Chapter 1

USING PREDICTED VARIANCE FOR
CONSERVATIVE SCHEDULING ON
SHARED RESOURCES

Jennifer M. Schopf! and Lingyun Yang?

! Mathematics and Computer Science Division, Argonne National Laboratory
2Compuler Science Department, University of Chicago

Abstract

1.

In heterogeneous and dynamic environments, efficient execution of parallel com-
putations can require mappings of tasks to processors with performance that is
both irregular and time varying. We propose a conservative scheduling policy
that uses information about expected future variance in resource capabilities to
produce more efficient data mapping decisions.

We first present two techniques to estimate future load and variance, one
based on normal distributions and another using tendency-based prediction meth-
odologies. We then present a family of stochastic scheduling algorithms that
exploit such predictions when making data mapping decisions. We describe ex-
periments in which we apply our techniques to an astrophysics application. The
results of these experiments demonstrate that conservative scheduling can pro-
duce execution times that are significantly faster and less variable than other
techniques.

INTRODUCTION

Clusters of PCs or workstations have become a common platform for paral-
lel computing. Applications on these platforms must coordinate the execution
of concurrent tasks on nodes whose performance is both irregular and time
varying because of the presence of other applications sharing the resources. To
achieve good performance, application developers use performance models to
predict the behavior of possible task and data allocations and to assist select-
ing a performance-efficient application execution strategy. Such models need

to accurately represent the dynamic performance variation of the application
on the underlying resources in a manner that allows the scheduler to adapt
application execution to the current system state, which means adapting to both
the irregular (heterogeneous) nature of the resources and their time-varying
behaviors.

We present a conservative scheduling technique that uses the predicted mean
and variance of CPU capacity to make data mapping decisions. The basic idea
is straightforward: We seek to allocate more work to systems that we expect to
deliver the most computation, where this is defined from the viewpoint of the
application. We often see that a resource with a larger capacity will also show
a higher variance in performance and therefore will more strongly influence
the execution time of an application than will a machine with less variance.
Also, we keep in mind that a cluster may be homogeneous in machine type but
quite heterogeneous in performance because of different underlying loads on
the various resources.

Our conservative scheduling technique uses a conservative load prediction,
equal to a prediction of the resource capacity over the future time interval of the
application added to the predicted variance of the machine, in order to deter-
mine the proper data mapping, as opposed to just using a prediction of capacity
as do many other approaches. This technique addresses both the dynamic and
heterogeneous nature of shared resources.

We proceed in two steps. First, we define two techniques to predict future
load and variance over a time interval, one based on using a normal distribu-
tion, the other using a tendency-based prediction technique defined in [YFSO3].
Then, we use stochastic scheduling algorithms [SB99] that are parameterized
by these predicted means and variances to make data distribution decisions.
The result is an approach that exploits predicted variance in performance in-
formation to define a time-balancing scheduling strategy that improves appli-
cation execution time.

We evaluate the effectiveness of this conservative scheduling technique by
applying it to a particular class of applications, namely, loosely synchronous,
iterative, data-parallel computations. Such applications are characterized by
a single set of operations that is repeated many times, with a loose synchro-
nization step between iterations [FJL 88, FWM94]. We present experiments
conducted using Cactus [ABHT99, AAF*01], a loosely synchronous iterative
computational astrophysics application. Our results demonstrate that we can
achieve significant improvements in both mean execution time and the vari-
ance of those execution times over multiple runs in heterogeneous, dynamic
environments.

Conservative Scheduling 3

2. RELATED WORK

Many researchers [DaiO1, FB96, KDB02, WZ98] have explored the use
of time balancing or load balancing models to reduce application execution
time in heterogeneous environments. However, their work has typically as-
sumed that resource performance is constant or slowly changing and thus does
not take later variance into account. For example, Dail [Dai01] and Liu et
al. [LYFAO2] use the 10-second-ahead predicted CPU information provided
by the Network Weather Service (NWS)([Wol98, WSH99a], also described in
Chapter ??) to guide scheduling decisions. While this one-step-ahead predic-
tion at a time point is often a good estimate for the next 10 seconds, it is less
effective in predicting the available CPU the application will encounter during
a longer execution. Dinda et al. built a Running Time Advisor (RTA) [Din02]
that predicts the running time of applications 1 to 30 seconds into the future
based on a multistep-ahead CPU load prediction.

Dome [ABL195]i and Mars [GR96] support dynamic workload balancing
through migration and make the application adaptive to the dynamic environ-
ment at runtime. But the implementation of such adaptive strategies can be
complex and is not feasible for all applications.

In other work [SB99] we define the basic concept of stochastic values and
their use in making scheduling decisions. This chapter extends that work to
address the use of additional prediction techniques that originally predicted
only one step ahead using a tendency-based approach [YFS03]. We define a
time-balancing scheduling strategy based on a prediction of the next interval
of time and a prediction of the variance (standard deviation) to counteract the
problems seen with a one-step-ahead approach. Our technique achieves faster
and less variable application execution time.

3. PROBLEM STATEMENT

Efficient execution in a distributed system can require, in the general case,
mechanisms for the discovery of available resources, the selection of an applica-
tion-appropriate subset of those resources, and the mapping of data or tasks
onto selected resources. In this chapter we assume that the target set of re-
sources is fixed, and we focus on the data mapping problem for data parallel
applications.

We do not assume that the resources in this resource set have identical
or even fixed capabilities in that they have identical underlying CPU loads.
Within this context, our goal is to achieve data assignments that balance load
between processors so that each processor finishes executing at roughly the
same time, thereby minimizing execution time. This form of load balancing is
also known as time balancing.

Time balancing is generally accomplished by solving a set of equations,
such as the following, to determine the data assignments:

Ei(Di) = E;(Dj) Vi,j

1.1
>~ D; = Drotais (1.D

where
= D; is the amount of data assigned to processor %;
8 Dygq is the total amount of data for the application;

» FE;(D;) is the execution time of task on processor 7 and is generally pa-
rameterized by the amount of data on that processor, D;. It can be cal-
culated by using a performance model of the application. For example,
a simple application might have the following performance model:

E;(D;) = Comm(D;) * (futureNW Capacity)+ (1.2)

Comp(D;) * (futureCPU Capacity). ’
Note that the performance of an application can be affected by the future

capacity of both the network bandwidth behavior and the CPU availability.

