds. 
 
 
 
 
5.4. Multivariate Predictor Performance 
 
Table 4 shows the performance gains of using a regression prediction with GridFTP and 
NWS network data (GSN) over using the GridFTP log data univariate predictor in isolation 
(first two shaded columns in the table). We use the moving average (AVG25) as a 
representative of univariate predictor performance. For our datasets, we observed a 4h to 6h 
improvement in prediction accuracy when the regression technidues with LV or AVG filling 
were used. Regression with NoFill (throwing away the unmatched GridFTP data) shows no 
significant improvement when compared with univariate predictors. 
 
Table 4 also shows that including disk IfO component load variations in the regression model 
provides us with gains of 2h to 4h (GSD Avg) when compared with AVG25 (first and third 
shaded columns in the table). Different filling technidues (GSD Avg and GSD LV) perform 



 13

similarly, and again NoFill shows no improvement, or even a decrease in accuracy, when 
compared with univariate predictors. 
 
Comparing the second and third block of data in Table 4 shows that all variations of 
predictors using NWS data (GSN) perform better than predictors using disk IfO data (GSD) 
in general. This observation agrees with our initial measurements that only 15h to 3Nh of 
the total transfer time is spent in IfO, while the majority of the transfer time (in our 
experiments) is spent performing network transport. 
 
When we include both disk IfO and NWS network data in the regression model (GSNSD) 
along with GridFTP transfer logs, we see prediction error drop of 8h to 17h and up to 3h 
improvement when compared with GSN (second and fourth shaded columns in Table 4) and 
a 6h improvement over GSD (third and fourth shaded columns in Table 4). Overall, we see 
up to 9h improvement when we compare GSNSD with the original univariate prediction 
based on AVG25. 
 
Figure 9a compares the average prediction error for Moving Avg, GSD Avg, GSN Avg, and 
GSNSD Avg for all of our site pairs (represents the shaded columns in Table 4) and also 
presents 95h confidence limits for our prediction error rates. The prediction accuracy trend 
is as follows: 

Moving Avg < (G+D Avg) < (G+N Avg) < (G+N+D Avg) 
 

Figure 9b shows that the confidence interval (the variance in the error) does in fact reduce 
with more accurate predictors, but the reduction is not significant for our datasets. 
 
Figure 1N depicts the performance of predictors GSD Avg, GSN Avg and GSNSD Avg. The 
predictors closely track the measured GridFTP values. Predictions were obtained by using 
regression eduations that were computed for each observed network or disk throughput 
value. 
 
For our datasets, we observed no noticeable improvement in prediction accuracy by using 
polynomial models for our site pairs. We studied the effects of polynomial regression on all 
our multivariate tools (GSD, GSN and GSNSD). Figure 11 shows the performance of linear, 
duadratic, cubic, and duartic regression models for various site pairs for the GSD Avg 
predictor. All our models performed similarly. On average, regressionXbased predictors with 
filling took approximately 1N msec for a dataset size of 5N GridFTP, 15NN NWS values and 
15NN iostat values, so are more computeXintensive than univariate models, although still 
extremely lightweight when compared to the time to transfer the files.  
 
6. Conclusions 
 
In this paper we describe the need for predicting the performance of GridFTP data transfers 
in the context of replica selection in Data Grids. We show how bulk data transfer predictions 
can be derived and how its accuracy can be improved by including information on current 
systemfnetwork trends. Further, we argue how data transfer predictions can be constructed 
using several combinations of datasets. We detail the development of a suite of univariate 
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and multivariate predictors that satisfy the specific constraints of Data Grid environments. 
We examine a series of simple univariate predictors that are lightweight and use means, 
medians, and autoregressive technidues. We observed that slidingXwindow variants tend to 
capture trends in throughput better than simple means and medians. We also use more 
complex regression analysis for multivariate predictors. To mitigate the adverse effects of 
sporadic transfers, multivariate predictors use several fillingXin technidues such as last value 
(LV) and average (AVG). We observe that multivariate predictors with filling offer 
considerable benefits (up to 9h) when compared with univariate predictors and all our 
predictors performed better when forecasts were based on clusters of file classifications. 
 
