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Abstract In this chapter we present a general architecture or plan for scheduling on a
Grid. A Grid scheduler (or broker) must make resource selection decisions in an
environment where it has no control over the local resources, the resources are
distributed, and information about the systems is often limited or dated. These
interactions are also closely tied to the functionality of the Grid Information
Services. This Grid scheduling approach has three phases: resource discovery,
system selection, and job execution. We detail the steps involved in each phase.

1. INTRODUCTION
More applications are turning to Grid computing to meet their computa-

tional and data storage needs. Single sites are simply no longer efficient for
meeting the resource needs of high-end applications, and using distributed re-
sources can give the application many benefits. Effective Grid computing is
possible, however, only if the resources are scheduled well.
Grid scheduling is defined as the process of making scheduling decisions

involving resources over multiple administrative domains. This process can
include searching multiple administrative domains to use a single machine or
scheduling a single job to use multiple resources at a single site or multiple
sites. We define a job to be anything that needs a resource – from a bandwidth
request, to an application, to a set of applications (for example, a parameter
sweep). We use the term resource to mean anything that can be scheduled:
a machine, disk space, a QoS network, and so forth. In general, for ease of
use, in this chapter we refer to resources in terms associated with compute
resources; however, nothing about the approach is limited in this way.
In general we can differentiate between a Grid scheduler and a local re-

source scheduler, that is, a scheduler that is responsible for scheduling and
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managing resources at a single site, or perhaps only for a single cluster or
resource. These are the lowest-level of lower-level scheduling instances dis-
cussed in Chapter ?? One of the primary differences between a Grid scheduler
and a local resource scheduler is that the Grid scheduler does not “own” the
resources at a site (unlike the local resource scheduler) and therefore does not
have control over them. The Grid scheduler must make best-effort decisions
and then submit the job to the resources selected, generally as the user. Fur-
thermore, often the Grid scheduler does not have control over the full set of
jobs submitted to it, or even know about the jobs being sent to the resources it
is considering use of, so decisions that tradeoff one job’s access for another’s
may not be able to be made in the global sense. This lack of ownership and
control is the source of many of the problems to be solved in this area.
In this chapter we do not address the situation of speculative execution -

submitting a job to multiple resources and, when one begins to run, canceling
the other submissions. We do, however, discuss resource selection (sometimes
termed resource discovery [Ber99]), assignment of application tasks to those
resources (mapping [Ber99]), and data staging or distribution.
Historically, the most common Grid scheduler is the user, and that is the

point of view presented in this chapter. Many efforts are under way, however,
to change this situation [Nab99, Zho92, IBM01, GP01, BWF 96] and work
detailed in Chapters ??, ??, and ?? among others. Many of these are discussed
later in this book, but it can be argued that no single system addresses all the
needed features yet. In Section 2 we briefly discuss the related Grid Informa-
tion System interactions expected by a Grid-level scheduler. In Section 3 we
describe the three phases a user goes through when scheduling a job over re-
sources on multiple administrative domains–resource discovery, selection, and
job execution. Most implemented systems follow a similar pattern of execu-
tion. For each step we define the work involved and distinguish it from the
work of a common parallel scheduler.

2. GRID INFORMATION SERVICE
The decisions a scheduler makes are only as good as the information pro-

vided to it. Many theoretical schedulers assume one has 100 percent of the
information needed, at an extremely fine level of detail, and that the informa-
tion is always correct. In Grid scheduling, this is far from our experience. In
general we have only the highest level of information. For example, it may
be known that an application needs to run on Linux, will produce output files
somewhere between 20 MB and 30 MB, and should take less than three hours
but might take as long as five. Or, it may be known that a machine is running
Linux and has a file system located at a certain address that ten minutes ago
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had 500 MB free, but there is no information about what will be free when
one’s application runs there.
In general, Grid schedulers get information from a general Grid Information

