
Chapter 1

SCHEDULING IN THE GRID
APPLICATION DEVELOPMENT
SOFTWARE PROJECT

Holly Dail, Otto Sievert, Fran Berman, Henri Casanova, Asim
YarKhan, Sathish Vadhiyar, Jack Dongarra, Chuang Liu, Lingyun Yang,
Dave Angulo, and Ian Foster
San Diego Supercomputer Center, University of California, San Diego
Department of Computer Science and Engineering, University of California, San Diego
Department of Computer Science, University of Tennessee
Department of Computer Science, The University of Chicago
Mathematics and Computer Science Division, Argonne National Laboratory

Abstract
Developing Grid applications is a challenging endeavor that at the moment

requires both extensive labor and expertise. The Grid Application Development
Software Project (GrADS) provides a system to simplify Grid application devel-
opment. This system incorporates tools at all stages of the application develop-
ment and execution cycle. In this chapter we focus on application scheduling,
and present the three scheduling approaches developed in GrADS: development
of an initial application schedule (launch-time scheduling), modification of the
execution platform during execution (rescheduling), and negotiation between
multiple applications in the system (metascheduling). These approaches have
been developed and evaluated for platforms that consist of distributed networks
of shared workstations, and applied to real-world parallel applications.

1. INTRODUCTION
Computational Grids can only succeed as attractive everyday computing

platforms if users can run applications in a straightforward manner. In these
collections of disparate and dispersed resources, the sum (the Grid) must be
greater than the parts (the machines and networks). Since Grids are typically

2

built on top of existing resources in an ad-hoc manner, software layers between
the user and the operating system provide useful abstraction and aggregation.
In the past decade, many useful software products have been developed that

simplify usage of the Grid; these are usually categorized as middleware. Suc-
cessful middleware efforts have included, for example, tools for collecting and
disseminating information about Grid resources (e.g., Network Weather Ser-
vice [WSH99]), all-encompassing meta operating systems that provide a uni-
fied view of the Grid (e.g., Legion [GFKH99]), and collections of relatively
independent Grid tools (e.g., the Globus Toolkit [FK98]). Middleware has
simplified Grid access and usage, allowing the Grid to be useful to a wider
range of scientists and engineers.
In order to build application-generic services, middleware developers have

generally not incorporated application-specific considerations in decisions. In-
stead, application developers are expected to make any decisions that require
application knowledge; examples include data staging, scheduling, launching
the application, and monitoring application progress for failures. In this en-
vironment Grid application development remains a time-consuming process
requiring significant expertise.
The Grid Application Development Software Project (GrADS) [BCC 01,

KMMC 02] is developing an ambitious alternative: replace the discrete, user-
controlled stages of preparing and executing a Grid application with an end-
to-end software-controlled process. The project seeks to provide tools that
enable the user to focus only on high-level application design without sac-
rificing application performance. This is achieved by incorporating applica-
tion characteristics and requirements in decisions about the application’s Grid
execution. The GrADS architecture incorporates user problem solving en-
vironments, Grid compilers, schedulers, performance contracts, performance
monitors, and reschedulers into a seamless tool for application development.
GrADS builds on existing middleware and tools to provide a higher-level of
service oriented to the needs of the application.
Scheduling, the matching of application requirements and available re-

sources, is a key aspect of GrADS. This chapter focuses on scheduling needs
identified for the GrADS framework. Specifically, we discuss the following
distinct scheduling phases.

Launch-time scheduling is the pre-execution determination of an initial
matching of application requirements and available resources.

Rescheduling involves making modifications to that initial matching in
response to dynamic system or application changes.

Meta-scheduling involves the coordination of schedules for multiple ap-
plications running on the same Grid at once.

GrADS Scheduling 3

Initial prototype development in GrADS revealed that existing application
scheduling solutions were inadequate for direct application in the GrADS sys-
tem. System-level schedulers (e.g., LoadLeveler [IBM01] and Maui Sched-
uler [Mau]) focus on throughput and generally do not consider application re-
quirements in scheduling decisions. Application-specific schedulers [Ber99]
have been very successful for individual applications, but are not easily ap-
plied to new applications. Other projects have focused on easy-to-charact-
erize classes of applications, particularly master-worker applica-
tions [AGK00, COBW00]; these solutions are often difficult to use with new
classes of applications.
Consequently, we worked to develop scheduling strategies appropriate to

the needs of GrADS. We began by studying specific applications or applica-
tion classes and developing scheduling approaches appropriate to those ap-
plications or application classes [PBD 01, AAF 01, DBC03, SC03, VD03b,
VD02]. Concurrently, the GrADS team has been developing GrADSoft, a
shared implementation of GrADS. Proven research results in all areas of the
GrADS project are incorporated in GrADSoft with appropriate modifications
to allow integration with other components. The resulting system provides an
end-to-end validation of the GrADS research efforts. Many of the schedul-
ing approaches discussed in this chapter have been incorporated in GrAD-
Soft [MMCS 01].
This chapter is organized as follows. Section 2 describes the GrADS project

in greater detail and provides an overview of key Grid technologies we draw
upon for our scheduling work. Section 3 describes the applications we have
used to validate our designs. Section 4 presents our launch-time scheduling
approach, Section 5 presents our rescheduling approach, and Section 6 presents
our metascheduling approach. Section 7 concludes the chapter.

2. GRADS
Figure 1.1 provides a high-level view of the GrADS system architec-

ture [KMMC 02]. This architecture provides the framework for our schedul-
ing approaches. The following is a conceptual view of the function of each
component in the architecture. Note that the view given in Figure 1.1 and
in the following discussion is an idealized view of how GrADS components
should function and interact with one another. In reality, the system is under
development and does not yet function exactly as described. This chapter will
describe the current state of the scheduling components, but we will not have
space to describe the current status of all GrADS components.
The Program Preparation System (PPS) handles application development,

composition, and compilation. To begin the development process, the user in-
teracts with a high-level interface called a problem solving environment (PSE)

4

to assemble their Grid application source code and integrate it with software
libraries. The resulting application is passed to a specialized GrADS com-
piler. The compiler performs application analysis and partial compilation into
intermediate representation code and generates a configurable object program
(COP). This work may be performed off-line as the COP is a long-lived object
that may be re-used for multiple runs of the application. The COP must en-
capsulate all results of the PPS phase for later usager, for example, application
performance models and partially compiled code, also konwn as intermediate
representation code.
The Program Execution System (PES) provides on-line resource discovery,

scheduling, binding, application performance monitoring, and rescheduling.
To execute an application, the user submits parameters of the problem (such as
problem size) to the GrADS system. The application COP is retrieved and the
PES is invoked. At this stage the scheduler interacts with the Grid run-time sys-
tem to determine which resources are available and what performance can be
expected of those resources. The scheduler then uses application requirements
specified in the COP to select an application-appropriate schedule (resource
subset and a mapping of the problem data or tasks onto those resources).
The binder is then invoked to perform a final, resource-specific compilation

of the intermediate representation code. Next, the executable is launched on
the selected Grid resources and a real-time performance monitor is used to
track program performance and detect violation of performance guarantees.
Performance guarantees are formalized in a performance contract [VAMR01].
In the case of a performance contract violation, the rescheduler is invoked to
evaluate alternative schedules.