In order to proceed, we need mechanisms for: (a) obtaining some mea-
sure of future capability and (b) translating this measure into an effective re-
source capability that is then used to guide data mapping. As we discuss below,
two measures of future resource capability are important: the expected value
and the expected variance in that value. One approach to obtaining these two
measures is to negotiate a service level agreement (SLA) with the resource
owner under which the owner would contract to provide the specified capabil-
ity [CFK'02]. Or, we can use observed historical data to generate a prediction
for future behavior [Din02, SB99, SFT98, VS02, WSH99b, YFS03]. We focus
in this chapter on the latter approach and present two techniques for predicting
the future capability: using normal distributions and using a predicted aggre-
gation. However, we emphasize that our results on topic (b) above are also
applicable in the SLA-negotiation case.

4. PREDICTING LOAD AND VARIANCE

The Network Weather Service (NWS) [Wol98] provides predicted CPU
information one measurement (generally about 10 seconds) ahead based on
a time series of earlier CPU load information. Some previous scheduling
work [DaiO1, LYFAO2] uses this one-step-ahead predicted CPU information
as the future CPU capability in the performance model. For better data dis-
tribution and scheduling, however, what is really needed is an estimate of the
average CPU load an application will experience during execution, rather than

Conservative Scheduling 5

A AT N

 Compute |
AW ‘-
Compute

-Compute » |

0
) RN
DO —

SN

«— Time

Figure 1.1. The interrelated influence among tasks of a synchronous iterative application.

the CPU information at a single future point in time. One measurement is
simply not enough data for most applications.

In loosely synchronous iterative applications, tasks communicate between
iterations, and the next iteration on a given resource cannot begin until the com-
munication phase to that resource has been finished, as shown in Figure 1.1.
Thus, a slower machine not only will take longer to run its own task but will
also increase the execution time of the other tasks with which it communicates—
and ultimately the execution time of the entire job. In Figure 1.1, the data was
evenly divided among the resources, but M1 has a large variance in execution
time. If M1 were running in isolation, it would complete the overall work in
the same amount of time as M2 or M3. Because of its large variation, how-
ever,however, it is slow to communicate to M2 at the end of the second itera-
tion, in turn delaying the task on M2 at the third computation step (in black),
and hence delaying the task on M3 at the fourth computation step. Thus, the
total job is delayed. It is this wave of delayed behavior caused by variance in
the resource capability that we seek to avoid with our scheduling approach.

In the next subsections, we address two ways to more accurately predict
longer-range load behavior: using a normal distribution and extending a one-
step-ahead load prediction developed in previous work [YFSO03]

4.1 Normal Distribution Predictions

Performance models are often parameterized by values that represent sys-
tem or application characteristics. In dedicated, or single-user, settings it is
often sufficient to represent these characteristics by a single value, or point
value. For example, we may represent bandwidth as 7 Mbits/second. However,
point values are often inaccurate or insufficient representations for character-
istics that change over time. For example, rather than a constant valuation of
7 Mbits/second, bandwidth may actually vary from 5 to 9 Mbits/second. One

6

way to represent this variable behavior is to use a stochastic value, or distribu-
tion.

By parameterizing models with stochastic information, the resulting predic-
tion is also a stochastic value. Stochastic-valued predictions provide valuable
additional information that can be supplied to a scheduler and used to improve
the overall performance of distributed parallel applications. Stochastic val-
ues can be represented in a variety of way—as distributions [SB98], as inter-
vals [SB99], and as histograms [Sch99]. In this chapter we assume that we can
adequately represent stochastic values using normal distributions. Normal dis-
tributions, also called Gaussian distributions, are representative of large collec-
tions of random variables. As such, many real phenomena in computer systems
generate distributions that are close to normal distributions [Adv93, AV93].

A normal distribution can be defined by the formula

1

5 ef($7“)2/2‘72, —00 <z <00 (1.3)
oV 2T

flz) =

for parameters u, the mean, which gives the center of the range of the distri-
bution, and o, the standard deviation, which describes the variability in the
distribution and gives a range around the mean. Normal distributions are sym-
metric and bell shaped and have the property that the range defined by the
mean plus and minus two standard deviations captures approximately 95% of
the values of the distribution.

Figure 1.2 shows a histogram of runtimes for an SOR benchmark on a single
workstation with no other users present, and the normal distribution based on
the data mean, m, and standard deviation, sd. Distributions can be represented
graphically in two common ways: by the probability density function (PDF), as
shown on the left in Figure 1.2, which graphs values against their probabilities,
similar to a histogram, and by the cumulative distribution function (CDF), as
shown on the right in Figure 1.2, which illustrates the probability that a point
in the range is less than or equal to a particular value.

In the following subsections we describe the necessary compositional arith-
metic to use normal distributions in predictive models; in Sections 4.1.2
and 4.1.3 we discuss alternatives to consider when the assumption of a nor-
mal distribution is too far from the actual distribution of the stochastic value.

4.1.1 Arithmetic Operations over Normal Distributions

In order for prediction models to use stochastic values, we need to provide
a way to combine stochastic values arithmetically. In this subsection we define
common arithmetic interaction operators for stochastic values represented by
normal distributions by taking advantage of the fact that normal distributions
are closed under linear combinations [LM86].

Conservative Scheduling 7

40.0 1.0

SOR Execution Histogram 0.9 | —— Measured CDF
Normal CDF

Normal PDF

°
N

o
Y

°
S

Percentage of values equal to X
8
5
Fraction of values less than X
° °
& &

35 15 3.5

o 25 . 30 25 .
Execution Time Execution Time

Figure 1.2. Graphs showing the PDF and CDF of SOR benchmark with normal distribution
based on data mean and standard deviation.

