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Abstract 

 

Application run-time information is a fundamental component in application and job scheduling, as well as in 

resource selection. However, accurate predictions of run times are difficult to achieve for parallel applications 

running in shared environments where resource capacities can change dynamically over time. Many 

conventional approaches used in scheduling research activities assume that accurate performance models of 

the applications are available or that the applications execute only on space-shared resources. We believe, 

however, that it is not always possible to obtain such performance models of complex applications, as they 

require a deep understanding of the application and a significant number of experiments to validate. In this 

paper, we propose a run-time prediction technique for parallel applications that uses regression methods and 

filtering techniques to derive the application execution time without using standard performance models. The 

experimental results show that our use of regression models delivers tolerable prediction accuracy and that 

we can improve the accuracy dramatically by using appropriate filters. 

 KeyGords: performance predictionD filteringD regressionD schedulingD Mrid computing 
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1. Introduction 

Application run-time information is needed in most application and ?ob-scheduling approaches for 

parallel and distributed systemsD as Gell as in resource selection in Mrid computing environments N1D 

9D 10D 17D 19D 90R. SoGeverD accurate predictions of application run-times are difficult to achieveD 

especially for parallel applications running in shared environmentsD Ghere resource capacities Te.g.D 

CPE loadD bandGidthD latencyV can change dynamically over time and poor predictions can 

dramatically affect the performance of the scheduler and increase application run-times N3R.   

In order to achieve accurate predictions of application run-timesD many conventional approaches 

used in scheduling research assume that accurate performance models of the applications are 

available or that the applications eXecute only on space-shared resources Ghere no tGo processes can 

run simultaneously. For accurate predictions of run times of parallel applicationsD such performance 

models must include parameters for both system-specific and application-run-specific information 

such as CPE loadD bandGidthD the number of processors to useD message siZeD and operation countsD 

etc. For simple applications such as matriX multiplication codesD developing accurate performance 

models of the applications is relatively easy. In generalD hoGeverD obtaining such performance models 

of compleX applications is not alGays possibleD as they require a deep understanding of the 

application and a significant number of eXperiments to validate the models developed. 

In this paperD Ge propose a run-time prediction technique for parallel applications running in 

shared environments. Fhe novel aspect of our technique is that it derives the application eXecution 

times Githout using performance models of the applications. InsteadD it discovers the relationship 

betGeen variables that affect the run times of the application Te.g.D the input to the applicationD 

resource capacitiesV and the actual run times from the past application run history. Fhe proposed 

technique is based on regression methods and a filtering technique. Fhe \ey idea of our approach is 
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that regression methods are applied only to subsets of past history in order to discover the 

relationship. A filtering technique is used to select such subsets. ]e evaluated the performance of our 

technique using tGo parallel applications: an N-body simulation code and a heat distribution code. 

Fhese applications are implementations of tGo representative paradigms of high-performance 

distributed computing: master-slave and regular SPMD. Fhe eXperimental results shoG that the use of 

regression methods delivers tolerable prediction accuracy and that Ge can improve the accuracy 

dramatically by using appropriate filters. 

Fhe rest of the paper is organiZed as folloGs. Section 9 presents related Gor\. Section 3 describes 

our prediction technique in detail and Section 4 presents the eXperimental results and analysis. 

Section 5 briefly discusses future Gor\. 

 

2. Related Work 

Significant research has been conducted in the area of performance prediction. Much of this 

researchD hoGeverD is tightly coupled Gith the applications in the sense that a thorough analysis of the 

codes is required. For eXampleD much previous Gor\ assumed that operation counts and other loG 

level details Gere available to predict application behavior N4D11D19D16R. 

Kapadia et al. N7R use three instance-based learning algorithms to predict resource usage for each 

application run in the PENCS netGor\-computing environment. Fheir approach is similar to ours in 

that only subsets of past performance information is used to learn the relationship. SoGeverD they do 

not consider parallel applications. In additionD by eXploiting temporal and spatial locality of 

application runsD they implicitly assume that system-specific and application-run-specific information 

does not change significantly.  
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Lee and ]eissman N8R use local linear regression and clustering techniques to predict the run 

times of parallel applications using columnGise predictions that reflect the performance change 

depending on input parameters given the same resource set and roGGise predictions that reflect 

performance change depending on the resource set given the same input parameters to the 

application. Fhis Gor\ is limited to dedicated eXecution environments Ghere no tGo processes run 

simultaneously on a single processor. 

