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This article describes a technique to compute magnetic normal modes of nanosized particles.
The technique is based on the Landau-Lifshitz formalism of micromagnetics and accounts fully for
both the exchange and the dipolar field. It requires no more than the specification of the material
parameters and the geometry of the sample; in particular, it does not require the specification
of boundary conditions. It also allows the large-amplitude nonlinear regime to be probed. The
technique is applied to a model of a polycrystalline iron particle, which is shown to possess a rich
variety of normal modes. Some of these modes are reminiscent of standing waves, while others are
more or less localized in parts of the sample. The variation of the mode frequencies with the applied
field is analyzed and compared with existing approximations.
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I. INTRODUCTION

Recent advances in processing techniques have made it
possible to fabricate small magnetic particles with accu-
rate control over their shape and thickness.'~® Because
the size of such particles can be comparable to the ex-
change length or the domain wall thickness, their mag-
netic behavior differs fundamentally from that of larger
samples, where the existence of multiple magnetic do-
mains plays a fundamental role. While the dynamics
of magnetic spins in nanoparticles have been addressed
experimentally by means of Brillouin scattering, ferro-
magnetic resonance (FMR), and other novel techniques,
much less work has been done on the corresponding the-
oretical problem of determining magnetic normal modes.
This problem is of more than theoretical importance; in-
deed, it has important implications for technology. For
example, the reduction in size of a read head is ultimately
limited by spin-wave induced noise.” If the normal modes
were known, one could control them by suitable design
choices, thus limiting the noise and enabling further size
reductions.

Attempts to solve the magnetic normal-mode prob-
lem in a manner analogous to that used for mechani-
cal normal modes of vibration of a finite particle have
been mostly unsuccessful. The problem is difficult be-
cause one must account simultaneously for the exchange
coupling, which acts at the atomic level, and dipolar
fields that are typically long-range and extend over the
whole sample. Only in a very few special cases and un-
der severely restricting conditions is it possible to treat
the problem analytically. If both exchange and dipolar
fields are included, the normal modes are known only for
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the homogeneous saturated infinite bulk ferromagnet;® if
exchange is neglected, they are known for the homoge-
neous infinite magnetic slab®!? and, with certain addi-
tional approximations, for a few very simple shapes;''+12
and only if dipolar fields are neglected entirely can they
be obtained for more general cases.!® Very recently, some
progress has been made in evaluating magnetic modes in
confined geometries when dipolar induced pinning effects
are included.'*-17

In the absence of analytical solutions, computations of-
fer the only feasible alternative. The purpose of this ar-
ticle is to show how, on the basis of the Landau-Lifshitz
formalism of micromagnetics,'® magnetic normal modes
of nanosized particles can be identified in the presence of
both exchange and dipolar fields. Support for this idea
comes from earlier work on micromagnetic-based FMR,
computations,'?2! where the FMR frequency of a small
saturated flat disk was determined from a Fourier trans-
form of the time-dependent total magnetization. The
proposed computational procedure has three significant
features. First, the particle is divided into cells whose di-
mensions are smaller than the exchange length, so the
magnetization within a cell is approximately uniform.
The spatial approximations are then based on finite dif-
ferences. Second, the algorithm used to integrate the
Landau-Lifshitz equation maintains a constant magne-
tization at all times. The algorithm is the same as the
one used by the authors for spring-magnet calculations.??
Third, the dipolar (far-field) contribution is derived from
a scalar magnetic potential, and the latter is computed
by means of a boundary integral formulation. Thus, the
computational domain is the same as the physical domain
occupied by the particle, and there is no need to artifi-
cially extend the domain or introduce artificial boundary



conditions.

The plan of this article is as follows. In Section II,
we formulate the micromagnetics problem and describe
the computational approach to identify magnetic normal
modes. In Section III, we present the results of numerical
simulations for a polycrystalline iron nano-particle. We
identify several normal modes and analyze the behavior
of their frequency as a function of the strength of the
applied field. In Section IV, we summarize our findings
and discuss the type of problems that can be addressed
with the current method.