C
onfigurable

object
program

Whole
program
compiler

A

pplication

Libraries

Software
components

Program Preparation
System (PPS)

Realtime
performance

monitor

Binder

Grid

runtime
system

Scheduler

Program Execution
System (PES)

Problem
 solving

environm
ent

Negotiation

Performance
feedback

Figure 1.1. Grid Application Development Software Architecture.

GrADS Scheduling 5

2.1 Grid Technology
The previous section outlined the GrADS vision; as components of that

vision are prototyped and validated, they are incorporated in a shared proto-
type implementation of GrADS called GrADSoft. Many of the scheduling
approaches described in this chapter have been integrated into this prototype.
We utilize the following Grid technologies to support our research efforts.
The Globus Toolkit Monitoring and Discovery Service (MDS2) [CFFK01]

and the Network Weather Service (NWS) [WSH99] are two on-line services
that collect and store Grid information that may be of interest to tools such
as schedulers. The MDS2 is a Grid information management system that is
used to collect and publish system configuration, capability, and status infor-
mation. Examples of the information that can typically be retrieved from an
MDS server include operating system, processor type and speed, and number
of CPUs available. The NWS is a distributed monitoring system designed to
track and forecast dynamic resource conditions; Chapter ?? describes this sys-
tem in detail. Examples of the information that can typically be retrieved from
an NWS server include the fraction of CPU available to a newly started pro-
cess, the amount of memory that is currently unused, and the bandwidth with
which data can be sent to a remote host. Our scheduling approaches draw on
both the MDS and NWS to discover properties of the Grid environment.
The ClassAds/Matchmaking approach to scheduling [RLS99] was pioneered

in the Condor high-throughput computing system [LLM88]. Refer to Chap-
ter ?? for a discussion of Condor and Chapter ?? for a discussion of ClassAds.
ClassAds (i.e., Classified Advertisements) are records specified in text files
that allow resource owners to describe the resources they own and resource
consumers to describe the resources they need. The ClassAds/Matchmaking
formalism includes three parts: The ClassAds language defines the syntax for
participants to create ClassAds. The advertising protocol defines basic con-
ventions regarding how ClassAds and matches must be communicated among
participants. The matchmaker finds matching requests and resource descrip-
tions, and notifies the advertiser of the result. Unfortunately, at the time of our
research efforts the ClassAds/Matchmaker framework only considered a single
resource request at a time. As will be described in Section 4.3.1, our work has
extended the ClassAds/Matchmaker framework to allow scheduling of parallel
applications on multiple resources.
To provide focus and congruency among different GrADS research efforts

we restricted our initial efforts to particular execution scenarios. Specifically,
we focus on applications parallelized in the Message Passing Interface
(MPI) [For94]. This choice was based on both (1) the popularity and ease
of use of MPI for the implementation of parallel scientific applications and (2)
the recent availability of MPICH-G2 [KTF03] for execution of MPI applica-

6

tions in the wide-area. We use the Globus Toolkit [FK98] for authentication
and job launching and GridFTP [ABB 02] for data transfers.

3. FOCUS APPLICATIONS
The GrADS vision to build a general Grid application development system

is an ambitious one. To provide context for our initial research efforts, we se-
lected a number of real applications as initial focus points. Our three primary
selections were ScaLAPACK, Cactus, and FASTA; each of these applications
is of significant interest to a scientific research community and has non-trivial
characteristics from a scheduling perspective. Additionally, we selected three
iterative applications (Jacobi, Game of Life, and Fish) for use in rapid devel-
opment and testing of new scheduling techniques. These applications were
incorporated into GrADS by the following efforts: ScaLAPACK [PBD 01],
Cactus [AAF 01], Jacobi [DBC03], Game of Life [DBC03], and Fish [SC03].
The FASTA effort has not been described in a publication, but was led by Asim
YarKhan and Jack Dongarra. Our focus applications include implementations
in Fortran, C, and C++.

3.1 ScaLAPACK
ScaLAPACK [BCC 97] is a popular software package for parallel linear

algebra, including the solution of linear systems based on LU and QR factor-
izations and the determination of eigenvalues. It is written in a single program
multiple data (SPMD) style and is portable to any computer that supports MPI
or PVM. Linear solvers such as those provided in ScaLAPACK are ubiquitous
components of scientific applications across diverse disciplines.
As a focus application for GrADS, we chose the ScaLAPACK right-looking

LU factorization code based on 1-D block cyclic data distribution; the appli-
cation is implemented in Fortran with a C wrapper. Performance prediction
for this code is challenging because of data-dependent and iteration-dependent
computational requirements.

3.2 Cactus
Cactus [ABH 99] was originally developed as a framework for finding nu-

merical solutions to Einstein’s equations and has since evolved into a general-
purpose, open source, problem solving environment that provides a unified,
modular, and parallel computational framework for scientists and engineers.
The name Cactus comes from the design of central core (or “flesh”) which
connects to application modules (or “thorns”) through an extensible interface.
Thorns can implement custom applications, as well as computational capa-
bilities (e.g. parallel I/O or checkpointing). See Chapter ?? for an extended
discussion of Cactus.

GrADS Scheduling 7

We focus on a Cactus code for the simulation of the 3D scalar field pro-
duced by two orbiting sources; this application is implemented in C. The so-
lution is found by finite differencing a hyperbolic partial differential equation
for the scalar field. This application decomposes the 3D scalar field over pro-
cessors and places an overlap region on each processor. In each iteration, each
processor updates its local grid points and then shares boundary values with
neighbors. Scheduling for Cactus presents challenging workload decomposi-
tion issues to accommodate heterogeneous networks.

3.3 FASTA
In bio-informatics, the search for similarity between protein or nucleic acid

sequences is a basic and important operation. The most exacting search meth-
ods are based on dynamic programming techniques and tend to be very com-
putationally expensive. FASTA [PL88] is a sequence alignment technique that
uses heuristics for fast searches. Despite these optimizations, due to the cur-
rent size of the sequence databases and the rate at which they are growing
(e.g. human genome database), searching remains a time consuming process.
Given the size of the sequence databases, it is often undesirable to transport
and replicate all databases at all compute sites in a distributed Grid.
The GrADS project has adapted a FASTA sequence alignment implemen-

tation [FAS] to use remote, distributed databases that are partially replicated
on some of the Grid nodes. When databases are located at more than one
worker, workers may be assigned only a portion of a database. The application
is structured as a master-worker and is implemented in C. FASTA provides an
interesting scheduling challenge due to the database locality requirements and
large computational requirements.

3.4 Iterative Applications
We selected three simple iterative applications to support rapid development

and testing of new scheduling approaches. We chose these applications be-
cause they are representative of many important science and engineering codes
and they are significant test cases for a scheduler because they include various
and significant computation, communication, and memory usages. All three
applications are implemented in C and support non-uniform data distribution.
The Jacobi method is a simple linear system solver. A portion of the un-

known vector is assigned to each processor; during each iteration, every pro-
cessor computes new results for its portion of and then broadcasts its updated
portion of to every other processor.