System (GIS) that in turn gathers information from individual local resources.
Examples of these systems are the Globus Monitoring and Discovery Service
(MDS2) [CFFK01, MDS] and the Grid Monitoring Architecture (GMA), de-
veloped by the Global Grid Forum performance working group [TAG 03],
which has several reference implementations under development [pyG, Smi01,
CDF 01, GLM], and is being deployed as part of the European Data Grid
project. These two approaches emphasize different pieces of the monitoring
problem although both address it as a whole: MDS2 concentrates on the re-
source discovery portion, while GMA concentrates on the provision of data,
especially streaming data.
While different in architecture, all Grid monitoring systems have common

features [ZFS03]. Each deals with organizing sets of sensors (information
providers in MDS2 or producers in GMA) in such a way that an outside system
can have easy access to the data. They recognize that some data is more stati-
cally oriented, such as type of operating system or which file systems are acces-
sible; and this static data is often cached or made more rapidly available. They
serve dynamic data in very different ways (streaming versus time-out caches,
for example) but recognize the need for a heavier-weight interaction for deal-
ing with data that changes more often. All of these systems are extensible to
allow additional monitoring of quantities, as well as higher-level services such
as better predictions or quality-of-information metrics [VS03, WSH99, SB99].
Typically, Grid monitoring systems must have an agreed-upon schema, or

way to describe the attributes of the systems, in order for different systems
to understand what the values mean. This is an area of on-going work and
research [GLU, DAM, CGS] with considerable debate about how to represent
a schema (using LDAP, XML, SQL, CIM, etc.) and what structure should be
inherent to the descriptions.

3. STAGES OF GRID SCHEDULING
Grid scheduling involves three main phases: resource discovery, which gen-

erates a list of potential resources; information gathering about those resources
and selection of a best set; and job execution, which includes file staging and
cleanup. These phases, and the steps that make them up, are shown in Fig-
ure 1.1.

3.1 Phase 1: Resource Discovery
The first stage in any scheduling interaction involves determining which re-

sources are available to a given user. The resource discovery phase involves
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Figure 1.1. Three-phase plan for Grid scheduling.

selecting a set of resources to be investigated in more detail in Phase 2, infor-
mation gathering. i At the beginning of Phase 1, the potential set of resources
is the empty set; at the end of this phase, the potential of resources is some
set that has passed a minimal feasibility requirements. The resource discovery
phase is done in three steps: authorization filtering, job requirement definition,
and filtering to meet the minimal job requirements.

3.1.1 Step 1: Authorization Filtering

The first step of resource discovery for Grid scheduling is to determine the
set of resources that the user submitting the job has access to. In this regard,
computing over the Grid is no different from remotely submitting a job to a
single site: without authorization to run on a resource, the job will not run. At
the end of this step the user will have a list of machines or resources to which
he or she has access. The main difference that Grid computing lends to this
problem is sheer numbers. It is now easier to get access to more resources,
although equally difficult to keep track of them. Also, with current GIS imple-
mentations, a user can often find out the status of many more machines than
where he or she has accounts on. As the number of resources grows, it simply
does not make sense to examine those resources that are not authorized for use.
A number of recent efforts have helped users with security once they have

accounts, but very little has been done to address the issues of accounting and
account management [SN02]. When a user is performing scheduling at the
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Grid level, the most common solution to this problem is to simply have a list
of account names, machines, and passwords written down somewhere and kept
secure. While the information is generally available when needed, this method
has problems with fault tolerance and scalability.

3.1.2 Step 2: Application Requirement Definition

To proceed in resource discovery, the user must be able to specify some
minimal set of job requirements in order to further filter the set of feasible
resources (see Step 3).
The set of possible job requirements can be very broad and will vary sig-

nificantly between jobs. It may include static details (the operating system or
hardware for which a binary of the code is available, or the specific architecture
for which the code is best suited) as well as dynamic details (for example, a
minimum RAM requirement, connectivity needed, or /tmp space needed). The
more details that are included, the better the matching effort can be.
Currently, the user specifies job requirement information as part of the com-