II. MICROMAGNETIC MODEL

The Landau-Lifshitz (LL) equation of micromagnetics
is a differential equation for the magnetization vector M,
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Here, H is the effective magnetic field, which depends
nonlinearly on M, and M is the magnitude of M. Equa-
tion (1) is the equation of a spinning top driven by the
magnetic field (first term inside the brackets) and subject
to damping (second term); v is the gyromagnetic con-
stant and g a (dimensionless) damping coefficient. The
LL equation maintains a constant magnetization; M is
equal to the saturation magnetization Mg at all times.
On the other hand, the direction of M, which is given
by the magnetic spin vector m = M /M, varies with time
(t), as well as with space throughout the sample.

The effective magnetic field H is derived from the free
energy, E. If H, is the externally applied magnetic field,
then

oFE
H=H, SM (2)
If anisotropy contributions and magnetostrictive terms
are ignored (an assumption that is certainly justified in
the case of polycrystalline materials), the free energy is
the sum of the exchange energy, the (dipolar) far-field en-
ergy, and the energy contribution from the applied field,

E = FEoy + Eg + Eyf. (3)

The individual terms are given by the integrals

Bu = /A|VM|2, (4a)
1
Eg = —§/M‘Hﬁ‘, (4b)
Ey = —/M-Ha, (4c)
where A is the exchange coupling constant. The far

field is obtained from a scalar magnetic potential, Hg =
—V®, which, given the magnetization M, is calculated

as follows.?? First, ® is written as a sum, ® = ®; + ®,,
where @, is the solution of the Neumann problem

AP =47(V-M)in Q, n-V® =4r(n-M) on O0.

(5)
Here, Q is the domain, 0f) is the boundary of €2, and n
is the outward normal on the boundary. The boundary

values of ®; thus obtained generate the boundary values
of @2,

Ba@)= [ ily)eos {n cd ] )
9Q |z — y|
and ®- is found by solving the Dirichlet problem A®, = 0
in  subject to the computed boundary values.

We assume that the domain Q (the physical domain
occupied by the particle) is three dimensional and rect-
angular and that the particle is placed in a Cartesian
(x,y,7) coordinate system, with M = (M,, M,, M,).
The applied magnetic field is uniform, constant in time,
and directed along the positive z axis, H, = (H,,0,0).

The particle is divided into cubic cells, and the mag-
netization is assumed to be uniform in each cell. A cell is
indexed by a triplet (4, j, k), and each cell carries a mag-
netization vector M ;. The magnitude of M, ;; is
constant and equal to the saturation magnetization My;
its direction is given by the spin vector m; jr, which is
a vector of unit length.

Given the dimensions of the particle and the strength
of the applied magnetic field, the only physical parame-
ters that need to be specified for the simulations are the
exchange coupling constant A, the saturation magnetiza-
tion M, the gyromagnetic constant v, and the damping
coefficient g.

The approach used to find normal modes is con-
ceptually similar to the one used previously in FMR
calculations.'®20 For a given applied field, the particle is
first allowed to reach its equilibrium state. This is accom-
plished by integrating the LL equation (1) to equilibrium
with the damping coefficient ¢ = 0.5. The spin configu-
ration is then perturbed from equilibrium and, with the
damping coefficient ¢ = 0, allowed to evolve in time.
The motion of each spin vector is monitored at regular
intervals for a certain length of time, and the time se-
ries of each component in each cell is Fourier analyzed.
(In Ref. 19, the Fourier transform was applied only to
the spatially averaged magnetization vector.) The nor-
mal modes are then identified by correlating the Fourier
transforms throughout the sample.

Typically, a spin vector describes an elliptically shaped
closed orbit in a plane. The orbit plane and the orbit
center reflect the static equilibrium configuration of the
magnetization; they are the same for all modes and need
not be considered further. The dynamics of a particu-
lar mode at a given frequency are specified completely
by four parameters for each cell, namely, the area of the
spin orbit, its aspect ratio (ratio of major to minor axis),
its tilt (angle between major axis and sample axes), and
the relative phase of the spin vectors. The numerical sim-
ulations indicate that well defined correlations between




cells emerge only at frequencies where at least some cells
show clear peaks in the Fourier transform; when there
are no peaks in any cell, no correlations are observed.