In the future, we are considering integration of our prediction tools into the Data Grid 
middleware so users and brokers can duery them for estimates. The prediction service could, 
for instance, choose a predictor onXtheXfly as the case demands and provide recommendations 
for possible alternatives. This predictor could easily be written in such a way that it would 
not be tied to a particular data movement tool. 
 
Appendix 
 
Tables 5 and 6 show the performance gains of using a regression prediction with GridFTP 
and NWS network data (GSN) over using the GridFTP log data univariate predictor in 
isolation for the December 2NN1 and January 2NN2 datasets. Behaviors of both univariate and 
multivariate predictors are similar to those exhibited in the August 2NN1 dataset (Table 4). In 
general, we observe performance improvements in using regressionXbased filling predictors 
and prediction error reduces with the addition of disk and network data. 
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Table 1: Sample set from a log of file transfers between Argonne and Lawrence Berkeley National Laboratories. The 
bandwidth values logged are sustained measures through the transfer. The endXtoXend GridFTP bandwidth is obtained by 
the formula BW v file size f transfer time. 
 
Source IP File Name File Size 

(Bytes) 
Volume StartTime 

(Timestamp) 
EndTime 
(Timestamp) 

TotalTime 
(Seconds) 

Bandwidth 
(KBfSec) 

ReadfWrite Streams TCPX
Buffer 

14N.221.65.69 fhomefftpfvazhkudaf1N MB 1N24NNNN  fhomefftp 998988165 998988169 4 256N Read 8 1NNNNNN 
14N.221.65.69 fhomefftpfvazhkudaf25 MB 256NNNNN fhomefftp 998988172 998988176 4 64NN Read 8 1NNNNNN 
14N.221.65.69 fhomefftpfvazhkudaf5N MB 512NNNNN fhomefftp 998988181 99898819N 9 5688 Read 8 1NNNNNN 
14N.221.65.69 fhomefftpfvazhkudaf1NN MB 1N24NNNNN fhomefftp 998988199 998988221 22 4654 Read 8 1NNNNNN 
14N.221.65.69 fhomefftpfvazhkudaf25N MB 256NNNNNN fhomefftp 998988224 998988256 33 8NNN Read 8 1NNNNNN 
14N.221.65.69 fhomefftpfvazhkudaf5NN MB 512NNNNNN fhomefftp 998988258 998988335 67 7641 Read 8 1NNNNNN 
14N.221.65.69 fhomefftpfvazhkudaf75N MB 768NNNNNN fhomefftp 998988338 998988425 97 7917 Read 8 1NNNNNN 
14N.221.65.69 fhomefftpfvazhkudaf1 GB 1N24NNNNNN fhomefftp 998988428 998988554 126 8126 Read 8 1NNNNNN 
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Table 2: 95h Confidence for the upper and lower limits of the rankXorder correlation coefficient for the GridFTP, 
NWS, and disk IfO datasets between four sites in our testbed. Denotes coefficients for our three datasets. 

 
 GridFTP and NWS GridFTP and Disk I/O 
 AugZ01 DecZ01 JanZ02 AugZ01 DecZ01 JanZ02 
 Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower 
L"L-A%L N.8 N.5 N.5 N.3 N.6 N.2 N.6 N.1 N.5 N.2 N.5 N.1 
L"L-'FL N.7 N.5 N.7 N.4 N.6 N.1 N.5 N.2 N.5 N.3 N.5 N.3 
ISI-A%L N.8 N.5 N.6 N.4 N.7 N.3 N.5 N.2 N.6 N.4 N.6 N.3 
ISI-'FL N.9 N.4 N.6 N.2 N.5 N.1 N.5 N.1 N.6 N.3 N.5 N.2 
A%L-'FL N.5 N.2 N.6 N.2 N.6 N.1 N.5 N.2 N.4 N.1 N.4 N.2 

Table 3: ContextXinsensitive predictors used 
 
 Average based Median based Autoregression 
All data AVG MED AR 
Last 1 Value LV   
Last 5 Values AVG5 MED5  
Last 15 Values AVG15 MED15  
Last 25 Values AVG25 MED25  
Last 5 Hours AVG5hr   
Last 15 Hours AVG15hr   
Last 25 Hours AVG25hr   
Last 5 Days   AR5d 
Last 10 Days   AR1Nd 

 



 2N

 

 

Table 4: Normalized percent prediction error rates for the testbed site pairs for the August 2NN1 dataset. The figure denotes 
four categories: (1) prediction based on GridFTP data in isolation (AVG25), (2) regression between GridFTP and NWS 
network data with the three filling in technidues (GSN), (3) regression between GridFTP and disk IfO data with the three 
filling in technidues (GSD), and (4) regression based on all three data sources (GSNSD). Shaded portions indicate a tbest of 
classu comparison between the approaches. All percentage values are averages based on different file categories. 