8

Conway’s Game of Life is a well-known binary cellular automaton [Fla98].
A two-dimensional mesh of pixels is used to represent the environment, and
each pixel of the mesh represents a cell. In each iteration, the state of every
cell is updated with a 9-point stencil and then processors send data from their
edges (ghost cells) to their neighbors in the mesh.
The Fish application models the behavior and interactions of fish and is in-

dicative of many particle physics applications. calculates Van der Waals forces
between particles in a two-dimensional field. Each computing process is re-
sponsible for a number of particles, which move about the field. Because the
amount of computation depends on the location and proximity of particles, this
application exhibits a dynamic amount of work per processor.

4. LAUNCH-TIME SCHEDULING
The launch-time scheduler is called just before application launch to de-

termine how the current application execution should be mapped to available
Grid resources. The resulting schedule specifies the list of target machines, the
mapping of virtual application processes to those machines, and the mapping
of application data to processes. Launch-time scheduling is a central compo-
nent in GrADSoft and is key to achieving application performance; for this
reason, we have experimented with a variety of launch-time scheduling ap-
proaches including those described in [LYFA02, DBC03, PBD 01]. Through
this evolution we have identified an application-generic launch-time schedul-
ing architecture; in this section we describe that architecture and key contribu-
tions we have made to each component of the design. Many of the approaches
described here have been incorporated in GrADSoft; the resulting unified sys-
tem has been tested with all of the applications described in Section 3.

4.1 Architecture
Figure 1.2 shows our launch-time scheduling architecture. This architecture

is designed to work in concert with many other GrADS components as part of
the general GrADS architecture described in Section 2. Launch-time schedul-
ing proceeds as follows; we describe each component in detail in the next
section. A user submits a list of machines to be considered for this applica-
tion execution (the machine list). The list is passed to the GrADS information
services client; this component contacts the MDS2 and the NWS to retrieve
information about Grid resources. The resulting Grid information is passed to
the filter resources component. This component retrieves the application re-
quirements and filters out resources that can not be used for the application.
The remaining Grid information is then passed to the search procedure. This

GrADS Scheduling 9

Figure 1.2. GrADS launch-time scheduling architecture.

procedure searches through available resources to find application-appropriate
subsets; this process is aided by the application performance model and map-
per. The search procedure eventually selects a final schedule, which is then
used to launch the application on the selected Grid resources.

4.2 GrADS Information Services Client
To enable adaptation to the dynamic behavior of Grid environments, Grid

resource information must be collected in real time and automatically incorpo-
rated in scheduling decisions. The MDS2 and NWS, described in Section 2.1,
collect and store a variety of Grid resource information. The GrADS informa-
tion services client retrieves resource information of interest to the scheduler
and stores that information in a useful format for the scheduler.

4.3 Configurable Object Program
As described in Section 2, the output of the GrADS program preparation

system is a configurable object program, or COP. The scheduler obtains the
application requirements specification, the performance model, and the map-
per from the COP. As the GrADS program preparation system matures, the
COP will be automatically generated via specialized compilers. In the mean-
time, we use various approaches, described below, to develop hand-built COP
components for our focus applications. These hand-built components have
been useful in studying scheduling techniques and have provided guidance as
to what sorts of models and information should be automatically generated by
the PPS in the future.

10

4.3.1 Application Requirements Specification

A reasonable schedule must satisfy application resource requirements. For
example, schedules typically must include sufficient local memory to store the
entire local data set. See Chapter ?? for an additional discussion of specifica-
tions of application resources requirements.
We have explored two ways to specify application resource requirements.

The first is a primarily internal software object called an abstract application
resource and topology (AART) model [KMMC 02]. Ultimately, the GrADS
compiler will automatically generate the AART; however, we do not yet have
an automated GrADS compiler in GrADSoft. Currently, application develop-
ers must provide a specification of the application requirements before utilizing
GrADSoft for a new application. For this purpose, we have developed a sec-
ond approach based on ClassAds (see Section 2.1). With ClassAds, resource
requirements can be easily specified in a human-readable text file. Further-
more, some developers are already familiar with ClassAds semantics.
The original ClassAds language is not sufficient for parallel applications. To

support parallel application description, we developed a number of extensions
to ClassAds.

A Type specifier is supplied for identifying set-extended ClassAds. The
expression Type=“Set” identifies a set-extended ClassAd.

Three aggregation functions,Max,Min, and Sum, are provided to specify
aggregate properties of resource sets. For example,

(1.1)

specifies that the total memory of the set of resources selected should be
greater than 5 Gb.

A boolean function suffix(V, L) returns True if a member of list L is the
suffix of scalar value V.

A function SetSize returns the number of elements within the current
resource ClassAd set.

Our extensions, called Set-extended ClassAds, are described in full in [LYFA02].
Our usage of ClassAds in GrADSoft is illustrated by the resource request for

the Cactus application shown in Figure 1.3. The parameters of this resource
request are based on performance models developed for Cactus in [RIF01]. In
this example, we use

(1.2)

to express an aggregate memory requirement, and

(1.3)

GrADS Scheduling 11

[
type = “Set”;
service = “SynService”;
iter = “100”; = 100; = 100; = 100; = 100;
domains = {“cs.utk.edu”, “ucsd.edu”};
requirements =

&&
;

computetime = ;
comtime = ;
exectime = ;
mapper = [type = “dll”; libraryname = “cactus”;

function = “mapper”];
rank = ;

]

Figure 1.3. Example of a set-extended ClassAds resource requirements specification.

to constrain the resources considered to those within domain cs.utk.edu or
ucsd.edu. The execution progress of the Cactus application is generally con-
strained by the subtask on the slowest processor; we therefore specify

so that the rank of a resource set is decided by the longest
subtask execution time. The , , and entries
define the performance model for Cactus.
To better express the requirements of a variety of Grid applications, we re-

cently developed a new description language, called Redline [LF03], based
on Set-extended ClassAds. This language is able to describe resource re-
quirements of SPMD applications, such as Cactus, as well as MIMD appli-
cations where different application components may require different types of
resources. For example, with Redline one can specify unique requirements
for a storage resource, computation resources, and for the network connecting
storage and computation resources. We use this added expressiveness to better
satisfy application requirements in the scheduling process.

4.3.2 PerformanceModeling

The performance model is used by the launch-time scheduler to predict
some metric of application performance for a given schedule. For ease of dis-
cussion we assume the metric of interest is application execution time, but one
could easily consider turnaround time or throughput instead. The performance

12

model object takes as input a proposed schedule and the relevant Grid infor-
mation and returns the predicted execution time for that schedule.
Other GrADS researchers are developing approaches for automatically gen-

erating performance models in the GrADS compiler [Gra]. In lieu of such
technologies, we have experimented with several methods for developing and
specifying performance models in GrADS. We generally used the following
approach: (i) develop an analytic model for well-understood aspects of appli-
cation or system performance (e.g. computation time prediction is relatively
straightforward), (ii) test the analytic model against achieved application per-
formance in real-world experiments, and (iii) develop empirical models for
poorly-understood aspects of application or system behavior (e.g. middleware
overheads for authentication and startup may be difficult to predict). We used
this approach for the iterative focus applications [DBC03], Cactus [RIF01],
and FASTA [PL88].
For the ScaLAPACK application, we pursued a different ap-

proach [PBD 01]. The ScaLAPACK LU factorization application is an iter-
ative application consisting of three important phases: the factorization phase
involves computation, the broadcast phase involves communication, and the
update phase consists of both computation and communication. As the ap-
plication progresses, the amount of computation and communication in each
phase and in the iteration as a whole varies. Analytical models based on simple
mathematical formulas can not provide accurate predictions of the cost of the
ScaLAPACK application on heterogeneous systems. Instead, we developed a
simulation model of the application that simulates the different phases of the
application for a given set of resources. The resulting application simulation
functions as an effective performance model.
We implemented most of our performance models as shared libraries; GrAD-

Soft dynamically loads the application-appropriate model as needed. This ap-
proach allows application-specific performance model code to be used by our
application-generic software infrastructure. Using ClassAds, GrADSoft also
supports an easier to build alternative: the performance model can be specified
as an equation within the ClassAd (see Figure 1.3). While some performance
dependencies can not be described in this ClassAds format, we believe this
approach will be very attractive to users due to its ease-of-use.