mand line or submission script (in PBS [PBS] or LSF [Xu01], for example),
or as part of the submitted ClassAd (in approaches using Condor’s matchmak-
ing, as detailed in Chapter ??, such as the Cactus work [ADF 01] or the EDG
broker [GP01]). Many projects have emphasized the need for job requirement
information as well, for example with AppLeS [COBW00, BWC 03] and the
Network Weather Service [Wol98]. It is generally assumed in most system
work that the information is simply available.
On a Grid system this situation is complicated by the fact that application

requirements will change with respect to the systems they are matched to. For
example, depending on the architecture and the algorithm, memory require-
ments may change, as may libraries needed, or assumptions on available disk
space.
Very little work has been done to automatically gather this data, or to store it

for future use. This is in part because the information may be hard to discover.
Attempts to have users supply this information on the fly has generally resulted
in data that has dubious accuracy - for example, notice how almost every par-
allel scheduler requires an expected execution time, but almost every system
administration working with these schedulers compensates for the error in the
data, by as much as 50% in some cases.

3.1.3 Step 3: Minimal Requirement Filtering

Given a set of resources to which a user has access and at least a small set of
job requirements, the third step in the resource discovery phase is to filter out
the resources that do not meet the minimal job requirements. At the end of this
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step, the user acting as a Grid scheduler will have a reduced set of resources to
investigate in more detail.
Current Grid Information Services are set up to contain both static and dy-

namic data, described in Section 2. Many of them cache data with an associated
time-to-live value to allow quicker response times of long-lived data, includ-
ing basic resource information such as operating system, available software,
and hardware configuration. Since resources are distributed and getting data to
make scheduling decisions can be slow, this step uses basic, mostly static, data
to evaluate whether a resource meets some basic requirements. This is similar
to the discovery stage in a monitoring and discovery service.
A user doing his or her own scheduling will simply go through the list of

resources and eliminating the ones that do not meet the job requirements (as
much as they are known), for example, ruling out all the non-AFS-accessible
resources for applications requiring AFS.
Because the line between static and dynamic data is often one drawn for

convenience and not for science, most automatic systems incorporate this fea-
sibility searching into Step 4, where full-fledged queries are made on the sys-
tem. We maintain that as systems grow, this stage will be an important one for
continued scalability of other Grid-level schedulers.

3.2 Phase 2: System Selection
Given a group of possible resources (or a group of possible resource sets),

all of which meet the minimum requirements for the job, a single resource (or
single resource set) must be selected on which to schedule the job. This selec-
tion is generally done in two steps: gathering detailed information and making
a decision. We discuss these two steps separately, but they are inherently inter-
twined, as the decision process depends on the available information.

3.2.1 Step 4: Dynamic Information Gathering

In order to make the best possible job/resource match, detailed dynamic in-
formation about the resources is needed. Since this information may vary with
respect to the application being scheduled and the resources being examined,
no single solution will work in all, or even most, settings. The dynamic in-
formation gathering step has two components: what information is available
and how the user can get access to it. The information available will vary from
site to site, and users currently have two man sources–a GIS, as described in
Section 2, and the local resource scheduler. Details on the kind of information
a local resource scheduler can supply are given in Chapter ??.
A more recent issue when interacting with multiple administrative domains

is the one of local site policies, and the enforcement of these policies. It is
becoming common for a site to specify a percentage of the resources (in terms
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of capacity, rime, or some other metric) to be allocated specifically for Grid
use. These details must also be considered as part of the dynamic collection of
data.
In general, on the Grid, scalability issues as well as consistency concerns

significantly complicate the situation. Not only must more queries be made,
but also if resources are inaccessible for a period of time, the system must
evaluate what to do about the data needed for those sites. Currently, this sit-
uation is generally avoided by assuming that if dynamic data is not available,
the resources should be ignored; however, in larger systems, another approach
should be considered.
A large body of predictive work exists in this area (for example Chap-

ters ??, ??, and ??) but most of it requires additional information not available
on current systems. And even the more applied work [Wol98, GTJ 02, SFT98,
Dow97] has not been deployed on most current systems.