Parashar and Sariri N19R propose an interpretive performance prediction technique that uses a 

characteriZation of the high-performance computing system and the application. In order to 

characteriZe the applicationD hoGeverD very detailed application information is required. 

Schopf and Berman N15R use stochastic values of parameters in performance models to predict 

behavior over a range of li\ely system states. Fhey address the problem of using performance models 

parameteriZed by single values of resource status on shared environments. SoGeverD their technique 

can be applied only Ghen accurate performance models of the applications are available. 

Faylor et al. N18R develop an infrastructureD called ProphesyD that automates the performance 

analysis and modeling processes. Fhe application codes can be instrumented at different levels of 

granularity and the resultant performance data is automatically stored in the performance database. 

Fhe performance models are developed based upon performance data from the performance databaseD 

model templates from the template databaseD and system characteristics from the system database. 

Fhese models are used to predict the performance of the application under different system 

configurations. Prophesy also uses curve fitting as one of its automatic modeling technique 

Our Gor\ assumes very limited performance information Tsimilar to Kapadia et al. and Lee and 

]eissmanV and yet functions in a dynamic environment Tas seen in Parashar and SaririD Schopf and 

BermanD and Faylor et al.V. 
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3. Run-Time Prediction Using Regression Methods 

Fo predict the eXecution times based on past application run history Githout using accurate 

performance models raises several significant issues. For eXampleD one must evaluate Ghich variables 

affect the run time of the application and to Ghat eXtent. FurthermoreD since the ranges and 

distributions of values of individual variables are un\noGnD appropriate scaling factors must be 

determined in order to compare values of different variables. Fo ma\e the prediction problem 

tractableD Ge ma\e the folloGing assumptions: 

 

!" Fhe set of application input parameters that can affect the application run-time is \noGn. In 

additionD some of the values have been converted into a more appropriate formc for eXampleD if 

the application has the input parameter of a file name and the run time depends directly on the 

siZe of the fileD the run-time predictors Gill be fed Gith the file siZeD instead of the file name. 

Fo Ghat eXtent the input parameters affect the run time is un\noGnc Ge assume only that this 

set should be trac\ed. In our eXperienceD users of the applications understand the meanings of 

individual input parameters and \noG Ghich input parameters affect the run time of the 

applicationD so this assumption does not significantly affect the usability of our approach. 

!" ]e do not consider parallel applications Gith run times that are nondeterministic or that 

depend on the distributions of the input data. For eXampleD in iterative 0acobi computationD the 

number of iterations depends on the distribution of eigenvalues of the input matriXD Ghich is 

difficult to compute in advance. Fo our \noGledgeD hoGeverD no eXisting performance 

prediction technique considers these types of application. 

!" Fhe parallel applications are not instrumented. FhereforeD the only information Ge can collect 

is the start times and end times of the application runs. By ma\ing this assumptionD Ge believe 
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Figure 1. SeFuence of steps to predict the run time
of a parallel application run. The information for
the application run is given by the Fuery point.

that our technique can be applied to many parallel applications Githout modifying the 

applications. 

!" Every application eXecutes on the same resource set. In other GordsD Ge do not predict hoG 

long an application that ran on a system f Gill noG ta\e on a system g.  

 

Figure 1 shoGs the steps Ge use to predict the run time of a parallel application run. Fhe set of 

information needed for a given run Ge call a query point. Fhis includes the input to the application 

runD the number of processors to use for the runD and the current status of the processors and lin\s 

connecting the processors. ]hen each application run finishesD the folloGing information is recorded: 

T1V input to the application runD T9V number of processors usedD T3V average CPE loadD T4V average 

bandGidthD T5V average latencyD and T6V actual run time. Note that in order to compute T3VD T4VD and 

T5VD only the processors and communication lin\s that Gill be used for the run are consideredc these 

are computed before the application run starts. ]hen the query point is fed into the run-time 

predictorD it first eXtracts a subset of past run-time histories that are relevant to the query point as 

defined by a set of filters Tsee Section 3.9V. Esing this selected datasetD the predictor applies 
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regression methods to discover the relationship and then predicts the run time given the query point 

Tsee Section 3.1V. 