4.4 Mapper
The mapper is used to find an appropriate mapping of application data

and/or tasks to a particular set of resources. Specifically, the mapper takes
as input a proposed list of machines and relevant Grid information and out-
puts a mapping of virtual application processes to processors (ordering) and a
mapping of application data to processes (data allocation).

GrADS Scheduling 13

Some applications allow the user to specify machine ordering and data allo-
cation; examples include FASTA, Cactus, and our three iterative applications.
For these applications, a well-designed mapper can leverage this flexibility to
improve application performance. Other applications define ordering and data
allocation internally, such as ScaLAPACK. For these applications, a mapper is
unnecessary.

4.4.1 Equal Allocation

The most straightforward mapping strategy takes the target machine list and
allocates data evenly to those machines without reordering. This is the default
GrADSoft mapper and can easily be applied to new applications for which a
more sophisticated strategy has not been developed.

4.4.2 Time Balancing

The Game of Life and Jacobi are representative of applications whose over-
all performance is constrained by the performance of the slowest processor;
this behavior is common in many applications with synchronous inter-processor
communication. In [DBC03] we describe our time balance mapper design for
the Game of Life and Jacobi in detail; we briefly describe this design here.
The goal of the ordering process is to reduce communication costs. We re-

order machines such that machines from the same site are adjacent in the topol-
ogy. Since the Game of Life is decomposed in strips and involves neighbor-
based communication, this ordering minimizes wide-area communications and
reduces communication costs. For Jacobi there is no clear effect since its com-
munication pattern is all-to-all.
The goal of the data allocation process is to properly load the machines

such that all machines complete their work in each iteration at the same time;
this minimizes idle processor time and improves application performance. To
achieve this goal we frame application memory requirements and execution
time balance considerations as a series of constraints; these constraints form
a constrained optimization problem that we solve with a linear programming
solver [LP]. To use a real-valued solver we had to approximate work allocation
as a real-valued problem. Given that maintaining a low scheduling overhead
is key, we believe that the improved efficiency obtained with a real-valued
solution method justifies the error incurred in making such an approximation.

4.4.3 Data Locality

FASTA is representative of applications with data locality constraints: ref-
erence sequence databases are large enough that it may be more desirable to
co-locate computation with the existing databases than to move the databases
from machine to machine. The mapper must therefore ensure that all reference

14

databases are searched completely and balance load on machines to reduce
execution time.
As with the time balance mapper, a linear approximation was made to the

more complicated nonlinear FASTA performance model; we again used [LP],
but here the result is an allocation of portions of reference databases to com-
pute nodes. Constraints were specified to ensure that all the databases were
fully handled, that each compute node could hold its local data in memory, and
that execution time was as balanced as possible. The load balancing is com-
plicated by the fact that the databases are not fully distributed. For example, a
given database may only be available at one compute node, requiring that it be
computed there regardless of the execution time across the rest of the compute
nodes.

4.5 Search Procedure
The function of the search procedure is to identify which subset of avail-

able resources should be used for the application. To be applicable to a variety
of applications, the search procedure must not contain application-specific as-
sumptions. Without such assumptions, it is difficult to predict a priori which
resource set will provide the best performance for the application. We have ex-
perimented with a variety of approaches and in each case the search involves
the following general steps: (i) identify a large number of sets of resources
that may be good platforms for the application, (ii) use the application-specific
mapper and performance model to generate a data map and predicted execu-
tion time for those resource sets, and (iii) select the resource set that results in
the lowest predicted execution time.
This minimum execution-time multiprocessor scheduling problem is known

to be NP-hard in its general form and in most restricted forms. Since launch-
time scheduling delays execution of the application, maintaining low overhead
is a key goal. We have developed two general search approaches that maintain
reasonable overheads while providing reasonable search coverage: a resource-
aware search and a simulated annealing search.

4.5.1 Resource-Aware Search

Many Grid applications share a general affinity for certain resource set char-
acteristics. For example, most Grid applications will perform better with higher
bandwidth networks and faster processing speeds. For our resource-aware
search approach, we broadly characterize these general application affinities
for particular resource characteristics; we then focus the search process on re-
source sets with these broad characteristics.
Over the evolution of the project we have experimented with three search

approaches that fall in this category: one developed for the ScaLAPACK appli-

GrADS Scheduling 15

ResourceAware Search:
sites FindSites(machList)
siteCollections ComputeSiteCollections(sites)
foreach (collection siteCollections)
foreach (machineMetric (computation, memory, dual))
for (r 1:size(collection))
list SortDescending(collection, machineMetric)
CMG GetFirstN(list, r)
currSched GenerateSchedule(CMG,

Mapper, PerfModel)
if (currSched.predTime bestSched.predTime)
bestSched currSched

return (bestSched)

Figure 1.4. A search procedure that utilizes general application resource affinities to focus the
search.

cation [PBD 01], one developed as part of the set-extended ClassAds frame-
work [LYFA02], and one developed for the GrADSoft framework [DBC03].
We describe the last search procedure as a representative of this search type.
The goal of the search process is to identify groups of machines that contain

desirable individual machines (i.e., fast CPUs and large local memories) and
have desirable characteristics as an aggregate (i.e., low-delay networks); we
term these groups of machines candidate machine groups (CMGs). Pseudo-
code for the search procedure is given in Figure 1.4. In the first step, machines
are divided into disjoint subsets, or sites. Currently, we group machines in
the same site if they share the same domain name; we plan to improve this
approach so that sites define collections of machines connected by low-delay
networks. The ComputeSiteCollections method computes the power set of the
set of sites. Next, in each for loop the search focus is refined based on a differ-
ent characteristic: connectivity in the outer-most loop, computational and/or
memory capacity of individual machines in the second loop, and selection of
an appropriate resource set size in the inner-most loop. The SortDescend-
ing function sorts the current collection by machineMetric. For example, if
machineMetric is dual, the sortDescending function will favor machines with
large local memories and fast CPUs. GetFirstN simply returns the first r ma-
chines from the sorted list. Next, to evaluate each CMG, the GenerateSchedule
method (i) uses theMapper to develop a data mapping for the input CMG, (ii)
uses the Performance model to predict the execution time for the given sched-
ule (predtime), and (iii) returns a schedule structure which contains the CMG,
the map, and the predicted time. Finally, predicted execution time is used to
select the best schedule, which is then returned.