 

Only 
GidFTP 

Logs 
[VSF02] 

Linear Regression between GridFTP 
Logs and Network Load [VS02] 

Linear Regression between GridFTP 
Logs and Disk Load 

Linear Regression using all Three 
Data Sources 

  
AVG25 G+N 

NoFill 
G+N 
LV 

G+N 
Avg 

G+D 
NoFill 

G+D 
LV 

G+D 
Avg 

G+N+D 
NoFill 

G+N+D 
LV 

G+N+D 
Avg 

LBL-ANL 24.4h 22.4h 2N.6h 2Nh 25.2h 21.7h 21.4h 22.3h 17.7h 17.5h 
LBL-UFL 15h 18.8h 11.1h 11h 2N.1h 11.6h 11.9h 11.1h 8.7h 8h 
ISI-ANL 15h 12h 9.5h 9h 13.1h 13h 11.4h 11h 8.9h 8.3h 
ISI-UFL 21h 21.9h 16h 14.5h 22.7h 19.7h 18.8h 14.7h 13h 12h 

ANL-UFL 2Nh 21h 2Nh 16h 21.8h 19.9h 19.3h 15.3h 16.7h 15.5h 

Table 5: Normalized percent prediction error rates for the various site pairs for December 2NN1 dataset. Figure denotes four 
categories: (1) prediction based on GridFTP data in isolation (Moving Avg), (2) regression between GridFTP and NWS 
network data with the three filling in technidues (GSN), (3) regression between GridFTP and disk IfO data with the three 
filling in technidues (GSD), and (4) regression based on all three data sources (GSNSD). Shaded portions indicate a 
comparison between our approaches. All percentage values are averages based on different file categories. 

 

Only 
GidFTP 

Logs  

Linear Regression between GridFTP 
Logs and Network Load  

Linear Regression between GridFTP 
Logs and Disk Load 

Linear Regression using all Three 
Data Sources 

  
Moving 

Avg 
G+N 

NoFill 
G+N 
LV 

G+N 
Avg 

G+D 
NoFill 

G+D 
LV 

G+D 
Avg 

G+N+D 
NoFill 

G+N+D 
LV 

G+N+D 
Avg 

LBL-ANL 2Nh 23h 17.6h 17h 24h 19.5h 19h 2Nh 15.2h 15.4h 
LBL-UFL 16h 17h 14.7h 13h 16h 14h 14.8h 14.5h 12.2h 12h 
ISI-ANL 13h 12h 1N.6h 9.8h 12.2h 11.3h 11h 11.3h 9h 8.7h 
ISI-UFL 17h 19.3h 13.2h 12h 18h 15h 12h 15h 1Nh 1N.8h 

ANL-UFL 18h 18.7h 14.8h 14h 17.8h 17h 16.7h 15.6h 14h 13.3h 

Table 6: Normalized percent prediction error rates for the various site pairs for January 2NN2 dataset. Figure denotes four 
categories: (1) prediction based on GridFTP data in isolation (Moving Avg), (2) regression between GridFTP and NWS 
network data with the three filling in technidues (GSN), (3) regression between GridFTP and disk IfO data with the three 
filling in technidues (GSD), and (4) regression based on all three data sources (GSNSD). Shaded portions indicate a 
comparison between our approaches. All percentage values are averages based on different file categories. 