For each arithmetic operation, we define a rule for combining stochastic
values based on standard statistical error propagation methods [Bar78]. In the
following, we assume that point values are represented by P and all stochastic
values are of the form (m;, sd;) and represent normal distributions, where m;
is the mean and sd; is the standard deviation.

When combining two stochastic values, two cases must be considered: cor-
related and uncorrelated distributions. Two distributions are correlated when
there is an association between them, that is, they jointly vary in a similar man-
ner [DP96a]. More formally, correlation is the degree to which two or more
attributes, or measurements, on the same group of elements show a tendency
to vary together. For example, when network traffic is heavy, available band-
width tends to be low, and latency tends to be high. When network traffic is
light, available bandwidth tends to be high, and latency tends to be low. We
say that the distributions of latency and bandwidth are correlated in this case.

When two stochastic values are uncorrelated, they do not jointly vary in a
similar manner. This case may occur when the time between measurements of
a single quantity is large or when the two stochastic values represent distinct
characteristics. For example, available CPU on two machines not running any
applications in common may be uncorrelated.

Table 1.1 summarizes the arithmetic operations between a stochastic value
and a point value, two stochastic values from correlated distributions, and two
stochastic values from uncorrelated distributions.

Note that the product of stochastic values with normal distributions does
not itself have a normal distribution. Rather, it is long-tailed. In many cir-
cumstances, we can approximate the long-tailed distribution with a normal
distribution and ignore the tail, as discussed below in Section 4.1.2.

Table 1.1.
stochastic values [Bar78].

Arithmetic combinations of a stochastic value with a point value and with other

Addition |

Multiplication

Point Value and
Stochastic Value

(mi, Sdl) + P =
((mi + P), sd;)

P(my,sd;) = (Pm;, Psd;)

Stochastic

Z (mi, sds)
i=1

Values with

(mi, sd;)(mj, sd;) =

n n
Correlated (Z ms, Z |sd¢|> (mimy, (sdimyj + sdjm; + sd;sd;))
i—1 i—1
Distributions
Stochastic (mq, sd;)(mj, sdj) =~

i (mi, Sdi) ~
i=1

Values with

Uncorrelated (Z m;, stf) (mimj, (mimj\/(smi:)z R (;;i—j)z))
i=1 i=1
Distributions
4.1.2 Using Normal Distributions to Represent Nonnormal

Stochastic Model Parameters

In this section, we provide examples of stochastic parameters that are not
normal but can often be adequately represented by normal distributions.

Not all system characteristics can be accurately represented by normal dis-
tributions. Figure 1.3 shows the PDF and CDF for bandwidth data between two
workstations over 10 Mbit Ethernet. This is a typical graph of a long-tailed dis-
tribution; that is, the data has a threshold value and varies monotonically from
that point, generally with the median value several points below (or above) the

threshold. A similarly shaped distribution,

shown in Figure 1.4 on the left, may

be found in data resulting from dedicated runs of a nondeterministic distributed

genetic algorithm code.

Neither of these distributions is normal; however, it may be adequate to
approximate them by using normal distributions. Normal distributions are a
good substitution for long-tailed model parameters only when inaccuracy in the
predictions generated by the structural model can be tolerated by the scheduler,
performance model, or other mechanism that uses the data.

Conservative Scheduling 9

40.0 T T T T 100.0

Bandwidth Histogram —— Measured CDF
——— Normal PDF ——— Normal CDF

@
S
o

Percentage of values equal to X
3 8
5 3

Percentage of values less than X

oA

3.0 4.0 5.0 6.0 7.0 2.0
Bandwidth (Mbits/sec)

3.0 4.0 5.0 6.0
Bandwidth (Mbits/sec)

Figure 1.3. Graphs showing the PDF and CDF for bandwidth between two workstations over
10 Mbit Ethernet with long-tailed distribution and corresponding normal distribution.

100 : : : 200.0
sor 150.0
8 60
% 100.0
50.0
0'04.0 6.0 Ex[“c’lnol—Hr;Hme’-‘(se’;‘:) Ho,’l H 12.0 0000) -I - 06) . 10
CPU Load

Figure 1.4. Two examples of nonnormal distribution behavior: a histogram of a nondetermin-
istic application on the left; Available CPU on a production workstation on the right.

Alternatively, some model parameters are best represented by multimodal
distributions. One characterization of the general shape of a distribution is the
number of peaks, or modes. A distribution is said to be unimodal if it has a
single peak, bimodal if it has two peaks, and multimodal if it has more than
two peaks. Figure 1.4 on the left shows a histogram of available CPU data for
an Ultra Sparc workstation running Solaris taken over 12 hours using vmstat.
The Unix tool vmstat reports the exact CPU activity at a given time, in terms
of the processes in the run queue, the blocked processes, and the swapped
processes as a snapshot of the system every n seconds (where for our trace, n

10

= 5). For this distribution, the majority of the data lies in three modes: a mode
centered at 0.94, a mode centered at 0.49, and a mode centered at 0.33.

For this data, the modes are most likely an artifact of the scheduling al-
gorithm of the operating system. Most Unix-based operating systems use a
round-robin algorithm to schedule CPU bound processes: When a single pro-
cess is running, it receives all of the CPU; when two processes are running,
each uses approximately half of the CPU; when there are three, each gets a
third; and so forth. This is the phenomenon exhibited in Figure 1.4.

To represent a modal parameter using a normal distribution, we need to
know whether values represented by the parameter remain within a single
mode during the timeframe of interest. If the values of the parameter remain
within a single mode (i.e. if they exhibit temporal locality), we can approxi-
mate the available CPU as a normal distribution based on the data mean and
standard deviation of the appropriate mode without excessive loss of informa-
tion. An example of this (from a 24-hour trace of CPU loads) is shown as a
time series in Figure 1.5 on the left.

0.4

Fraction of CPU Available
Fraction of CPU Available

0.2

0.00 0.0
0.0 500.0 1000.0 1500.0 0.0 500.0 1000.0 1500.0
Time (sec) -> Time

Figure 1.5. Two time series showing temporal locality (on the left) and nontemporal locality
(on the right) for CPU data.