16

The complexity of an exhaustive search is , where is the number of
processors. The complexity of the above search is where is the number
of sites. As long as , this search reduces the search space as compared
to an exhaustive search. We have performed in-depth evaluation of this search
procedure for Jacobi and Game of Life [DBC03], and validated it for Cactus,
FASTA, and ScaLAPACK.

4.5.2 Simulated Annealing

Our resource-aware search assumes general application resource affinities.
For applications which do not share those affinities, the resource-aware search
may not identify good schedules. For example, FASTA does not involve signif-
icant inter-process communication and so does not benefit from the resource-
aware procedure’s focus on connectivity. Instead, for FASTA it is important
that computation be co-scheduled with existing databases. For this type of ap-
plication, we have developed a simulated annealing search approach that does
not make assumptions about the application, but is a costlier search approach.
Simulated annealing [KGJV83] is a popular method for statistically finding

the global optimum for multivariate functions. The concept originates from
the way in which crystalline structures are brought to more ordered states by
an annealing process of repeated heating and slowly cooling the structures.
Figure 1.5 shows our adaptation of the standard simulated annealing algorithm
to support scheduling. For clarity we have omitted various simple heuristics
used to avoid unnecessary searches.
In our procedure, we perform a simulated annealing search for each possible

resource subset size, from 1 to the full resource set size. This allows us to
decrease the search space by including only machines that meet the memory
requirements of the application, and to avoid some of the discontinuities that
may occur in the search space. For example, when two local minima consist of
different machine sizes, the search space between them is often far worse than
either (or may not even be an eligible solution).
For each possible machine size we create a filtered list of machines that

can meet resource requirements. The initial CMG (candidate machine group)
is created by randomly selecting machines out of this list. A schedule is
created from the CMG using the GenerateSchedule method, which provides
the predicted execution time of the schedule.
At each temperature , we sample the search space repeatedly to ensure

good coverage of the space. To generate a new CMG, the current CMG is
perturbed by adding one machine, removing one machine, and swapping their
ordering. The new CMG is evaluated using GenerateSchedule and the dif-
ference between the predicted execution time and that of the current CMG is
calculated as . If the predicted execution time is smaller (), then
the new CMG becomes the current CMG. If then we check if the new

GrADS Scheduling 17

SimulatedAnnealing Search:
for r 1:size(machList)
filteredList check local memory
if size(filteredList) r, continue
currCMG pick r machines randomly from filteredList
currSched GenerateSchedule(currCMG, Mapper, PerfModel)
foreach temperature max:min
while energy has not stabilized
% remove machine, add machine and swap

order
newCMG randomly perturb currCMG
newSched GenerateSchedule(newCMG,

Mapper, PerfModel)
if newSched.predTime currSched.predTime
currCMG newCMG

else if random number exp(-dE/kT)
% Probabilistically allow increases in

energy
currCMG newCMG

if currSched.predTime bestSched.predTime
bestSched currSched

return bestSched

Figure 1.5. A search procedure that uses simulated annealing to find a good schedule without
making application assumptions.

CMG should be probabilistically accepted. If a random number is less than
the Boltzmann factor , then accept the new CMG, else reject the
new CMG. Using this distribution causes many upward moves to be accepted
when the temperature is high, but few upward moves to be accepted when the
temperature is low. After the space has been sampled at one temperature, the
temperature is lowered by a constant factor (). This search
procedure allows the system to move to lower energy states while still escaping
local minima. The schedule with the best predicted execution time is returned.
We have performed a validation and evaluation of this search procedure for the
ScaLAPACK application in [YD02].

5. RESCHEDULING
Launch-time scheduling can at best start the application with a good sched-

ule. Over time, other applications may introduce load in the system or ap-
plication requirements may change. To sustain good performance for longer

18

running applications, the schedule may need to be modified during applica-
tion execution. This process, called rescheduling, can include changing the
machines on which the application is executing (migration) or changing the
mapping of data and/or processes to those machines (dynamic load balanc-
ing).
Rescheduling involves a number of complexities not seen in launch-time

scheduling. First, while nearly all parallel applications support some form
of launch-time scheduling (selection of machines at a minimum), very few
applications have built-in mechanisms to support migration or dynamic load
balancing. Second, for resource monitoring we have to differentiate between
processors on which the application is running and processors on which the ap-
plication is not running. Measurements from resource monitors such as NWS
CPU sensors can not be directly compared between active and inactive pro-
cessors. Third, the overheads of rescheduling can be high: monitoring for the
need to reschedule is an ongoing process and, when a rescheduling event is
initiated, migration of application processes or reallocation of data can be very
expensive operations. Without careful design, rescheduling can in fact hurt
application performance.
We have experimented with a variety of rescheduling approaches to ad-

dress these issues, including an approach developed for the Cactus applica-
tion [AAF 01], an approach called application migration that has been vali-
dated for the ScaLAPACK application [VD03b], and an approach called pro-
cess swapping that has been validated for the Fish application [SC03]. Through
this evolution we have identified a rescheduling architecture. Note that our re-
scheduling efforts were all conducted for iterative applications, allowing us to
perform rescheduling decisions at each iteration. In the following sections we
describe this architecture and key contributions we have made to each compo-
nent of the design.

5.1 Architecture
Figure 1.6 shows our rescheduling architecture and we depict an applica-

tion already executing on processors. We also assume that a performance
contract [VAMR01] has been provided by earlier stages of GrADS; this con-
tract specifies the performance expected for the current application execution.
While the application is executing, application sensors are co-located with ap-
plication processes to monitor application progress. Progress can be measured,
for example, by generic metrics such as flop rate or by application-intrinsic
measures such as number of iterations completed. In order that these sensors
have access to internal application state, we embed them in the application it-
self. We work to minimize the impact of these sensors on the application’s
footprint and execution progress. Meanwhile, resource sensors are located on

GrADS Scheduling 19

Figure 1.6. GrADS rescheduling architecture.

the machines on which the application is executing, as well as the other ma-
chines available to the user for rescheduling. For evaluating schedules, it is
important that measurements taken on the application’s current execution ma-
chines can be compared against measurements taken on unused machines in
the testbed.
Application sensor data and the performance contract are passed to the con-

tract monitor, which compares achieved application performance against ex-
pectations. When performance falls below expectations, the contract monitor
signals a violation and contacts the rescheduler. An important aspect of a well-
designed contract monitor is the ability to differentiate transient performance
problems from longer-term issues that warrant modification of the application’s
execution. Upon a contract violation, the rescheduler must determine whether
rescheduling is profitable, and if so, what new schedule should be used. Data
from the resource sensors can be used to evaluate various schedules, but the
rescheduler must also consider the cost of moving the application to a new ex-
ecution schedule and the amount of work remaining in the application that can
benefit from a new schedule.
To initiate schedule modifications, the rescheduler contacts the rescheduling

actuators located on each processor. These actuators use some mechanism to
initiate the actual migration or load balancing. Application support for migra-
tion or load balancing is the most important part of the rescheduling system.
The most transparent migration solution would involve an external migrator
that, without application knowledge, freezes execution, records important state
such as register values and message queues, and restarts the execution on a new

20

processor. Unfortunately, this is not yet feasible as a general solution in het-
erogeneous environments. We have chosen application-level approaches as a
feasible first step. Specifically, the application developer simply adds a few
lines to their source code and then links their application against our MPI re-
scheduling libraries in addition to their regular MPI libraries.