 

3.1. Regression Methods 

Regression methods are mathematical tools that are often used to predict the behavior of one 

variable Te.g.D the actual run-timeVD the dependent variableD from multiple independent variables Te.g.D 

the inputD the number of processors to useD and the resource statusV. Fhe principle underlying 

regression methods is to minimiZe the sum of squared deviations of the predicted values from the 

actual observations N13R. In this Gor\D Ge use the linear regression method because the computation 

cost is less than that of nonlinear regression methods such as quadratic and cubic methods. Note that 

using a linear regression method in our prediction technique does not mean that Ge assume that the 

performance models of the applications are linear. InsteadD only a set of past run history sufficiently 

close to the query pointD Ghich is selected by filtersD Gill be approXimated by a linear relationship. 

Linear regression methods can be applied in different Gays depending on Ghich independent 

variables are used. 

 

!" Direct Prediction) 

Direct prediction TDPV treats as independent variables every variable that affects the run time. 

FhereforeD the folloGing equation holds. 

tscoefficienregressionlinear
statusresourcecurrentthers

runtheforusetoprocessorsofnumberthenp
runnapplicatioparallelthetoparametersinputtheip

rsnpipfRunTime
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:
:
:
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#
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In this modelD the run time of the parallel application run is a linear function of the input to the 

runD the number of processorsD and the current resource status. Note that if there are n input 

parametersD the term #1Eip is eXpanded into n terms. For eXampleD if tGo input parametersD x, yD are 

used for the application runD #1Eip is replaced Gith #11Ex+#12EyD Ghere #11 and #12 are linear 

regression coefficients. In additionD depending on Ghich data stream is used for resource statusD #3Ers 

term also can be eXpanded into multiple terms. For eXampleD if both CPE load and bandGidth are 

consideredD then #31Ecpu load i#32Ebandwidth Gill be used for the linear equationD Ghere #31 and #32 

are linear regression coefficients. 

 

!" Indirect Prediction  

In indirect prediction TIPVD the run time is predicted by a tGo-step process. Enli\e DPD the linear 

regression model is applied to predict base time Ttime to compute the unit siZe of the problem on a 

processorV. Fhe predicted base time and query point then are used to generate the final run-time 

prediction. 

tscoefficienregressionlinear
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Fhis method is made available because Ge assume that the individual input parameters to the 

applications are already \noGn. FhereforeD the problem siZe that each participating processor should 

compute can be easily computed. 
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Figure 2. The actual value of Y given K is F is
represented by rectangle. The dashed line is
generated by a global linear regression method and
the solid line by a local linear regression model. 

DP is the more traditional Gay of applying regression methods. It Gill generate accurate 

predictions Ghen the regression models used can capture the relationship betGeen dependent variable 

and independent variables. On the other handD IP introduces neG independent variables that are a 

function of eXisting independent variables. Our eXperimentsD described in Section 4D shoG that this 

method is superior to DP as long as the values of the neG variables are correct. 

 

3.2.  Filtering TechniFue 

Any linear regression technique attempts to fit a straight line to the available data in order to 

minimiZe the sum of squared deviations of the predicted values from the actual observations. 

FhereforeD if the observations do not shoG strong linearityD applying the linear regression model Gill 

not generate accurate predictions. Fo support parallel applications Ghose performance models are not 

linearD Ge use a filtering technique to eXtract subsets of observations that are close to the query point 

and shoG strong linearity. Figure 9 shoGs the effects of using filters. Since the global regression 

model considers all of the observed data in order to predict that the actual value of gD given fD is qD it 

generates a straight line in such a Gay that it minimiZes the error for data points not only close to q 
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but also far from q. On the other handD in a local regression modelD since only data points close to q 

are considered in order to generate a straight lineD the prediction accuracy is improved. 

Fhe closeness of each data point to the query point is defined by the distance function of the filter. 