3.2.2 Step 5: System Selection

With the detailed information gathered in Step 4, the next step is to decide
which resource (or set of resources) to use. Various approaches are possible,
and we give examples of three in this book, Condor matchmaking in Chap-
ter ??, multi-criteria in Chapter ??, and meta-heuristics in Chapter ??.

3.3 Phase 3: Job Execution
The third phase of Grid scheduling is running a job. This involves a number

of steps, few of which have been defined in a uniform way between resources.

3.3.1 Step 6: Advance Reservation (Optional)

In order to make the best use of a given system, part or all of the resources
may have to be reserved in advance. Depending on the resource, an advance
reservation can be easy or hard to do and may be done with mechanical means
or human means. Moreover, the reservations may or may not expire with or
without cost.
One issue in having advance reservations become more common is the need

for the lower-level resource to support the fundamental services on the native
resources. Currently, such support is not implemented for many resources,
although as service level agreements become more common (see Chapter ??),
this is likely to change.

3.3.2 Step 7: Job Submission

Once resources are chosen, the application can be submitted to the resources.
Job submission may be as easy as running a single command or as complicated
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as running a series of scripts and may or may not include setup or staging (see
Step 8).
In a Grid system, the simple act of submitting a job can be made very com-

plicated by the lack of any standards for job submission. Some systems, such
as the Globus GRAM approach [CFK 98, GRAb], wrap local scheduling sub-
missions but rely heavily on local-parameter fields. Ongoing efforts in the
Global Grid Forum [GGF, SRM] address the need for common APIs [DRM],
languages [SD03], and protocols [GRAa], but much work is still to be done.

3.3.3 Step 8: Preparation Tasks

The preparation stage may involve setup, staging, claiming a reservation, or
other actions needed to prepare the resource to run the application. One of the
first attempts at writing a scheduler to run over multiple machines at NASA
was considered unsuccessful because it did not address the need to stage files
automatically.
Most often, a user will run scp, ftp or a large file transfer protocol such

as GridFTP [ABB 02] to ensure that the data files needed are in place. In
a Grid setting, authorization issues, such as having different user names at
different sites or storage locations, as well as scalability issues, can complicate
this process.

3.3.4 Step 9: Monitoring Progress

Depending on the application and its running time, users may monitor the
progress of their application and possibly change their mind about where or
how it is executing.
Historically, such monitoring is typically done by repetitively querying the

resource for status information, but this is changing over time to allow easier
access to the data. If a job is not making sufficient progress, it may be resched-
uled (i.e., returning to Step 4). Such rescheduling is significantly harder on a
Grid system than on a single parallel machine because of the lack of control
involved - other jobs may be scheduled and the one of concern pre-empted,
possibly without warning or notification. In general, a Grid scheduler may not
be able to address this situation. It may be possible to develop additional prim-
itives for interactions between local systems and Grid schedulers to make this
behavior more straight-forward.

3.3.5 Step 10: Job Completion

When the job is finished, the user needs to be notified. Often, submission
scripts for parallel machines will include an e-mail notification parameter.
For fault-tolerant reasons, however, such notification can prove surprisingly

difficult. Moreover, with so many interacting systems one can easily envi-
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sion situations in which a completion state cannot be reached. And of course,
end-to-end performance monitoring to ensure job completion is a very open
research question.

3.3.6 Step 11: Cleanup Tasks

After a job is run, the user may need to retrieve files from that resource
in order to do data analysis on the results, remove temporary settings, and so
forth. Any of the current systems that do staging (Step 8) also handle cleanup.
Users generally do this by hand after a job is run, or by including clean-up
information in their job submission scripts.

4. CONCLUSION
This chapter defines the steps a user currently follows to make a scheduling

decision across multiple administrative domains. This approach to scheduling
on a Grid comprises three main phases: (1) resource discovery, which gener-
ates a list of potential resources; (2) information gathering and choosing a best
set of resources; and (3) job execution, which includes file staging and cleanup.
While many schedulers have begun to address the needs of a true Grid-level

scheduler, none of them currently supports the full range of actions required.
Throughout this chapter we have directed attention to complicating factors that
must be addressed for the next generation of schedulers to be more successful
in a complicated Grid setting.
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