5.2 Contract Monitoring
GrADS researchers have tried a variety of approaches for application sen-

sors and contract monitoring. The application sensors are based on Autopilot
sensor technology [RVSR98] and run in a separate thread within the applica-
tion’s process space. To use these sensors, a few calls must be inserted into the
application code. The sensors can be configured to read and report the value of
any application variable; a common metric is iteration number. Alternatively,
the sensors can use PAPI [LDM 01] to access measurements from the proces-
sor’s hardware performance counters (i.e., flop rate) and the MPICH profiling
library for communication metrics (i.e., bytes sent per second).
The performance contracts specify predicted metric values and tolerance

limits on the difference between actual and predicted metric values. For ex-
ample, contracts can specify predicted execution times and tolerance limits on
the ratio of actual execution times to predicted execution times. The contract
monitor receives application sensor data and records the ratio of achieved to
predicted execution times. When a given ratio is larger than the upper toler-
ance limit, the contract monitor calculates an average of recently computed
ratios. If the average is also greater than the upper tolerance limit, the per-
formance monitor signals a contract violation to the rescheduler. Use of an
average reduces unnecessary reactions to transitory violations.
In the following two sections, we present two approaches to rescheduling

for which contract monitoring provides a fundamental underpinning.

5.3 Rescheduling Via Application Migration
Application rescheduling can be implemented with application migration,

based on a stop/restart approach. When a running application is signaled to
migrate, all application processes checkpoint important data and shutdown.
The rescheduled execution is launched by restarting the application, which
then reads in the checkpointed data and continues mid-execution.

GrADS Scheduling 21

To provide application support for this scenario we have implemented a
user-level checkpointing library called Stop Restart Software (SRS) [VD03a].
To use SRS, the following application changes are required.

SRS_Init() is placed after MPI_Init() and SRS_Finish() is
placed before MPI_Finalize().

The user may define conditional statements to differentiate code exe-
cuted in the initial startup (i.e., initialization of an array with zeros) and
code executed on restart (i.e., initialization of array with values from
checkpoint). SRS Restart Value() returns 0 on start and 1 on restart and
should be used for these conditionals.

The user should insert calls to SRS_Check_Stop() at reasonable
stopping places in the application; this call checks whether an external
component has requested a migration event since the last
SRS_Check_Stop().

The user uses SRS_Register() in the application to register the vari-
ables that will be checkpointed by the SRS library. When an external
component stops the application, the SRS library checkpoints only those
variables that were registered through SRS_Register().
SRS_Read() is used on startup to read checkpointed data.

SRS_Read() also supports storage of data distribution and number of
processors used in the checkpoint. On restart, the SRS library can be
provided with a new distribution and/or a different number of processors;
the data redistribution is handled automatically by SRS.

The user must include the SRS header file and link against the SRS li-
brary in addition to the standard MPI library.

At run-time, a daemon called Runtime Support System (RSS) is started on
the user’s machine. RSS exists for the entire duration of the application, re-
gardless of migration events. The application interacts with the RSS during ini-
tialization, to check if the application needs to be stopped during
SRS_Check_Stop(), to store and retrieve pointers to the checkpointed data,
and to store the processor configuration and data distribution used by the ap-
plication.
We use a modified version of the contract monitor presented in Section 5.2.

Specifically, we added (i) support for contacting the migration rescheduler in
case of a contract violation, (ii) interfaces to allow queries to the contract mon-
itor for remaining application execution time, and (iii) support for modifying

22

the performance contract dynamically. For the third issue, when the resched-
uler refuses to migrate the application, the contract monitor lowers expecta-
tions in the contract. Dynamically adjusting expectations reduces communica-
tion with the contract monitor.
The migration rescheduler operates in two modes: migration on request oc-

curs when the contract monitor signals a violation, while in opportunistic mi-
gration the rescheduler checks for recently completed applications
(see [VD03b] for details) and if one exists, the rescheduler checks if perfor-
mance benefits can be obtained by migrating the application to the newly freed
resources. In either case, the rescheduler contacts the NWS to obtain infor-
mation about the Grid; our application migration approach does not involve
special-purpose resource sensors. Next, the rescheduler predicts remaining
execution time on the new resources, remaining execution time on the cur-
rent resources, and the overhead for migration and determines if a migration
is desirable. We have evaluated rescheduling based on application migration
in [VD03b] for the ScaLAPACK application.

5.4 Rescheduling Via Process Swapping
Although very general-purpose and flexible, the stop/migrate/restart ap-

proach to rescheduling can be expensive: each migration event can involve
large data transfers and restarting the application can incur expensive startup
costs. Our process swapping approach [SC03] provides an alternative trade-
off: it is light-weight and easy to use, but less flexible than our migration
approach.
To enable swapping, the MPI application is launched with more machines

than will actually be used for the computation; some of these machines become
part of the computation (the active set) while some do nothing initially (the
inactive set). The user’s application sees only the active processes in the main
communicator (MPI_Comm_World); communication calls are hijacked and
work is performed behind the scenes to convert the user’s communication calls
in terms of the active set to real communication calls in terms of the full process
set. During execution, the system periodically checks the performance of the
machines and swaps loaded machines in the active set with faster machines in
the inactive set. This approach is very practical: it requires little application
modification and provides an inexpensive fix for many performance problems.
On the other hand, the approach is less flexible than migration: the processor
pool is limited to the original set of machines and we have not incorporated
support for modifying the data allocation.
To provide application support for process swapping we have implemented

a user-level swapping library. To use swapping, the following application
changes are required.

GrADS Scheduling 23

The iteration variable must be registered using the swap_register()
call.

Other memory may be registered using mpi_register() if it is im-
portant that their contents be transferred when swapping processors.

The user must insert a call to MPI_Swap() inside the iteration loop to
exercise the swapping test and actuation routines.

The user must include mpi_swap.h instead of mpi.h and must link
against the swapping library in addition to the standard MPI library.

In addition to the swap library, swapping depends on a number of run-time
services designed to minimize the overheads of rescheduling and the impact
on the user. The swap handler fulfills the role of application sensor, resource
sensor, and rescheduling actuator in Figure 1.6. The swap handler measures
the amount of computation, communication, and barrier wait time of the appli-
cation. The swap handler also measures passive machine information like the
CPU load of the machine and active information requiring active probing like
current flop rate.
The swap manager performs the function of the rescheduler in Figure 1.6. A

swap manager is started for each application and is dedicated to the interests of
that application only. Application and resource information is sent by the swap
handlers to the swap manager. Acting in an opportunistic migration mode, the
swap manager analyzes performance information and determines when and
where to swap processes according to a swap policy. When a swap is necessary,
the swap manager triggers the swap through the swap handlers.
When a swap request is received, the swap handler stores the informa-

tion. The next time the application checks if swapping is necessary by calling
MPI_Swap(), the swap is executed. From the application’s perspective, the
delay of checking for a swap request is minimal: the information is located on
the same processor and was retrieved asynchronously.
We have evaluated our process swapping implementation with the Fish ap-

plication and experimental results are available in [SC03].