A complete description of a magnetic normal mode in
terms of the four parameters for each cell is clearly im-
practical. How to devise a description in terms of a few
parameters is, however, not obvious. It is helpful to com-
pare the current problem with the analogous problem for
normal modes of a vibrating membrane. The latter are
described by an expression of the form AF(x)e!, where
A is a scalar amplitude and F' a normalized function of
position (for example, a Bessel function in the case of a
circular membrane). A snapshot of a membrane oscil-
lating in an eigenmode provides a complete representa-
tion of F(x) and, thus, a characterization of the normal
mode. In the present case, the problem is more compli-
cated. The time and space variables are not separable,
the amplitude is a vector, and the function F is differ-
ent for each component. In principle, one can adopt the
same approach as for the vibrating membrane and use
a snapshot of one of the components of the magnetiza-
tion. This approach gives an intuitively clear picture of a
mode, but the result must be interpreted with care. Be-
cause of the phase differences between cells, snapshots at
different times are not necessarily comparable; moreover,
the amplitudes do not scale, and slight differences in the
profiles will be present; and finally, changes in the aspect
ratio will produce variations between snapshots of differ-
ent components of the magnetization. For these reasons
it is prudent to give additional consideration to the area
of the spin orbit in each cell to corroborate the results
obtained from a snapshot of one of the components of
the magnetization. The orbit area is proportional to the
amplitude and therefore independent of time, a fact that
is convenient. A shortcoming of this representation is,
of course, that it does not contain information about the
phase of the spin.

III. RESULTS FOR A POLYCRYSTALLINE
IRON PARTICLE

In this section, we present the results of numerical sim-
ulations for a model of a polycrystalline iron particle.
The sample is rectangular, measuring 116 x 20 x 60 nm,
and the material parameters are

A = 25x107% erg/cm,
M, = 1,700 emu/cm’ (= oersted),
v = 2.93 GHz/kOe.

The particle is placed in a uniform magnetic field, which
is constant in time and directed along the positive z axis,
H, = (H,,0,0). The particle is arranged so the field is
lined up with the long (116) side, the short (20) side
is aligned with the y axis, and z is the coordinate in the
spanwise (60) direction. The particle is divided into cubic
cells measuring 4 nm on a side. Each cell is indexed by

a triple (i,7,k), with ¢ = 1,...,29; 7 = 1,...,5; and
k=1,...,15. The total number of cells is 29 x 5 x 15 =
2,175.

Once equilibrium is achieved, a perturbation is applied
to excite the normal modes. A given perturbation will
excite only those modes whose spatial Fourier transform
is contained in that of the perturbation. This feature
has both advantages and disadvantages. By judiciously
choosing the perturbation, one can reduce the number
of excited modes and thus avoid excessive mode over-
lap. On the other hand, numerous simulations must be
performed to guarantee that all the modes are actually
observed. We have chosen to work with two perturba-
tions, one symmetric, the other antisymmetric along the
long axis (the direction of the applied field). In the sym-
metric perturbation, the spins in the central portion of
the particle—that is, in all cells with ¢ = 7,... ,23—are
rotated from their equilibrium position by 1 degree in the
(z, z) plane. In the antisymmetric perturbation, the spins
in the cells with ¢ = 7,... ;14 are rotated by 1 degree in
the positive direction and those with ¢ = 16,...,23 by
1 degree in the negative direction. The numerical simu-
lations indicate that, as long as the perturbations do not
exceed £5 degrees, the position of a peak in the frequency
spectrum is not affected. We also ascertained that the
Fourier amplitude of a peak scales with the amplitude of
the initial perturbation, so we are clearly probing the re-
sponse in the linear regime. The Fourier transform can be
performed on any of the components of the spin vector;
again, the choice of the particular component affects the
relative amplitudes of the peaks but not their positions
in the frequency spectrum.

All the results reported below were obtained by inte-
grating the LL equations over a period of 11.88-101 sec-
onds. The resulting frequency resolution in the Fourier
transform is 0.63 GHz.

A. Fixed Applied Field, H, = 10 kOe

We first probe the normal-mode structure of the
nanoparticle at a fixed value of the applied field, H, =
10 kOe. The dependence on the strength of the applied
field will be taken up in Section ITIB.