If the values of the parameter change modes frequently or unpredictably,
we say that that the data exhibits temporal nonlocality. An example of this,
taken from the same 24-hour CPU trace as before, is shown as a time series in
Figure 1.5 on the right. In this case, some way of deriving a prediction must be
devised that takes into account the fluctuation of the parameter data between
multiple modes.

A brute-force approach to representing multimodal data would be to sim-
ply ignore the multimodality of the data and represent the stochastic value as
a normal distribution based on the mean and standard deviation of the data
as a whole. This approximation is, however, unlikely to capture the relevant
behavior characteristics of the data with any accuracy. Because of the multi-

Conservative Scheduling 11

modal behavior, a mode with a small variance in actuality may end up being
represented by a normal distribution with a large variance (and a large standard
deviation). If this brute-force method were used for the data in Figure 1.5, the
mean would be 0.66 and the standard deviation would be 0.24.

An alternative approach is to calculate an aggregate mean and aggregate
standard deviation for the value based on the mean and standard deviation for
each mode. Let (m;, sd;) represent the mean and the standard deviation for
the data in mode i. We define the aggregate mean (AM) and the aggregate
standard deviation (ASD) of a multimodal distribution by

AM =" pi(m;) (1.4)

ASD = " pi(sdy), (1.5)

where p; is the percentage of data in mode ¢. Since we represent each individ-
ual mode in term of a normal distribution, (AM, ASD) will also have a normal
distribution. For the data in Figure 1.5, AM =0.68 and ASD =0.031.

Note that using the aggregate mean and the aggregate standard deviation is
an attempt to define a normal distribution that is somehow close to the mul-
timodal distribution. Determining whether two distributions are close is itself
an interesting problem that we discuss briefly in the subsection below.

4.1.3 When Is a Distribution Close to Normal?

In the preceding subsections, we made a key assumption that the values in
the distribution were close to (could be adequately represented by) normal dis-
tributions. To define “close,” we can consider several methods for determining
the similarity between a given data set and the normal distribution represented
by its data mean and its data standard deviation.

One common measurement of goodness of fit is the chi-squared (x?) tech-
nique [DP96b]. This is a quantitative measure of the extent to which observed
counts differ from the expected counts over a given range, called a cell. The
value for x? is the sum of a goodness of fit for all quantities

observed cell count - expected cell count)?
= 3 >

all cells

1.6
expected cell count (1.6)

for the observed data and the expected data resulting from the normal distribu-
tion. The value of the x? statistic reflects the magnitude of the discrepancies
between observed and expected cell counts: a larger value indicates larger dis-
crepancies.

12

Another metric of closeness in the literature is called 1-distance between
PDF’s [MLH95], where

Voo = fall = / T @) - folo)lda (1.7)

for function f, for the data and f,, for the normal distribution based on the data
mean and standard deviation. This corresponds to a maximal error between the
functions.

For both of these metrics, a user or scheduler would need to determine a
threshold for closeness acceptable for their purposes.

If we approximate nonnormal data using a normal distribution, there may
be several effects. When the distribution of a stochastic value is represented by
a normal distribution but is not actually normal, arithmetic operations might
exclude values that they should not. By performing arithmetic on the mean
and standard deviation, we are able to use optimistic formulas for uncorrelated
values in order to narrow the range that is considered in the final prediction.
If the distributions of stochastic values were actually long-tailed, for example,
this might cut off values from the tail in an unacceptable way.

Normal distributions are closed under linear combinations [LM86], but gen-
eral distributions are not. If we use arithmetic rules defined for normal distri-
butions on nonnormal data, we have no information about the distribution of
the result. Further, it may not be possible to ascertain the distribution of a
stochastic value, or the distribution may not be sufficiently close to normal. In
such cases, other representations must be used. In the next section, we explore
an alternative for representing stochastic values using an aggregated prediction
technique.

4.2 Aggregate Predictions

In this section we describe how a time series predictor can be extended to
obtain three types of predicted CPU load information: the next step predicted
CPU load at a future time point (Section 4.2.1); the average interval CPU load
for some future time interval (Section 4.2.2); and the variation of CPU load
over some future time interval (Section 4.2.3).

4.2.1 One-Step-Ahead CPU Load Prediction

The tendency-based time series predictor developed in our previous work
can provide one-step-ahead CPU load prediction based on history CPU load

Conservative Scheduling 13

// Determine Tendency
if ((V_(T-1) - V_T)<0)
Tendency="Increase";
else if ((V.T - V_(T-1)))<0)
Tendency="Decrease";
if (Tendency="Increase") then
PT+1 = V_T + IncrementConstant;
IncrementConstant adaptation process
else if (Tendency="Decrease") then
PT+1 = V.T - V_T*DecrementFactor;
DecrementFactor adaptation process

Figure 1.6. Psuedo-code for Tendency algorithm.

information [YFSO3]. This predictor has been demonstrated to be more ac-
curate than other predictors for CPU load data. It achieves prediction errors
that are between 2% and 55% less (36% less on average) than those incurred
by the predictors used within the NWS on a set of 38 machines load traces.
The algorithm predicts the next value according to the tendency of the time
series change assuming that if the current value increases, the next value will
also increase and that if the current value decreases, the next value will also
decrease.

Given the preceding history data measured at a constant-width time inter-
val, our mixed tendency-based time series predictor uses the algorithm in Fig-
ure 1.6, where Vi is the measured value at the T'th measurement and PT + 1
is the predicted value for measurement value V.

We find that a mixed-variation (that is, different behavior for the increment
from that of the decrement) experimentally performed best. The Increment-
Constant is set initially to 0.1, and the DecrementFactor is set to 0.01. At
each time step, we measure the real data (V1) and calculate the difference
between the current measured value and the last measured value (V) to deter-
mine the real increment (decrement) we should have used in the last prediction
in order to get the actual value. We adapt the value of the increment (decre-
ment) value accordingly and use the adapted IncrementConstant (or Decre-
mentFactor) to predict the next data point.

