A Differentiation-Enabled Fortran 95 Compiler

Uwe Naumann,

Mathematics and Computer Science Division, Argonne National Laboratory,
9700 South Cass Ave., Argonne, IL 60349-4844, USA

and

Jan Riehme,

Department of Computer Science, University of Hertfordshire,

College Lane, Hatfield, AL10 9AB, UK

The availability of first derivatives of vector functions is crucial for the robustness and efficiency
of a large number of numerical algorithms. A new differentiation-enabled Fortran 95 compiler
is described that uses programming language extensions and a semantical code transformation
known as automatic differentiation to provide Jacobians of numerical programs with machine
accuracy. We describe the user interface as well as the relevant algorithmic details. The feasibility,
robustness, and convenience of this approach is illustrated by various case studies.

Categories and Subject Descriptors: D.2.2 [Tools and Techniques]: Software libraries
General Terms: Algorithms

Additional Key Words and Phrases: Automatic differentiation

1. MOTIVATION

Consider the solution of the equation F(x) = 0 where the vector function F is imple-
mented as a Fortran subroutine, for example, f (x,f_vec) that computes f_vec as a
function of x. This subroutine may be very complex, possibly involving calls to other
subroutines or user-defined functions. Suppose that the routine nag nlin_sys_sol
that is part of NAG Fortran 90 Library is to be applied to this problem. The solver
expects a subroutine fun(x,finish,f vec,f_jac) ! that computes the function
value f_vec and, ideally, the Jacobian £_jac. Our goal is to make the subroutine
fun a simple “generic wrapper” calling £ such that the derivative code is generated
automatically by the compiler.

ISee documentation of the NAG Fortran 90 Library at www.nag.co.uk for further details on fun
and its arguments.
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2 . U. Naumann and J. Riehme

The first prototype of the differentiation-enabled NAGWare Fortran 95 compiler
provides this functionality. A limited number of language extensions is required, as
shown in the following example.

SUBROUTINE fun(x,finish,f_vec,f_jac)
USE ACTIVE_MODULE

TYPE(JACOB_TYPE) :: jac

DIFFERENTIATE
INDEPENDENT (x)
CALL f(x,f_vec)
jac=JACOBIAN (f_vec,x)
END DIFFERENTIATE

CALL DERIVTOREAL(jac,f_jac)

END SUBROUTINE fun

The subroutine £ needs to be called inside the active section that is marked by
the DIFFERENTIATE and END DIFFERENTIATE statements. The vector x is declared
as independent, and the Jacobian of f_vec with respect to x can be obtained by
calling the function JACOBIAN that is defined in ACTIVE_MODULE. The real values of
the Jacobian object jac are extracted by calling another support routine, named
DERIVTOREAL. The code is compiled with the differentiation-enabled NAGWare For-
tran 95 compiler to ensure that the code for the computation of the Jacobian is
generated automatically.

In the main part of this paper, we discuss details of all the new features used
and of their implementations. Following a brief introduction (Section 2) to the
principles of forward mode automatic differentiation we focus in Sections 3 and 4 on
the relevant compiler internals. We illustrate the interface in the context of a simple
first-derivative arithmetic based on operator overloading (described in greater detail
in [Cohen et al. 2003]). Our main focus is on the source transformation solution
that is built on the idea of preaccumulating local gradients of scalar assignments.
Additional features of the compiler include the ability to exploit sparsity within the
Jacobian by seeding. In Section 5 we present several case studies that underline the
flexibility and ease of use of the compiler. A crucial next step in the development
is the automatic generation of adjoint code by using the reverse mode of automatic
differentiation. First thoughts in this direction are presented in Section 6 together
with conclusions.

2. FORWARD MODE AUTOMATIC DIFFERENTIATION

Derivatives of vector functions that represent mathematical models of scientific,
engineering, or economic problems play an increasingly important role in modern
numerical computing. They can be regarded as the enabling key factor allowing for
a transition from the pure simulation of the real-world process to the optimization
of some specific objective with respect to a set of model parameters. For a given
computer program that implements an underlying numerical model, automatic dif-
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ferentiation (AD) [Corliss and Griewank 1991; Berz et al. 1996; Corliss et al. 2002;
Griewank 2000] provides a set of techniques for transforming the program into one
that computes not only the function value for a set of inputs but also the corre-
sponding first and higher derivatives. A large portion of the ongoing research in
this field is aimed at improving the efficiency of the derivative code that is gen-
erated. Successful methods are often built on a combination of classical compiler
algorithms and the exploitation of mathematical properties of the code. Moreover,
improving the user-friendliness of software tools for AD is an important issue. The
integration of differentiation capabilities into industrial-strength compilers appears
to be reasonable approach. Language extensions to support software projects in
scientific computing can hide most of the AD internals from the user.