Figure 1 shows the Fourier transform of M, in four
representative cells in the mid-plane (j = 3) after a sym-
metric perturbation. The graphs on the left are for cells
near the end of the particle (i = 2), the graphs on the
right for cells midway along the long axis (i = 15).

A peak in the Fourier transform indicates that the ini-
tial perturbation has excited a mode in the particular cell
at that frequency and indicates the existence of a normal
mode at that frequency. (The converse is not necessarily
true. The absence of a peak may simply indicate that the
normal mode at that frequency has a small amplitude in
that cell. Therefore, while it is possible to be guided by
peaks in individual Fourier transforms, the only fail-safe
technique is to reconstruct the modes at every frequency
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FIG. 1: Fourier transform of M, vs. frequency (GHz) in four
cells in the mid-plane.

of the Fourier transform and then ignore those that are
weak and show no clear structure.) The differences be-
tween the Fourier transforms in cells near the edges and
in the center of the sample already provide evidence that
edge effects play an important role in determining the
normal-mode structure.

The graphs in Fig. 2 show four one-dimensional, plane-
wave-like normal modes, both in three-dimensional per-
spective (left column) and as two-dimensional contour
plots (right column). They were obtained by plotting
the Fourier transform of M, in the mid-plane (j = 3)
against ¢ (horizontal axis) and k (vertical axis). From
top to bottom, we observe a 4-node mode at 49 GHz, a
0-node mode at 52 GHz, a 6-node mode at 57 GHz, and
a 10-node mode at 89 GHz. (Modes with an odd number
of nodes are not excited by the symmetric initial pertur-
bation.) Excluding the 0-node mode, we note that the
mode frequency increases with the number of nodes, as
expected from the exchange interaction.

The 0-node mode is reminiscent of the uniform (FMR)
mode in a bulk sample and is referred to as the “bulk”
mode. Its frequency is close to the FMR, frequency, and
its amplitude is fairly uniform throughout the interior of
the sample. This mode would become the uniform mode
if the sample were made infinitely large. Contrary to the
FMR mode, however, its phase differs by almost 30 de-
grees between the ends and the center of the sample. (In
an infinite film, the phase of the FMR mode is constant
throughout the sample.) The other modes in Fig. 2 show
a clearly identifiable standing-wave-like structure in the
direction of the applied field. The existence of stand-
ing waves in confined geometries is well known.!4-16,24,25
Their theoretical explanation requires the introduction of
ad hoc boundary conditions at the free surfaces, which
has led to the concept of “pinning”?%2® and the def-
inition of the Rado-Weertman boundary conditions.?8
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FIG. 2: Four symmetric one-dimensional plane-wave-like nor-
mal modes. From top to bottom: 4-node mode (49 GHz),
0-node mode (52 GHz), 6-node mode (57 GHz), and 10-node
mode (89 GHz).

The physical origin of pinning is usually ascribed to sur-
face anisotropy, although it has been correlated more re-
cently with the local demagnetizing field in the vicinity
of edges.'>'% The present approach does not require any
such ad hoc boundary conditions. Figure 2 shows that
the bulk mode is “pinned” at the ends, the 4-node mode
is almost pinned, but the other two modes are essentially
unpinned. We return to this point in Section III C, where
we discuss the dependence of the mode frequencies on the
wavelength.

The graphs in Fig 2 were obtained by taking snapshots
of one component (M) of the magnetization vector. As
mentioned in the preceding section, these snapshots pro-
vide only a partial description. Figure 3 provides a more
complete description of the 6-node mode shown in Fig. 2.
The top left diagram in Fig. 3 shows the spin orbits in
four cells (i = 1,4,9, 14) along the major axis of the sam-
ple. The mark on each orbit indicates the position of the
spin vector at a given instant of time, from which the
relative phases can be inferred. The graph at the bot-
tom right shows the variation of the phase along the long
(z) axis. The remaining two graphs in Fig. 3 show the
variation of the aspect ratio and the tilt of the major
axis of the orbit along the x axis. In a simple “standing-
wave” picture, the aspect ratio would be a constant, the
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FIG. 3: Details of the spin motion for the 6-node mode. Top
left: four spin orbits in the (z, z) plane in different cells along
the long axis. The three other graphs show the variation of
the aspect ratio (top right), tilt of the major axis (in degrees,
bottom left), and relative phase (in degrees, bottom right)
along the major (z) axis.

tilt would be zero, and the phase would jump discontin-
uously by 180 degrees at every node. Clearly, the mode
in our particle does not have any of these simplifying
attributes.