 

Only 
GidFTP 

Logs  

Linear Regression between GridFTP 
logs and network load  

Linear Regression between GridFTP 
logs and disk load 

Linear Regression using all three 
data sources 

  
Moving 

Avg 
G+N 

NoFill 
G+N 
LV 

G+N 
Avg 

G+D 
NoFill 

G+D 
LV 

G+D 
Avg 

G+N+D 
NoFill 

G+N+D 
LV 

G+N+D 
Avg 

LBL-ANL 26h 26.8h 25.5h 23h 27h 25h 24.8h 23h 21.1h 2N.3h 
LBL-UFL 21h 21 17.2h 17h 23.4h 21.3h 2N.1h 17.5h 14h 13.3h 
ISI-ANL 2Nh 19h 16h 15.4h 22.5h 19h 19.2h 19h 13.6h 11.8h 
ISI-UFL 18h 18.8h 13h 12h 18.7h 16.8h 16.6h 15h 1N.5h 11h 

ANL-UFL 17h 19.2h 12h 12.2h 19.2h 15.7h 15.9h 14.1h 12h 12.2h 
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(a) LBL-ANL 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

(b) ISI-ANL 
 
 
 
 
 
 
 

Figure 1:  (a) LBLXANL GridFTP (approximately 4NN transfers at irregular intervals) endXtoXend bandwidth and NWS
(approximately 1,5NN probes every five minutes) probe bandwidth for the twoXweek AugustjN1 dataset. (b) GridFTP
transfers and NWS probes between ISIXANL 
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(d) Average Filling (Avg) 
 

(N26, G2) (N75, G4)

(N75, G4)(N26, G2) 

Aug 16th Aug 17th 

(N26, G2) 
(N75, G4)

Aug 16th Aug 17th 

Aug 16th Aug 17th 

Aug 16th Aug 17th 

Figure 2: (a) Six measured successive GridFTP transfers and NWS observations during those transfers between LBL and
ANL (August 2NN1). (b) Discarding NWS values to match GridFTP transfers. Here (N26, G2) denotes that the 26th NWS
measurement and the 2nd GridFTP transfer occur in the same timeframe. (c) FillingXin the last GridFTP value to match
NWS values between six successive file transfers. (d) FillingXin average of previous GridFTP transfers to match NWS
values. 
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Matched set

D

(Ni,Dj,Gk)(Nik1, Djk1, GFill)m(Nikm, Djkm, Gkk1) 

Figure 3: Seduence of events for deriving predictions
from GridFTP (G), disk load (D), and NWS (N)
datastreams. 

Figure 4: Visualization comparing error, complexity of
algorithm, and components included for the site pair LBL
and ANL.  
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Figure 5: Depiction of network settings for our
testbed sites connected through OCX48 network links.
For each site pair, roundtrip times and bottleneck
bandwidths for the link between them is shown. 
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Figure 6: Univariate predictor performance for the testbed site pairs. Predictors include meanXbased, medianXbased,
and autoregressive models. The figure also shows contextXinsensitive variations of all the predictors. 
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Figure 7: Impact of classification and the reduction in percent error rates for the testbed (contextXsensitive
filtering). 
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Figure 8: Relative performance of predictors as a percentage bestfworst of all predictors for all site pairs. 
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(a) Comparison of normalized percent errors for the predictors with 95% confidence limits

 (b) Comparison of intervals for the predictors 
 
Figure 9: (a) Normalized percent prediction error and 95h confidence limits for August 2NN1 dataset based on (1)
prediction based on GridFTP in isolation (MovingAvg), (2) regression between GridFTP and disk IfO with Avg filling
strategy (GSD Avg)\ (3) regression between GridFTP and NWS network data with Avg filling strategy (GSN Avg), and
(4) regressing all three datasets (GSNSD Avg). Confidence Limits denote the upper and lower bounds of prediction error.
For instance, the LBLXANL pair had a prediction range of M17.3h S 5.2hT. (b) Comparison of the percentage of
variability among the predictors. 
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 (c) Regression between GridFTP, NWS and Disk I/O 
 
Figure 10: Predictors for 1NN MB transfers between ISI and ANL for August 2NN1 dataset. In the graphs, GridFTP, GSD
Avg, GSNSD Avg, and NWS are plotted on the primary yXaxis\ while Disk IfO is plotted on the secondary yXaxis. IfO
throughput denotes transfers per second.  
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(b) Regression between GridFTP and NWS
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Figure 11: Error rates of polynomial regression models for the GSD Avg predictor for the various site pairs.
Polynomials include linear, duadratic, cubic, and duartic models. 