We consider numerical simulation programs written in Fortran 95 that implement
nonlinear vector functions

F:R"DOD - R":x—y=F(x)

The Jacobian matrix of F' at a given argument Xo is denoted by

F' = F'(xo) = (gyi (XO)>i=1,...,m

The forward mode of AD transforms the program for F' into a tangent-linear model
F such that

y = F(x,%) = F'(x)%

Here, y € IR™ is the directional derivative of F' in the direction x € IR™. Its numer-
ical value is computed with machine accuracy. For example, the whole Jacobian
matrix can be accumulated by letting x range over the Cartesian basis vectors in
IR™ since (obviously) F'(x) = F'(x) - I,, where I,, denotes the identity in IR"™.
Let us have a closer look at the way this source code transformation is performed
conceptually.

First, F' is decomposed into a code list by assigning the result of any arithmetic
operation (for example, +,*) or intrinsics function (for example, sin,exp) to a
unique intermediate variable. Thus, the code list becomes a sequence of (in general)
nonlinear assignments

vj =¢;(vi)i<j forj=1,...,qand ¢ =p+m.

The number of intermediate variables is denoted by p. Following the notation in
[Griewank 2000], we denote the set of arguments of ¢; as {v; : i < j}, that is, i < j
if v; is an argument of ¢;. Furthermore, we set z; = v;_p, i = 1,...,n, 2 = vg,
k=1,...,p,and y; = vpyj, j=1,...,m.

Forward-mode AD generates a tangent-linear model automatically for a given
program for F. This approach relies on the existence of jointly continuous partial
derivatives for all elemental functions ¢;, j = 1,..., g, on open neighborhoods D; C
IRH#=3} of their respective domains. Directional derivatives 0; are associated with
every code list variable for i =1 —n,...,q. The computation becomes

0= ¢t (1)
i<j
ACM Transactions on Mathematical Software, Vol. V, No. N, April 2004.



4 . U. Naumann and J. Riehme

for j =1,...,q and where

o = 09z
7 8’Ui

The values v; represent the results of the inner products of the local gradient %
with x. For the computation of several directional derivatives at the same point the
vector forward mode of AD can be used to transform F into F' such that

V= F(x,X)=F(x)X . 2)

The columns in Y € IR™*! are the directional derivatives of F' corresponding to the
directions that form the columns of X € R"*!. With ©; € IR in Equation (1) the
originally scalar multiplication c; ; - ¥; becomes a product of a scalar with a vector.
Potentially, such a product can be implemented very efficiently for languages that
provide vector arithmetic such as Fortran 95.

3. LANGUAGE INTERFACE FOR AUTOMATIC DIFFERENTIATION

The first prototype of the differentiation-enabled compiler used operator overload-
ing to compute derivative information in parallel with the evaluation of the function
itself. This approach is described in [Cohen et al. 2003]. A new active data type
is introduced that holds a vector for the directional derivatives in addition to the
function value. All arithmetic operators and intrinsic function are overloaded for
this new data type, not only to compute the function value but also to perform the
computation of the directional derivatives. See [Griewank 2000] for further details
on forward-mode AD by operator overloading.

The active data type contains a component to hold the function value value and
an allocatable array of directional derivatives deriv.

TYPE ACTIVE_TYPE

DOUBLE PRECISION :: value

DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: deriv
END TYPE ACTIVE_TYPE

The user of the compiler is never required to use this data type explicitly. The
redeclaration of active variables as of type ACTIVE_TYPE is done automatically once
the independent and dependent variables are known. The active data type is used
both in the context of operator overloading and source transformation.

Referring back to the motivating example in Section 1, we observe that six mod-
ifications of the original code are required to use the differentiation capability of
the compiler.

(1) The module ACTIVE MODULE needs to be used. It contains the active data type,
all overloaded arithmetic operators and intrinsic functions, and various support
routines.

(2) A variable (for example, jac) needs to be declared to hold the Jacobian matrix.
The special type JACOB_TYPE ensures that jac is recognized as passive by the
activity analysis (see below).

(3) The active section is enclosed in DIFFERENTIATE ... END DIFFERENTIATE. Any
derivative computation is restricted to the active section.
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(4) The independent variables are marked by using the INDEPENDENT statement.
This results in their type getting switched to “active.” In Jacobian computation
mode the derivative components are initialized with the identity in IR"™.