The antisymmetric perturbation excites a different set
of modes. Figure 4 shows four one-dimensional plane-
wave-like modes, again arranged from top to bottom in
order of increasing frequency. The lowest frequency is
associated with a 3-node mode (49 GHz), next is a 5-node
mode (52 GHz), followed by a 9-node mode (80 GHz)
and an 11-node mode (99 GHz). Clearly, the frequency
increases with the number of nodes. As expected, only
modes with an odd number of nodes are observed, and
every antisymmetric mode has a node at the center. A
more interesting observation is that the modes appear to
evolve from being pinned at lower frequencies to being
unpinned at higher frequencies.

The frequencies of the one-dimensional even- and odd-
node modes shown in Figs. 2 and 4 display an interesting
interleaving property, at least at higher order: If v,, is the
frequency (in GHz) of the n-node mode, then v,, < v,y
forn =4,5,...,11. Only the bulk mode does not fit this
pattern. Also, note that with a frequency discrimination
of 0.63 GHz we may observe two very different modes at
the same frequency; for example, the bulk mode and the
5-node mode are both at 52 GHz.

In addition to the one-dimensional plane-wave-like so-
lutions shown in Figs. 2 and 4, the simulations reveal
the existence of several other types of modes. Figure 5
shows four modes that exhibit a two-dimensional struc-
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FIG. 4: Four antisymmetric standing-wave-like modes. From
top to bottom: 3-mode node (49 GHz), 5-mode node

(52 GHz), 9-mode node (80 GHz), and 1l-mode node
(99 GHz).

ture. The top two modes are excited by the symmet-
ric perturbation, the bottom two by the antisymmetric
perturbation. These modes can be construed as stand-
ing waves with two orthogonal wave vectors. Note that,
again, symmetric perturbations excite only symmetric
modes, antisymmetric perturbations only antisymmetric
modes.

The two-dimensional normal modes display an inter-
leaving property that is somewhat similar to the inter-
leaving property observed for the one-dimensional modes:
If vy, . is the frequency (in GHz) of the n, X n, mode,
then vy, n, < VUn,41,n, forn, =3,4,...,11 and n, = 2.
(The simulations did not reveal an obvious pattern for
other values of n,.)

While in the conventional “standing-wave” model
(with pinned or unpinned boundary conditions) all
modes of a rectangular sample are of the standing-wave
type, we identified several modes that do not fit this de-
scription. For example, some modes are clearly localized
in the particle near the edges or near the corners. Fig-
ure 6 shows two “end modes” that are localized near
the edges, one generated by the symmetric perturbation
(top), the other by the antisymmetric perturbation (bot-
tom). These edge modes happen to have the same fre-
quency (31 GHz) within the resolution of the simulations
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FIG. 5: Four two-dimensional modes. From top to bottom:
3 x 2 mode (64 GHz), 6 x 2 mode (73 GHz), 3 x 2 mode
(64 GHz), and 9 x 2 mode (95 GHz).

(0.63 GHz), which shows that selective excitation via the
symmetry of the perturbation is essential. The fact that
the frequency of the end modes is lower than the fre-
quency of the bulk mode (52 GHz) can be traced to the
larger local demagnetizing fields near the ends.
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FIG. 6: Symmetric and antisymmetric end modes (31 GHz).

In total, we have been able to identify more than 20
different normal modes. If we had applied antisymmetric
perturbations along the z axis as well, we would presum-
ably have detected at least another 20 modes. Although

the modes can be sorted into families based on the num-
ber of nodal lines, even this classification is confusing
because there exist modes with the same nodal structure
but different frequencies that appear to differ only in the
distribution of their amplitudes. At this stage of our un-
derstanding, there appears to be little reason to present
the frequency and a full description of each one of them.