Using this time series predictor to predict the CPU load in the next step, we
treat the measured preceding CPU load time series as the input to the predictor.
The predictor’s output is the predicted CPU load at the next step, Ppy1. So
if the time series C' = c¢1,¢y... ¢, is the CPU load time series measured at
constant-width time interval and is used as input to the predictor, the result is
the predicted value P, for the measurement value ¢, 1.

14

4.2.2 Interval Load Prediction

Instead of predicting one step ahead, we want to be able to predict the CPU
load over the time interval during which an application will run. Since the CPU
load time series exhibits a high degree of self-similarity [Din99], averaging
values over successively larger time scales will not produce time series that are
dramatically smoother. Thus, to calculate the predicted average CPU load an
application will encounter during its execution, we need to first aggregate the
original CPU load time series into an interval CPU load time series, then run
predictors on this new interval time series to estimate its future value.

Aggregation, as defined here, consists of converting the original CPU load
time series into an interval CPU load time series by combining successive data
over a nonoverlapping larger time scale. The aggregation degree, M, is the
number of original data points used to calculate the average value over the time
interval. This value is determined by the resolution of the original time series
and the execution time of the applications, and need be only approximate.

For example, the resolution of the original time series is 0.1 Hz, or measured
every 10 seconds, and if the estimated application execution time is about 100
seconds, the aggregation degree M can be calculated by

M = ExecTimeO f Application * FreqO fOriginalTimeSeries
=100x*0.1
=10
(1.8)
Hence, the aggregation degree is 10. In other words, 10 data points from the
original time series are needed to calculate one aggregated value over 100 sec-
onds. The process of aggregation consists of translating the incoming time se-
ries, (C = ¢1, g, - - . ¢p), into the aggregated time series, (A = a1, ag, . .. ak),
such that

Y it One(k—it1)snrvj
M

(1.9)

a; =

fori = 1...kifor k = [{;]. Each value in the interval CPU load time series
a; is the average CPU load over the time interval that is approximately equal
to the application execution time.

After the aggregated time series is created, the second step of our interval
load prediction involves using the one-step-ahead predictor on the aggregated
time series to predict the mean interval CPU load. So the aggregated time
series A; is fed into the one-step-ahead predictor, resulting in pa g 1, the pre-
dicted value of a1, which is approximately equal to the average CPU load
the application will encounter during execution.

Conservative Scheduling 15

4.2.3 Load Variance Prediction

To predict the variation of CPU load, for which we use standard deviation,
during the execution of an application, we need to calculate the standard de-
viation time series using the original CPU load time series C and the interval
CPU load time series A (defined in the preceding section).

Assuming the original CPU load time series is C = c¢1, ¢a, - - - ¢, the inter-
val load time series is A = a1, ao, - . - ai, and an aggregation degree of M, we
can calculate the standard deviation CPU load time series S = s1, 892, . - . Sk:

2

Cn— —i41)* j—A;
Si=,| 2 (Cote j}M*J 4:) (1.10)

fori=1...k.

Each value in standard deviation time series s; is the average difference
between the CPU load and the mean CPU load over the interval.

To predict the standard deviation of the CPU load, we use the one-step-
ahead predictor on the standard deviation time series. The output psy 1 will
be the predicted value of s 1, or the predicted CPU load variation for the next
time interval.

3. APPLICATION SCHEDULING

Our goal is to improve data mapping in order to reduce total application exe-
cution time despite resource contention. To this end, we use the time-balancing
scheduling algorithm described in Section 3, parameterized with an estimate
of future resource capability.

5.1 Cactus Application

We apply our scheduling algorithms in the context of Cactus, a simulation of
a 3D scalar field produced by two orbiting astrophysical sources. The solution
is found by finite differencing a hyperbolic partial differential equation for the
scalar field. This application decomposes the 3D scalar field over processors
and places an overlap region on each processor. For each time step, each pro-
cessor updates its local grid point and then synchronizes the boundary values.
It is an iterative, loosely synchronous application, as described in Section 4.
We use a one-dimensional decomposition to partition the workload in our ex-
periments. The full performance model for Cactus is described in [LYFA02],
but in summary it is

E;(D;) = startUpTime + (D; * Comp; + Comm;)

xslowdown (effective CPU load) (1.11)

16

Comp; and Comm,, the computation time of per data point and communi-
cation time of the Cactus application in the absence of contention, can be calcu-
lated by formulas described in [RIFO1]. We incur a startup time when initiating
computation on multiple processors in a workstation cluster that was experi-
mentally measured and fixed. The function slowdown(effective CPU load),
which represents the contention effect on the execution time of the application,
can be calculated by using the formula described in [LYFAO02].

The performance of the application is greatly influenced by the actual CPU
performance achieved in the presence of contention from other competing ap-
plications. The communication time is less significant when running on a local
area network, but for wide-area network experiments this factor would also be
parameterized by a capacity measure.

Thus, our problem is to determine the value of CPU load to be used to
evaluate the slowdown caused by contention. We call this value the effective
CPU load and equate it to the average CPU load the application will experience
during its execution.

5.2 Scheduling Approaches

As shown in Figure 1, variations in CPU load during task execution can also
influence the execution time of the job because of interrelationships among
tasks. We define a conservative scheduling technique that always allocates less
work to highly varying machines. For the purpose of comparison, we define
the effective CPU load in a variety of ways, each giving us a slightly differ-
ent scheduling policy. We define five policies to compare in the experimental
section:

m One-step scheduling (OSS): Use the one-step-ahead prediction of the
CPU load, as described in Sections 4.2.1, for the effective CPU load.

m Predicted mean interval scheduling (PMIS): Use the interval load pre-
diction, described in Section 4.2.2, for the effective CPU load.

m Conservative scheduling (CS): Use the conservative load prediction, e-
qual to the interval load prediction (defined in Section 4.2.2) added to
a measure of the predicted variance (defined in Section 4.2.3) for the
effective CPU load. That is, effective CPU load= pajy1 + pSgy1-

m History mean scheduling (HMS): Use the mean of the history CPU load
for the 5 minutes preceding the application start time for the value for
effective CPU load. This approximates the estimates used in several
common scheduling approaches [TSC00, WZ98].

s History conservative scheduling (HCS): Use the conservative estimate
CPU load defined by using the normal distribution stochastic value de-

Conservative Scheduling 17

fined in Section 4.1. In practice, this works out to adding the mean and
variance of the history CPU load collected for 5 minutes preceding the
application run as the effective CPU load.