(5) JACOBIAN is a support routine provided by ACTIVE MODULE. It is used to access
the derivative component(s) of the active variable that forms its argument. This
process is equivalent to retrieving its Jacobian with respect to the independent
variables. Optionally, the independent variable can be specified explicitly to
extract only the corresponding rows of the Jacobian. This may be helpful if
there are several independent variables. If several dependent variables exist
then the corresponding columns of the Jacobian need to extracted by separate
calls to JACOBIAN.

(6) The support routine DERIVTOREAL is used to transform jac into a real matrix.
Refer to the projects Web site
http://www.nag.co.uk/nagware/research/ad overview.asp

for several simple examples that illustrate the various uses of the new compiler.

In the current version of the compiler, no static data-flow analysis is performed.
Conservatively, all variables that occur on the left-hand side of some assignment and
all subroutine arguments are made active. This approach ensures the correctness
of the derivative code generated; however, it lacks the potential efficiency that can
be achieved by using a proper activity analysis [Hascoét et al. 2002]. Activity
information can be exploited at the level of variable instances. The compiler can
generate code that switches between the active and the passive version of one and
the same variable. The addition of these features is highly desirable and is part of
out future work.

4. COMPILER AD WITH STATEMENT-LEVEL PREACCUMULATION

The latest prototype of the differentiation-enabled compiler no longer relies on
operator overloading to compute directional derivatives in the forward mode of AD.
It exploits the idea of statement-level preaccumulation as described in [Naumann
2002b]. Given the gradient f' of some scalar assignment y = f(x1,...,z) only
the propagation of the directional derivative ¢y = f'-&; + ...+ f' - @ is performed
by a subroutine that is defined in ACTIVEMODULE. The computation of the local
gradients is performed by code that is generated explicitly by the compiler. Below
we present a more detailed description of this approach.

A tangent-linear model y = F (x,%) represents a system of linear equations that
can be written in matrix form as follows:

©)-< ()

where C € R?*("+?) ig the extended Jacobian that is defined as

C = (cj,i)j:17m7q (4)

i=1—n,...,p

with local partial derivatives c; ;. The computation of y = F'-x can be interpreted
as the solution of Equation (3) for y in terms of x [Naumann and Gottschling 2003].
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6 . U. Naumann and J. Riehme

To solve Equation (3) for y in terms of X, we consider elimination techniques on
C. Following the notation in [Griewank 2000], we partition the extended Jacobian

C' as follows.
B L
c=(ng) - )

where B € RP*", L. € RP*P, R € IR™*™, and T € IR™*P. Since the structure of
C is induced by a code list, the matrix L = (I;;);i=1,.p must be strictly lower
diagonal, that is, [; ; = 0if i > j. Solving Equation (3) for y in terms of x is regarded
as the elimination of all nonzero elements in B, L, and T (see also [Griewank 2000]).
The preaccumulation of local gradients of scalar assignments has been investi-
gated in [Naumann 2002b]. There we show that such gradients can be accumulated
by using a minimal number of arithmetic floating-point operations by exploiting the
property that each intermediate variable is used exactly once. The corresponding
algorithm is also used to perform statement-level gradient preaccumulation inside

the compiler.
We present an example to illustrate the implementa-

m tion of the preaccumulation algorithm in the compiler.
Consider the scalar assignment z = sin(z) - z - y whose
|z | abstract syntax tree (AST) is shown in Figure 1. Its

UL linearized code list

c1,—1 = cos(z); vy = sin(zx)
€2,—1 = V15 C2,1 = &; U2 =U1 &

C3,0 =UV2; C32=Y; Z2=0V2"Y

leads to the following tangent-linear system to be solved
for z in terms of Z and y :

. T

(%1 0 C1,—1 0 0 .

E vy | = 0 c3-1¢c1 O N
z c 0 0 c vl

2 .

The optimal gradient accumulation algorithm chooses
column pivots [Naumann and Gottschling 2003] ¢2 1 and
c3,2 to transform the system into

. T
U2\ 0 C2,—1 + C21 - C1,—1 0 . .
z - 3,0 0 C3,2 y

V2

] T
2 = (0370 C3,2 (027_1 + 21 '017—1)) : (y>

The row vector in the last equation is equal to the transposed gradient of z with
respect to z and y. The number of factors in the propagation of directional deriva-
tives is decreased from initially five to two. The preaccumulation itself costs two

Fig. 1. Abstract syntax
tree for z = sin(z) -z - y.

and
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multiplications and one addition. For long deriv components of the active vari-
ables, that is, for large values of I in Equation (2), the local savings converge to a
factor of 2.5. Figure 2 illustrates the corresponding transformation of the AST.