B. Variable Applied Field

Next, we investigate the variation of the mode fre-
quencies with the strength of the applied field. Figure 7
shows the mode frequencies of the bulk mode (Fig. 2,
second from top) — circles, the standing-wave mode with
10 nodes (Fig. 2, bottom) — triangles, and the symmet-
ric end mode (Fig. 6, top) — diamonds. In general, the
mode frequency increases with the number of nodes. The
11- and 12-node modes lie above the 10-node mode; the
other standing-wave modes identified in the preceding
section lie above or close to the bulk-mode frequency.
The solid line in Fig. 7 is the Kittel FMR frequency of
a three-dimensional ellipsoid with the same major axes
as our particle.?” In spite of its deviations from perfect
uniformity, the frequency of the bulk mode is still in sur-
prisingly good agreement with the Kittel equation for
the uniform mode of a three-dimensional ellipsoid. The
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FIG. 7: Variation of mode frequencies with the applied field:
bulk mode (circles), 10-node mode (triangles), end mode (di-
amonds). The solid line is the Kittel FMR frequency of an
ellipsoid with the same major axes as our particle.

good agreement at high fields indicates that the average
dipolar fields within the sample are similar to the homo-
geneous demagnetizing field within a comparable ellip-
soidal sample. At low fields, the inhomogeneities of the
demagnetizing fields become comparable to those of the
applied field, and the agreement is less good. For which
particle shape and/or size this agreement ceases to exist
altogether remains to be determined.

Except for the end mode, the field dependence of the
frequencies is very close to linear and shows no anomalous
behavior at low fields. The end mode, however, shows



considerable nonlinearity at low fields and extrapolates
to zero frequency at approximately 1.1 kOe. Further-
more, although the symmetric and antisymmetric end
modes are unresolved at high fields, the latter lies below
the former at the lowest fields and extrapolates to zero
frequency at approximately 1.2 kOe. The existence of
zero-frequency modes is intimately related to the static
instabilities of the magnetization. Although it is tempt-
ing to associate the zero frequency of the antisymmet-
ric end mode with the onset of magnetization reversal,
prior to any such interpretation one must investigate the
possibility that other normal modes (for example, corner
modes) could have zero frequency at higher fields.

C. Wavelength Dependence of Mode Frequencies

It is instructive to compare the frequencies of the
standing-wave modes with limiting cases of standing
waves in a truncated infinite plate. In Fig. 8, we show the
frequencies (at 10 kOe) of the standing-wave modes as a
function of their wave vector. The wave vector of each
mode was computed from the distance between nodal
lines in Figs. 2 and 4; for the bulk mode, we assumed
that the “nodes” were at the sample ends, so the wave-
length was 2L and the wave vector ¢ = w/L.
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FIG. 8: Variation of the normal-mode frequencies (at H, =
10 kOe) with their wave vector. The dots represent the com-
puted results; the dot-dashed, dashed, and full line correspond
to Eq. (7), (8), and (9), respectively.

If exchange is ignored, the frequency of modes propa-
gating in an infinite plate along the magnetization direc-
tion is given by the formula®'°

v =[H(H + x(¢g)4wM)]'/?, (7)

where y is a function of the wave vector ¢; x(g) is found
by solving a transcendental equation; its value decreases
monotonically from 1 at ¢ = 0 to 0 at ¢ = oco. On
the other hand, if dipolar fields are ignored and only the
effects of exchange are included, the frequency is given
by the formula

v=v(H + D¢*), (8)

where D is the spin-wave stiffness constant. The predic-
tions of Eqgs. (7) and (8) are shown by the dotted and
dashed lines in Fig. 8. It is possible'* to incorporate the
effects of exchange and dipolar coupling by combining
(although such an action is not mathematically rigorous)
the two equations (7) and (8),

v =9[(H + Dg®)(H + Dq* + x(q)4mM)]'/>. (9)

The frequency v given by Eq. (9), with the value D =
2.2-107? Oe cm? for bulk Fe, gives the full line in Fig. 8.
Considering that Eq. (9) describes a perfect standing spin
wave, where the phase and the orbital aspect ratio are
constant and the tilt is zero, we see that it provides a
surprisingly good description of the wave-vector depen-
dence of the mode frequencies, even in the crossover re-
gion where both dipolar and exchange contributions are
comparable.