Since the range and distribution of variables used for run-time predictions are un\noGnD the distance 

function should normaliZe distances Gith respect to the query point. In additionD the eXtent to Ghich 

individual variables influence the run time is also different. FhereforeD the importance of each 

variable Gith respect to the run time also should be incorporated into the distance function. FormallyD 

the distance betGeen data point Td1, d2, …, dnV and query point Tq1, q2, …, qnV is defined as folloGs. 
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For each dimensionD local distance is computedD Ghich denotes hoG far the value of a variable is 

distant from the corresponding variable in the query point and is normaliZed to 1. Fhe denominator 

used in local distance function represents the range of the variable based on observed data so far. Fhe 

Geight associated Gith each dimension represents the importance of the dimension Gith respect to the 

run times. For eXampleD for applications that require small amounts of data transfer among 

constituent processesD fluctuation of netGor\ status Gill affect the run times less than the CPE load 

Gill. 

Many possible filters eXistD and each is differentiated by Ghich variables are used to define the 

distance function. ]e used four filters for the eXperiments. Fable 1 shoGs the filter names and 

variables that are used for each filter.  
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Table 1. Filters and their constituent variables 

Filter Name Mariables Used 

NP Number of processors used 

NPkR Number of processors usedD Resource capacities 

NPkPARM Number of processors usedD Input parameters 

NPkRkPARM Number of processors usedD Resource capacitiesD Input parameters 

 

]e use the number of processors in all of our filtersc henceD the rest of the data is first sorted by 

this variableD and then others are considered as part of the filtering function. FhusD only the past run 

time history data that has the same value as the one in the query point is considered to compute 

distances. 

 

4. Empirical Analysis 

]e conducted eXperiments using tGo parallel applications implemented in MPI: an N-body 

simulation code and a heat distribution code. Fhese applications are implementations of tGo 

representative paradigms of high-performance distributed computing: master-slave and regular 

SPMD.  

Fhe N-body problem is concerned Gith determining the effects of forces betGeen bodies Tfor 

eXampleD astronomical bodies that are attracted to each other through gravitational forcesV. Fhe N-

body problem also appears in other areasD including molecular dynamics and fluid dynamics N91R. ]e 

implemented an O(N2) version of an N-body simulation code using the master-slave paradigm. For 

each time stepD the master sends the entire set of bodies to each slave and also assigns a portion of the 
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bodies to each slave. Fhe slaves compute the neG positions and velocities for their assigned bodies 

and then return the neG data to the master. 

Fhe heat distribution code simulates the temperature changes of the surface over timeD given that 

temperatures along each of edges of the surface are \noGn. Femperature distribution is simulated by 

covering the area Gith an evenly spaced grid of points. In our parallel implementationD the grid is 
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Figure 3. Oomogeneous background workloads. 
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decomposed and then distributed by roGs to the each process. At each time stepD participating 

processes must eXchange border data Gith neighboring processes because a grid pointls current 

temperature depends on its previous time step value and the values of the neighboring grid points. 

]e deployed the applications on the data grid nodes at Argonne National Laboratory. Fhis testbed 

consists of 90 dual 845 MSZ Intel Pentium III machines Gith 519 MB memory interconnected Gith 

100 Mbit Ethernet. Resource status such as CPE loadD bandGidthD and latency are measured every 5 

minutes by the NetGor\ ]eather Service TN]SV N99R. 

Fhe status of each participating processor can affect the performance of the parallel applications. 

For this reasonD Ge compared the performance of our technique under tGo different bac\ground 

Gor\loads: homogeneous and heterogeneous. In homogeneous bac\ground Gor\loads every 

processor in the testbed shoGs similar patterns of bac\ground Gor\loads during the eXperiments 

TFigure 3VD Ghereas in heterogeneous bac\ground Gor\loads each machine shoGs different 

bac\ground Gor\load patterns TFigure 4V. Fhe competing Gor\loads on the resources Gere generated 

by other users on the system in the normal course of usec they Gere not simulated or generated from 

traces. SenceD every run eXperienced a slightly different load. 

Fable 9 shoGs the configuration for the eXperiments. For each application runD the values are 

randomly selected. 

Table 2. Configuration for the experiments 

 N-body Simulation Codes Oeat Distribution Codes 

Problem siZe 9D000 m 13D000 bodies 100X100 m 800X800 grids 

Number of processors 1-90 1-90 
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]e measured the prediction accuracy using the normaliZed percentage errorD defined as folloGs. @ >
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each variable Gould affect the run times. For each filterD Ge applied several different sets of Geights 

selected so that the sum of the Geights Gas 1.0. Fhese Geights Gere selected based on preprocessing 

of a related set of eXperiments and Gere fiXed throughout. Fhe presented graphs are only subsets of 

the eXperimental results. 