6. EXPERIMENTS

To validate our work, we conducted experiments on workstation clusters at
the University of Illinois at Champaign-Urbana (UIUC) and the University of
California, San Diego (UCSD), which are part of the GrADS testbed [BCCT01]

6.1 Experimental Methodology

We compared the execution times of the Cactus application with the five
scheduling policies described in Section 5: one-step scheduling (OSS), pre-
dicted mean interval scheduling (PMIS), conservative scheduling (CS), history
mean scheduling (HMS), and history conservative scheduling (HCS).

At UIUC, we used a cluster of four Linux machines, each with a 450 MHz
CPU; at UCSD, we used a cluster of six Linux machines, four machines with
a 1733 MHz CPU, one with a 700 MHz CPU, and one with a 705 MHz CPU.
All machines were dedicated during experiments.

To evaluate the different scheduling polices under identical workloads, we
used a load trace playback tool [DOOO] to generate a background workload
from a trace of the CPU load that results in realistic and repeatable CPU con-
tention behavior. We chose nine load time series available from [Yan03]. These
are all traces of actual machines, which we characterize by their mean and
standard deviation. We used 100 minutes of each trace, at a granularity of 0.1
Hz. The statistic properties of these CPU load traces are shown in Table 1.2.
Note that even though some machines have the same speed, the performance
that they deliver to the application varied that they each experienced different
background loads.

Table 1.2. The mean and standard deviation of 9 CPU load traces.

CPU Load Trace Name || Machine Name || Mean | SD |

LL1 abyss 0.12(L) | 0.16 (L)
LL2 axp7 0.02 (L) | 0.06 (L)
LH1 vatos 0.22(L) | 0.31 (H)
LH2 axpl 0.14 (L) | 0.29 (H)
HL1 mystere 1.85(H) | 0.14 (L)
HL2 pitcairn 1.19(H) | 0.12 (L)
HH axp0 1.07 (H) | 0.48 (H)
HH2 axpl0 1.18 (H) | 0.31 (H)

18

6.2 Experimental Results

Results from four representative experiments are shown in Figures 1.7-1.10.
A summary of the testbeds and the CPU load traces used for the experiments
is given in Table 1.3.

50
—e— HMS
3 45
e —=—HCS
£ 40 |
s 0SS
S 35
g —e— PMIS
i 30 4
—m— CS
25 ‘ ‘ ‘
0 5 10 15 20

Repetitions

Figure 1.7. Comparison of the history mean, history conservative, one-step, predicted mean
interval and conservative scheduling policies on the UIUC cluster with two low-variance ma-
chines (one with a low mean and the other with a high mean) and two high-variance machines
(one with a low mean, the other with a high mean).

42
—_ —e— HMS
£ 39
[

—=—HCS

E s
o
2 33 0ss
§ —o—PMIS
< 30
)

27 ‘ ‘ ‘ , —=—CS

0 5 10 15 20
Repetitions

Figure 1.8. Comparison of the history mean, history conservative, one-step, predicted mean
interval and conservative scheduling policies on the UIUC cluster with two low-variance ma-
chines and two high-variance machines (all with a low mean).

Table 1.3. CPU load traces used for each experiment.

Experiments | Testbed | CPU Load Traces

Fig. 1.7 UIUC LL1,LH1, HL1, HH1
Fig. 1.8 UIUC LL1,LL2,LH1, LH2
Fig. 1.9 UCSD | LL1,LL2,LH1,LH2,HL1, HL2

Fig. 1.10 UCSD | LH1,LH2, HL1, HL2, HH1, HH2

Conservative Scheduling 19

50
—e— HMS
O
o 451 —=—HCS
£
£
:(:) 40 4 0SS
3
2 35 —e— PMIS
1]
—m—CS
30
0 5 10 15 20
Repetitions

Figure 1.9. Comparison of the history mean, history conservative, one-step, predicted mean
interval and conservative scheduling policies on the UCSD cluster with four low-variance ma-
chines (one with a low means and two with a high means) and two high-variance machines (with
low means).

—e— HMS
©
® —=— HCS
£
'_
c 0SS
il
5
§ —e— PMIS
w

—m—CS

Repetitions

Figure 1.10. Comparison of the history mean, history conservative, one-step, predicted mean
interval and conservative scheduling policies on the UCSD cluster with two low-variance ma-
chines (all with high means) and four high-variance machines (two with a low mean, two with
a high mean).

To compare these policies, we used two metrics: an absolute comparison of
run times and a relative measure of achievement. The first metric involves an
average mean and an average standard deviation for the set of runtimes of each
scheduling policy as a whole, as shown in Table 1.4. This metric gives a rough
valuation on the performance of each scheduling policy over a given inter-
val of time. Over the entire run, the conservative scheduling policy exhibited
2%-7% less overall execution time than history mean and history conserva-
tive scheduling policies, by using better information prediction, and 1.2%—7%
less overall execution time than did the one-step and predicted mean interval
scheduling policies. We also see that taking variation information into account
in the scheduling policy results in more predictable application behavior: The
history conservative scheduling policy exhibited 9%—29% less standard devia-
tion of execution time than did the history mean. The conservative scheduling

20

Table 1.4. Average mean and average standard deviation for entire set of runs for each schedul-
ing policy.

Exp. HMS HCS 0SS PMIS CS

Mean | SD || Mean | SD Mean | SD || Mean | SD || Mean | SD
Fig. 1.7 36.2 3.7 || 36.1 2.6 || 37.0 42 || 354 3.2 || 343 2.4
Fig. 1.8 34.1 3.1 || 33.3 2.8 33.2 2.7 || 33.0 34 || 31.9 2.7
Fig. 1.9 38.0 3.8 || 37.6 3.0 37.8 3.5 || 37.6 3.8 || 36.8 3.1
Fig. 1.10 || 58.2 9.1 || 55.7 8.1 57.7 7.2 || 57.0 8.0 || 54.2 6.1

policy exhibited 1.5%—41% less standard deviation in execution time than the
one-step scheduling policy and 20%—41% less standard deviation of execution
time than the predicted mean interval scheduling policy.