6. METASCHEDULING
Our launch-time scheduling architecture (Figure 1.2) schedules one appli-

cation at a time and, except for the usage of dynamic NWS data on resource
availability, does not consider the presence of other applications in the sys-
tem. There are a number of problems with this application-centric view. First,
when two applications are submitted to GrADS at the same time, scheduling
decisions will be made for each application ignoring the presence of the other.
Second, if the launch-time scheduler determines there are not enough resources

24

for the application, it can not make further progress. Third, a long running job
in the system can severely impact the performance of numerous new jobs en-
tering the system. The root cause of these and other problems is the absence
of a metascheduler that possesses global knowledge of all applications in the
system and tries to balance the needs of the applications.
The goal of our metascheduling work [VD02] is to investigate schedul-

ing policies that take into account both the needs of the application and the
overall performance of the system. To investigate the best-case benefits of
metascheduling we assume an idealized metascheduling scenario. We assume
the metascheduler maintains control over all applications running on the speci-
fied resources and has the power to reschedule any of those applications at any
time. Our metascheduling architecture is shown in Figure 1.7. The metasched-
uler is implemented by the addition of four components, namely database man-
ager, permission service, contract negotiator and rescheduler to the GrADS
architecture.

Figure 1.7. GrADS metascheduler architecture.

The database manager acts as a repository for information about all appli-
cations in the system. The information includes, for example, the status of
applications, application-level schedules determined at application launch, and
the predicted execution costs for the end applications. As shown in Figure 1.7,
the application stores information in the database manager at different stages
of execution. Other metascheduling components query the database manager
for information to make scheduling decisions.
In metascheduling, after the filter resources component generates a list of re-

sources suitable for problem solving, this list is passed, along with the problem
parameters, to the permission service. The permission service determines if the

GrADS Scheduling 25

filtered resources have adequate capacities for problem solving and grants or
rejects permission to the application for proceeding with the other stages of ex-
ecution. If the capacities of the resources are not adequate for problem solving,
the permission service tries to proactively stop a large resource consuming ap-
plication to accommodate the new application. Thus, the primary objective of
the permission service is to accommodate as many applications in the system
as possible while respecting the constraints of the resource capacities.
In the launch-time scheduling architecture, shown in Figure 1.2, after the

search procedure determines the final schedule, the application is launched on
the final set of resources. In the metascheduling architecture shown in Fig-
ure 1.7, before launching the application, the final schedule along with perfor-
mance estimates are passed as a performance contract to the contract devel-
oper, which in turn passes the information to the metascheduling component,
contract negotiator. The contract negotiator is the primary component that
balances the needs of different applications. It can reject a contract if it deter-
mines that the application has made a scheduling decision based on outdated
resource information. The contract negotiator also rejects the contract if it de-
termines that the approval of the contract can severely impact the performance
of an executing application. Finally, the contract negotiator can also preempt
an executing application to improve the performance contract of a new appli-
cation. Thus the major objectives of the contract negotiator is to provide high
performance to the individual applications and to increase the throughput of
the system.
More details about our metascheduling approach and an initial validation

for the ScaLAPACK application are available in [VD02].

7. STATUS AND FUTUREWORK
In this chapter we have described approaches developed in GrADS for

launch-time scheduling, rescheduling, and metascheduling in a Grid applica-
tion development system. In developing these approaches we have focused
on a Grid environment consisting of distributed clusters of shared worksta-
tions; unpredictable and rapidly changing resource availabilities make this a
challenging and interesting Grid environment. Previous Grid scheduling ef-
forts have been very successful in developing general scheduling solutions for
embarrassingly parallel applications (e.g. [COBW00]) or serial task-based ap-
plications (e.g. [RLS99]). We focus instead on data-parallel applications with
non-trivial inter-processor communications. This application class is challeng-
ing and interesting because to obtain reasonable performance, schedulers must

26

incorporate application requirements and resource characteristics in schedul-
ing decisions.
We have incorporated many of our launch-time scheduling approaches in

GrADSoft and the resulting system has been tested for all of the focus appli-
cations described in Section 3. Currently, we are working to generalize our
rescheduling results and incorporate them in GrADSoft. Similarly, researchers
at UIUC are integrating more sophisticated contract development technologies
and researchers at Rice University are working to integrate initial GrADS com-
piler technologies for automated generation of performance models and map-
pers. GrADSoft will be used as a framework for testing these new approaches
together and extending our scheduling approaches as needed for these new
technologies.
In collaboration with other GrADS researchers we plan to extend our ap-

proaches to support more Grid environments and other types of applications.
Rich Wolski and Wahid Chrabakh, GrADS researchers at the University of
California, Santa Barbara, have recently developed a reactive scheduling ap-
proach for a Satisfiability application. This application’s resource requirements
dynamically grow and shrink as the application progresses and the reactive
scheduling approach dynamically grows and shrinks the resource base accord-
ingly. As this work evolves, their results can be used to extend our rescheduling
approaches to consider changing application requirements. Anirban Mandal
and Ken Kennedy, GrADS researchers at Rice University, are working to de-
velop compiler technologies for work-flow applications; we plan to extend our
scheduling approaches for this application type.

Acknowledgments
The authors would like to thank the entire GrADS team for many contribu-

tions to this work. This material is based upon work supported by the National
Science Foundation under Grant 9975020.

References

[AAF 01] G. Allen, D. Angulo, I. Foster, G. Lanfermann, C. Liu,
T. Radke, E. Seidel, and J. Shalf. The Cactus worm: Experi-
ments with dynamic resource discovery and allocation in a Grid
environment. International Journal of High Performance Com-
puting Applications, 15(4):345–358, 2001.

[ABB 02] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Fos-
ter, C. Kesselman, S. Meder, V. Nefedova, D. Quesnel, and
S. Tuecke. Data management and transfer in high-performance
computational Grid environments. Parallel Computing Journal,
28(5):749–771, 2002.

[ABH 99] G. Allen, W. Benger, C. Hege, J. Masso, A. Merzky, T. Radke,
E. Seidel, and J. Shalf. Solving Einstein’s equations on super-
computers. IEEE Computer Applications, 32(12):52–58, 1999.

[AGK00] D. Abramson, J. Giddy, and L. Kotler. High performance
parametric modeling with Nimrod/G: Killer application for the
global Grid? In Proceedings of the International Parallel and
Distributed Processing Symposium (IPDPS), May 2000.

[BCC 97] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel,
I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet,
K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK Users’
Guide. Society for Industrial and Applied Mathematics, 1997.

[BCC 01] F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, D. Gan-
non, L. Johnsson, K. Kennedy, C. Kesselman, D. Reed, L. Tor-
czon, and R. Wolski. The GrADS project: Software support for
high-level Grid application development. International Journal
of High-Performance Computing Applications, 15(4):327–344,
2001.

[Ber99] F. Berman. High performance schedulers. In Ian Foster and Carl
Kesselman, editors, The Grid: Blueprint for a New Computing

28

Infrastructure, chapter 12, pages 279–309. Morgan Kaufmann,
1999.