The wave vectors of the normal modes also warrant
attention. In a standing-wave model, the allowed wave
vectors are given by ¢ = ¢, = nw/L, where L is the length
of the sample; if full pinning is assumed (zero amplitude
at the ends), n = 1,2,...; if the ends are unpinned (max-
imum amplitude at the ends), n = 0,1,2,.... Although
the pinning boundary conditons have been debated for
many years, recent studies!®'6 have shown that an effec-
tive pinning is induced by the dipolar forces near the
edges. The same authors also report that, while the
longer wavelength modes are pinned at the ends, the
short wavelength modes are essentially unpinned. Our
simulations show that, for the model particle considered
in the present investigation, the crossover from pinned to
unpinned occurs roughly between the modes with 4 and
5 nodes.

D. Additional Observations

While developing the techniques and obtaining the re-
sults presented above, we encountered numerous aspects
that deserve further and more detailed investigation.

(i) We observed that two modes, namely, the bulk
mode and the 5-node mode, crossed as the field was in-
creased. In this particular case, the symmetric and anti-
symmetric nature of the two modes precludes hybridiza-
tion effects. However, one can envision cases where a
crossover occurs while hybridization is allowed, and such
cases could be investigated with the present formalism.
(i) Large-amplitude perturbations lead to changes in
the peak positions in the Fourier transform. This result
indicates that the nonlinear response regime can also be
probed with the technique described here. (iii) At low
fields, where the static magnetization profile no longer
has the symmetry of the particle (that is, a C-like state),
many more low-frequency modes of the end-mode type
were excited. (iv) We also found that, while at high fields
most of the amplitude is concentrated in the bulk mode,
the energy of the end modes grows by several orders of



magnitude relative to the bulk mode as the applied field
decreases.

IV. SUMMARY AND CONCLUSIONS

In this article we have developed a computational ap-
proach, based on the Landau-Lifshitz formalism of mi-
cromagnetics, to identify the magnetic normal modes of
a nanosized particle. The formalism is general and ap-
plies to particles of any shape and material in an applied
field of arbitrary direction and strength.

We have applied the technique to a rectangular model
of a polycrystalline iron particle measuring 116 x 20 x
60 nm. We find modes that, although reminiscent of
standing spin waves, are considerably more complex. The
elliptical spin orbits may be tilted with respect to the
sample axes, and the modes have a spatially varying
phase. Our simulations also show the existence of modes
that are clearly localized, for example near the edges or
corners of the particle. These modes have frequencies
well below those of the spin-wave modes. Moreover, their
frequency extrapolates to zero at field values close to the
value at which the static magnetization loses the symme-
try of the particle—a strong indication that these modes
are closely tied to the onset of the magnetization reversal
process.

The technique and results presented here show that it
is possible to obtain both the frequencies and the profiles
of the normal modes of a magnetic particle, irrespective
of its size and shape and independently of the spatial
extent of the modes. The micromagnetic approach thus
enables us to bridge the gap between spin wave theory,
where demagnetizing fields are largely ignored, and mag-

netostatic theory, where exchange is ignored. In fact,
with the magnetostatic approach it has been possible to
obtain only approximate solutions for particles with a
relatively simple shape.'""'? The present formalism does
not suffer from this limitation.

The results of our investigation demonstrate the po-
tential of the proposed computational approach. Future
studies must be directed at extending the study beyond
the simple case considered here. In principle, the tech-
nique can be used to determine not just the magnetic
normal modes of a given particle but also their general
dependence on the material parameters and on particle
shape and size. Since the technique requires, however,
considerable computational effort, it must be used se-
lectively to address well defined problems in nanomag-
netism. Examples are mode instabilities determining or
contributing to magnetization reversal, normal modes of
magnetic vortex states, normal modes of ring structures,
and the wave vector dependencies of edge modes and end
modes. At present, no other suitable technique is avail-
able to address these problems in their most general form.
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