The second metric we used, Compare, is a relative metric that evaluates how
often each run achieves a minimal execution time. We consider a scheduling
policy to be better than others if it exhibits a lower execution time than another
policy on a given run. Five possibilities exist: best (best execution time among
the five policies), good (better than three policies but worse than one), average
(better than two policies and worse than two), poor (better than one policy but
worse than three), and worst (worst execution time of all five policies).

These results are given in Table 1.5, with the largest value in each case
shown in boldface. The results indicate that conservative scheduling using
predicted mean and variation information is more likely to have a best or good
execution time than the other approached on both clusters. This fact indicates
that taking account of the average and variation CPU information during the
period of application running in the scheduling policy can significantly im-
prove the application’s performance.

To summarize our results: independent of the loads and CPU capabilities
considered on our testbed, the conservative scheduling policy based on our
tendency-based prediction strategy with mixed variation achieved better results
than the other policies considered. It was both the best policy in more situations
under all load conditions on both clusters, and the policy that resulted in the
shortest execution time and the smallest variation in execution time.

7. CONCLUSIONS AND FUTURE WORK

We have proposed a conservative scheduling policy able to achieve efficient
execution of data-parallel applications even in heterogeneous and dynamic en-
vironments. This policy uses information about the expected mean and vari-
ance of future resource capabilities to define data mappings appropriate for
dynamic resources. Intuitively, the use of variance information is appealing

Conservative Scheduling 21

Table 1.5. Summary statistics using Compare to evaluate five scheduling policies.

Worst

e}
=]
]
=

Experiment | Policy | Best | Good | Avg
Fig. 1.7 HMS
HCS
(O
PMIS
CS

Fig. 1.8 HMS
HCS
(O
PMIS
CS

Fig. 1.9 HMS
HCS
0SS
PMIS
CS

Fig. 1.10 HMS
HCS
(O
PMIS
CS

J—

N B[OV N —=|f oW O

=W W] 00N W N Q|| K

—
o

JEIN N N I N Y S N S TS R R R S S

—_
el

—_
=]

\S)

A~

~

N[—= NN N[O R[Q W WO R WA WO
N =[N Q[BB =0 W] W[Q[N W

o
B 0OO| W W[N] W
NN | —| W

—_
o

because it provides a measure of resource reliability. Our results suggest that
this intuition is valid.

Our work comprises two distinct components. First, we show how to obtain
predictions of expected mean and variance information. Then we show how in-
formation about expected future mean and variance (as obtained, for example,
from our predictions) can be used to guide data mapping decisions. In brief,
we assign less work to less reliable (higher variance) resources, thus protecting
ourselves against the larger contending load spikes that we can expect on those
systems. We apply our prediction techniques and scheduling policy to a sub-
stantial astrophysics application. Our results demonstrate that our techniques
can obtain better execution times and more predictable application behavior
than previous methods that focused on predicted means alone. While the per-
formance improvements obtained are modest, they are obtained consistently
and with no modifications to the application beyond those required to support
nonuniform data distributions.

We are interested in extending this work to other dynamic system informa-
tion, such as network status. Another direction for further study is a more
sophisticated scheduling policy that may better suit other particular environ-
ments and applications.

22

Acknowledgments

We are grateful to Peter Dinda for permitting us to use his load trace play
tool, and to our colleagues within the GrADS project for providing access to
testbed resources. This work was supported in part by the Grid Application
Development Software (GrADS) project of the NSF Next Generation Soft-
ware program, under Grant No. 9975020, and in part by the Mathematical,
Information, and Computational Sciences Division subprogram of the Office
of Advanced Scientific Computing Research, Office of Science, U.S. Depart-
ment of Energy, under contract W-31-109-Eng-38.

References

[AAF101]

[ABH'99]

[ABL195]

[Adv93]

[AV93]

[Bar78]

[BCCT01]

G. Allen, D. Angulo, I. Foster, G. Lanfermann, C. Liu, T. Radke,
E. Seidel, and J. Shalf. The Cactus worm: Experiments with dy-
namic resource discovery and allocation in a Grid environment.

International Journal of High Performance Computing Applica-
tions, 15(4):345-358, 2001.

G. Allen, W. Benger, C. Hege, J. Masso, A. Merzky, T. Radke,
E. Seidel, and J. Shalf. Solving Einstein’s equations on supercom-
puters. IEEE Computer Applications, 32(12):52-58, 1999.

Jose Nagib Cotrim Arabe, Adam Beguelin, Bruce Lowekamp,
Erik Seligman, Mike Starkey, and Peter Stephan. Dome: Par-
allel programming in a heterogeneous multi-user environments.
Technical Report CMU-CS-95-137, Carnegie Mellon University,
School of Computer Science, 1995.

Vikram S. Adve. Analyzing the Behavior and Performance of Par-
allel Programs. PhD thesis, University of Wisconsin-Madison,
December 1993. Also available as University of Wisconsin Com-
puter Sciences Technical Report #1201.

Vikram Adve and Mary Vernon. The influence of random de-
lays on parallel execution times. In Proceedings of Sigmetrics 93,
1993.

B. Austin Barry. Errors in Practical Measurement in Science, En-
gineering and Technology. John Wiley & Sons, 1978.

F. Berman, A. Chien, K. Cooper, J. Dongarra, 1. Foster, D. Gannon,
L. Johnsson, K. Kennedy, C. Kesselman, D. Reed, L. Torczon, and
R. Wolski. The GrADS project: Software support for high-level
Grid application development. International Journal of High-
Performance Computing Applications, 15(4):327-344, 2001.

24

[CFK102] K. Czajkowski, I. Foster, C. Kesselman., V. Sander, and S. Tuecke.