[CFFK01] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid
information services for distributed resource sharing. In Pro-
ceedings of the Tenth IEEE International Symposium on High-
Performance Distributed Computing (HPDC-10), August 2001.

[COBW00] H. Casanova, G. Obertelli, F. Berman, and R. Wolski. The Ap-
pLeS parameter sweep template: User-level middleware for the
Grid. In Proceedings of SuperComputing (SC’00), 2000.

[DBC03] H. Dail, F. Berman, and H. Casanova. A decoupled scheduling
approach for Grid application development environments. Jour-
nal of Parallel and Distributed Computing, to appear, 2003.

[FAS] FASTA package of sequence comparison programs. ftp://
ftp.virginia.edu/pub/fasta.

[FK98] I. Foster and C. Kesselman. The Globus Project: A status re-
port. In Proceedings of the Seventh Heterogeneous Computing
Workshop, 1998.

[Fla98] Gary W. Flake. The Computational Beauty of Nature: Com-
puter Explorations of Fractals, Chaos, Complex Systems, and
Adaptation. MIT Press, Cambridge, MA, 1998.

[For94] MPI Forum. MPI: AMessage-Passing Interface standard. Tech-
nical Report CS-94-230, University of Tennessee, Knoxville,
1994.

[GFKH99] A. S. Grimshaw, A. J. Ferrari, F. Knabe, and M. A. Humphrey.
Wide-area computing: Resource sharing on a large scale. IEEE
Computer, 32(5), May 1999.

[Gra] GrADS runtime support for Grid applications. http:
//hipersoft.cs.rice.edu/grads/runtime_
description.htm.

[IBM01] IBM. Using and administering LoadLeveler for AIX 5L.
Technical Report IBM Document #SA22-7881-00, IBM,
2001. Available from http://publibfp.boulder.
ibm.com/epubs/pdf/a2278810.pdf.

[KGJV83] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization
by simulated annealing. Science, 220, 1983.

REFERENCES 29

[KMMC 02] K. Kennedy, M. Mazina, J. Mellor-Crummey, K. Cooper,
L. Torczon, F. Berman, A. Chien, H. Dail, O. Sievert, D. An-
gulo, I. Foster, R. Aydt, D. Reed, D. Gannon, J. Dongarra,
S. Vadhiyar, L. Johnsson, C. Kesselman, and R. Wolski. To-
ward a framework for preparing and executing adaptive Grid
programs. In Proceedings of NSF Next Generation Systems
ProgramWorkshop, International Parallel and Distributed Pro-
cessing Symposium, 2002.

[KTF03] N. Karonis, B. Toonen, and I. Foster. MPICH-G2: A Grid-
enabled implementation of the message passing interface. Jour-
nal of Parallel and Distributed Computing, to appear, 2003.

[LDM 01] K. London, J. Dongarra, S. Moore, P. Mucci, K. Seymour, and
T. Spencer. End-user tools for application performance anal-
ysis using hardware counters. In Proceedings of the Interna-
tional Conference on Parallel and Distributed Computing Sys-
tems, August 2001.

[LF03] C. Liu and I. Foster. A constraint language approach to Grid
resource selection. Technical Report TR-2003-07, Computer
Science Department, The University of Chicago, 2003.

[LLM88] M. J. Litzkow, M. Livny, and M. W. Mutka. Condor - a hunter
of idle workstations. In Proceedings of the 8th International
Conference on Distributed Computing Systems, pages 104–111,
1988.

[LP] lp solve. ftp.es.ele.tue.nl/pub/lp_solve.

[LYFA02] C. Liu, L. Yang, I. Foster, and D. Angulo. Design and evalua-
tion of a resource selection framework for Grid applications. In
Proceedings of the Eleventh IEEE International Symposium on
High-Performance Distributed Computing (HPDC-11), 2002.

[Mau] Maui scheduler. http://www.supercluster.org/
maui.

[MMCS 01] M. Mazina, J. Mellor-Crummey, O. Sievert, H. Dail, and
G. Obertelli. GrADSoft: A program-level approach to using the
Grid. Technical Report GrADS Working Document 3, GrADS,
March 2001. Available from http://hipersoft.cs.
rice.edu/grads/publications_reports.htm.

[PBD 01] A. Petitet, S. Blackford, J. Dongarra, B. Ellis, G. Fagg,
K. Roche, and S. Vadhiyar. Numerical libraries and the Grid.
In Proceedings of SuperComputing (SC’01), 2001.

30

[PL88] W. R. Pearson and D. J. Lipman. Improved tools for biological
sequence comparison. In Proceedings of the National Academy
of Sciences of the United States of America, 1988.

[RIF01] M. Ripeanu, A. Iamnitchi, and I. Foster. Performance predic-
tions for a numerical relativity package in Grid environments.
International Journal of High Performance Computing Appli-
cations, 15(4):375–387, 2001.

[RLS99] R. Raman, M. Livny, and M. Solomon. Matchmaking: An ex-
tensible framework for distributed resource management. Clus-
ter Computing, 2(2), 1999.

[RVSR98] R. L. Ribler, J. S. Vetter, H. Simitci, and D. A. Reed. Autopi-
lot: Adaptive control of distributed applications. In Proceed-
ings of the Seventh IEEE International Symposium on High-
Performance Distributed Computing (HPDC-7), 1998.

[SC03] O. Sievert and H. Casanova. A simple MPI process swapping
architecture for iterative applications. International Journal of
High Performance Computing Applications, to appear, 2003.

[VAMR01] F. Vraalsen, R. A. Aydt, C. L. Mendes, and D. A. Reed. Per-
formance contracts: Predicting and monitoring Grid application
behavior. In Proceedings of the Second International Workshop
on Grid Computing (Grid2001), 2001.

[VD02] S. Vadhiyar and J. Dongarra. A metascheduler for the Grid. In
Proceedings of the Eleventh IEEE International Symposium on
High-Performance Distributed Computing (HPDC-11), 2002.

[VD03a] S. Vadhiyar and J. Dongarra. SRS - a framework for developing
malleable and migratable parallel applications for distributed
systems. Parallel Processing Letters, to appear, 2003.

[VD03b] S. Vadhiyar and Jack J. Dongarra. A performance oriented mi-
gration framework for the Grid. In Proceedings of the Third
IEEE International Symposium on Cluster Computing and the
Grid (CCGrid’03), 2003.

[WSH99] R. Wolski, N. Spring, and J. Hayes. The Network Weather Ser-
vice: A distributed resource performance forecasting service for
metacomputing. Future Generation Computer Systems, 15(5–
6):757–768, 1999.

[YD02] Asim YarKhan and Jack J. Dongarra. Experiments with
scheduling using simulated annealing in a Grid environment.

REFERENCES 31

In Proceedings of the Third International Workshop on Grid
Computing (Grid2002), 2002.

32

The submitted manuscript has been created by the University of Chicago
as Operator of Argonne National Laboratory (“Argonne”) under Contract No.
W-31-109-ENG-38 with the U.S. Department of Energy. The U.S. Govern-
ment retains for itself, and others acting on its behalf, a paid-up, nonexclusive,
irrevocable worldwide license in said article to reproduce, prepare derivative
works, distribute copies to the public, and perform publicly and display pub-
licly, by or on behalf of the Government.