 

4.1. Oomogeneous Workloads 

Figure 5 presents the normaliZed percentage errors of several run-time predictors under 

homogeneous bac\ground Gor\loads. In the graphD run-time predictors are grouped by the filter used. 

AndD under each filterD run-time predictors are differentiated by Ghat data streams for resource status 

are used. For eXampleD one predictor used only the load status of the processorsD Ghereas another 

used both load status and latency. 

]ithout filtersD IP outperforms DP. Fhe reason is that DP predicts the run time using linear 

relationship Gith all variablesD Ghich is not the case Gith parallel applications. For both IP and DPD 

the prediction accuracy can be improved by using appropriate filters.  SoGeverD Ge did not observe 

significant difference in the performance Gith different data streams for resource status. Fhe reason is 

that the resource status of each machine is homogeneous and the system itself is lightly loaded. 

 

4.2. Oeterogeneous Workloads 

Figure 6 shoGs results under heterogeneous Gor\loads. As Gith homogeneous Gor\loadsD filtering 

improved the prediction accuracy. In additionD depending on the information used for resource statusD 

the prediction accuracy can also be improved. Fhe run-time predictors that ta\e into account both 

CPE load and latency alGays produce better prediction accuracy. Fhe best tGo Gere the predictor 
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using NPkPARM filter Gith 90.9n error in DP and the predictor using NPkPARM filter Gith 99.9n 

error in IPD respectively.  

Ender both homogeneous and heterogeneous bac\ground Gor\loadsD Ghen IP is appliedD the 

NPkPARM filter TGhich uses only the number of processors and input parametersV generated 

noticeably improved performance. SoGeverD in IPD the improvement achieved by the other filters Gas 

either negligible or Gorse than the prediction accuracy of the run-time predictor Githout filters. Fhis 

result can be eXplained by the folloGing equation modeling IP. 

+ , + 10 "*rs*S"S ,
T*S

%$&
&RunTime

 

Fhe first term TSE'0V is called main effects, and the second term TSErsE'1V is called interaction 

effects between S and rs. FypicallyD the main effects have a larger impact on the response than do the 

interaction effectsD as reflected by the magnitude of the coefficients of each term. FhereforeD filtering 

over the main effects can collect closer data points to the query point. In N-body simulation eXampleD 

S can be represented by othe number of bodies/the number of processorsp. FhereforeD only filters that 

include SD Ghich include both the number of processors and the number of bodiesD can generate more 

accurate predictions. An interesting result is that the filter that includes the number of bodies and the 

number of processorsD as Gell as resource statusD performed Gorse than the other predictors even 

though it uses the main effect for filtering. Fhis filter collects data points too much concentrated 

around the query point and therefore cannot capture the relationship correctly. 

In both homogeneous and heterogeneous bac\ground Gor\loadsD run-time predictors Gith 

appropriate filters improved the prediction accuracy dramatically compared Gith those Githout filters. 

Fhe reason is that only parts of history that are close to the query point and shoG strong linearity are 
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considered to predict the run time. In additionD using appropriate data streams for resource status 

helped improve the accuracy. 

 

5. Conclusions and Future Work 

In this paperD Ge proposed a run-time prediction technique based on linear regression methods and 

filtering techniques in order to discover the relationship betGeen variables that affect the run times of 

parallel applications and the actual run-times. Fhe eXperimental results shoG that Githout accurate 

performance modelsD our prediction techniques can generate satisfactory prediction accuracies for 

parallel applications running in shared environments. 

Since this Gor\ is at early stageD many issues need to be addressed. In particularD in the current 

techniqueD the variables and Geights used in filters are manually selected. In generalD hoGeverD Ge do 

not \noG Ghich variables are more important than others. Fo address the problemD Ge are 

investigating principal component analysis N6R as a means of identifying a set of variables that affect 

the application run-times most. In additionD Ge are eXamining nonlinear regression models to derive 

the relationship of past history selected by filters. ]e also plan to apply our technique to the tGo 

LSC physics codesD AFLAS N1R and CMS N5R. 
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