[DaiO1]

[Din99]

[Din02]

[DO00]

[DP96a]

[DP96b]

[FBO6]

[FIL*88]

[FWMO94]

[GR96]

SNAP: A protocol for negotiating service level agreements and co-
ordinating resource management in distributed systems. In D. Fei-
telson and L. Rudolph, editors, Job Scheduling Strategies for Par-
allel Processing (Proceedings of the Eighth International JSSPP
Workshop; LNCS #2537), pages 153—183. Springer-Verlag, 2002.

H. J. Dail. A modular framework for adaptive scheduling in
Grid application development environments. Technical Report
CS2002-0698, Computer Science Department, University of Cal-
ifornia, California, San Diego, 2001.

P. A. Dinda. The statistical properties of host load. Scientific
Programming, 7:3—4, Fall 1999.

P. A. Dinda. Online prediction of the running time of tasks. Cluster
Computing, 5(3), 2002.

P. A. Dinda and D. R. O’Hallaron. Realistic CPU workloads
through host load trace playback. In Proceedings of the Fifth

Workshop on Languages, Compilers, and Run-time Systems for
Scalable Computers (LCR 2000), 2000.

Jay Devore and Roxy Peck. Statistics: The Exploration and Anal-
ysis of Data, page 88. Duxbury Press, 1996.

Jay Devore and Roxy Peck. Statistics: The Exploration and Anal-
ysis of Data, page 567. Duxbury Press, 1996.

S.M. Figueira and F. Berman. Mapping parallel applications to
distributed heterogeneous systems. Technical Report UCSD CS
Tech Report # CS96-484, University of California, San Diego,
June 1996.

G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K.
Salmon, and D. W. Walker. Solving Problems on Concurrent Pro-
cessors. Prentice-Hall, 1988.

G. C. Fox, R. D. Williams, and P. C. Messina. Parallel Computing
Works. Morgan Kaufmann, 1994.

J. Gehring and A. Reinefeld. Mars: A framework for minimizing
the job execution time in a metacomputing environment. Future
Generation Computer Systems, 12(1):87-99, 1996.

REFERENCES 25

[KDBO02]

[LM86]

[LYFAO2]

[MLH95]

[RIFO1]

[SBOg]

[SB99]

[Sch99]

[SFT98]

[TSCO00]

S. Kumar, S. K. Das, and R. Biswas. Graph partitioning for paral-
lel applications in heterogeneous Grid environments. In Proceed-
ings of International Parallel and Distributed Processing Sympo-
sium (IPDPS), 2002.

Richard J. Larsen and Morris L. Marx. An Introduction to Mathe-
matical Statistics and Its Applications. Prentice-Hall, 1986.

C. Liu, L. Yang, L. Foster, and D. Angulo. Design and evaluation
of a resource selection framework for Grid applications. In Pro-
ceedings of the Eleventh IEEE International Symposium on High-
Performance Distributed Computing (HPDC-11), 2002.

Shikharesh Majumdar, Johannes Liithi, and Giinter Haring.
Histogram-based performance analysis for computer systems with
variabilities or uncertainties in workload. Technical Report SCE-
95-22, Department of Systems and Computer Engineering, Car-
leton University, Ottawa, Canada, November 1995.

M. Ripeanu, A. Iamnitchi, and I. Foster. Performance predictions
for a numerical relativity package in Grid environments. Infer-
national Journal of High Performance Computing Applications,
15(4):375-387, 2001.

J. Schopf and F. Berman. Performance prediction in production
environments. In Proceedings of Fourteenth International Parallel
Processing Symposium and the Ninth Symposium on Parallel and
Distributed Processing, 1998.

J. Schopf and F. Berman. Stochastic scheduling. In Proceedings
of SuperComputing (SC’99), 1999.

Jennifer M. Schopf. A practical methodology for defining his-
tograms in predictions. In Proceedings of ParCo ’99, 1999.

W. Smith, I. Foster, and V. Taylor. Predicting application run times
using historical information. In D. Feitelson and L. Rudolph, ed-
itors, Job Scheduling Strategies for Parallel Processing (Proceed-
ings of the Fourth International JSSPP Workshop; LNCS #1459).
Springer-Verlag, 1998.

H. Turgeon, Q. Snell, and M. Clement. Application placement us-
ing performance surface. In Proceedings of the Ninth IEEE Inter-
national Symposium on High-Performance Distributed Computing
(HPDC-9), 2000.

26

[VS02]

[Wol98]

[WSH99a]

[WSH99b]

[WZ98]

[YanO03]

[YFSO03]

S. Vazhkudai and J. M. Schopf. Predicting sporadic Grid data
transfers. In Proceedings of the Eleventh IEEE Symposium on
High-Performance Distributed Computing (HPDC-11), 2002.

R. Wolski. Dynamically forecasting network performance using
the Network Weather Service. Journal of Cluster Computing,
1:119-132, January 1998.

R. Wolski, N. Spring, and J. Hayes. The Network Weather Ser-
vice: A distributed resource performance forecasting service for

metacomputing. Future Generation Computer Systems, 15(5—
6):757-768, 1999.

R. Wolski, N. Spring, and J. Hayes. Predicting the CPU avail-
ability of time-shared Unix systems. In Proceedings of the Eighth
IEEFE International Symposium on High-Performance Distributed
Computing (HPDC-8), 1999.

J.B. Weissman and X. Zhao. Scheduling parallel applications in
distributed networks. Journal of Cluster Computing, 1:109—118,
1998.

Lingyun Yang. Load traces. http://cs.uchicago.edu/
~lyang/Load, 2003.

L. Yang, L. Foster, and J. M. Schopf. Homeostatic and tendency-
based CPU load predictions. In Proceedings of International Par-
allel and Distributed Processing Symposium (IPDPS), 2003.

REFERENCES 27

The submitted manuscript has been created by the University of Chicago
as Operator of Argonne National Laboratory (“Argonne”) under Contract No.
W-31-109-ENG-38 with the U.S. Department of Energy. The U.S. Govern-
ment retains for itself, and others acting on its behalf, a paid-up, nonexclusive,
irrevocable worldwide license in said article to reproduce, prepare derivative
works, distribute copies to the public, and perform publicly and display pub-
licly, by or on behalf of the Government.