ad_x%value

Fig. 2. Modifications of the AST for Statement-Level Preaccumulation. The AST of
the original assignment depicted in Figure 1 is replaced by seven new statements. Six of them are
relevant for the computation of the local directional derivative. ad_tmpO holds the value of sin(x).
The derivative of sin(x) with respect to x is stored in ad_tmpl. The second intermediate value,
that is, the result of ad_tmpO - x, is stored in ad_tmp2, which is equal to the partial derivative of z
with respect to y. The second gradient entry is computed by column pivoting in the tangent-linear
system. The propagation of the directional derivatives is performed by calling the appropriate
accumulation routine from ACTIVE_MODULE. The seventh assignment, that is, z = ad_tmp2 -y, is not
shown here. However, it needs to be generated by the compiler because gradients of statements
to follow are likely to depend on the value of z.

Inside the compiler the extended Jacobian is built in terms of variable references.
Actual values become available only at run time. Statements for computing these
values have already been generated during the construction of the code list as
described in Figure 2.

y x
0 —ad_tmpl | _ad_tmpO
0 —ad_tmp0 _ad x%value | _ad_tmp2
—ad_tmp2 0 0 —ad_y%value | z

In addition to the extended Jacobian, variable references are stored for the inde-
pendent variables x and y, the intermediate variables _ad_tmpO and _ad_tmp2, and
the dependent variable z. These references are highlighted in the data structure

ACM Transactions on Mathematical Software, Vol. V, No. N, April 2004.



8 . U. Naumann and J. Riehme

_adtd_flt_1_ = y_[i_ + -1];

_adtap_flt_1_ = &_ad_x_[1 + -1];
_adtd_flt_2_ = _adtap_flt_1_->value_;
_adtd_f1lt_3_ = _ad_templ_.value_;
_adtd_flt_4_ = _adtd_flt_2_x_adtd_flt_3_;
_adtd_f1lt_5_ = _ad_temp2_.value_;
_adtd_flt_6_ = _adtd_flt_4_/_adtd_flt_5_;
_adtd_flt_7_ = 1/_adtd_flt_5_;

_adtd_f1t_8_ = -(_adtd_flt_6_x_adtd_flt_7_);
_adtd_f1t_9_ = _adtd_flt_1_ - _adtd_flt_6_;
_adtd_f1t_10_ = _adtd_flt_7_x-1;
_adtd_flt_11_ = _adtd_flt_8_%-1;
_adtd_f1lt_12_ = _adtd_flt_3_x_adtd_flt_10_;
_adtd_f1t_13_ = _adtd_flt_2_%*_adtd_flt_10_;

Fig. 3. C code that computes the gradient of the scalar assignment z=y(i)-x(1)*templ/temp2
from the analysis of an enzyme reaction problem. All inputs are active except y(i). The principal
structure is similar to that described in Figure 2.

above. Column pivoting transforms the extended Jacobian into

y x
0 -ad_tmp0 + _ad x%value- _ad_tmpl | _ad_tmp2
_ad_tmp2 0 _ad_y%value | z

and

y X
—ad_tmp2 _ad_tmp3 | z ’
while generating the new assignment
_ad_tmp3=_ad_x2)valuex*(_ad_x1}value*_ad_tmpl+_ad_tmpO0)

The NAGWare Fortran 95 front-end that we are working with transforms the For-
tran code into C code and uses a native C compiler to generate executable programs.
The C code that is generated can be stored in a separate file by activating the corre-
sponding compiler switch. Figure 3 depicts the C code that results from the preaccu-
mulation of the local gradient of the scalar assignment z=y (i) -x (1) *temp1/temp2
from the analysis of an enzyme reaction problem that is part of the MINPACK
test problem collection [Averik et al. 1991] (see also Section 5.1). Furthermore,
the differentiation phase of the compiler can generate output that illustrates the
single steps performed by the preaccumulation algorithm. Example are shown on
the projects Web site.

5. CASE STUDIES

We consider four case studies to illustrate the robustness and flexibility of the new
compiler.

5.1 MINPACK Test Problem Collection

To test the correctness of the derivative code generated by the compiler, we im-
plemented a test environment for fifteen vector functions from the MINPACK test
problem collection [Averik et al. 1991]. In all cases the numerical values computed
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n=134; m=252; ldfjac=m
ALLOCATE(x(n)); ALLOCATE(fvec(m)); ALLOCATE(fjac(ldfjac,n))
CALL dctsfj(m,n,x,fvec,fjac,ldfjac,"XS")

CALL dctsfj(m,n,x,fvec,fjac,ldfjac,"J")

DIFFERENTIATE
INDEPENDENT (x)
CALL dctsfj(m,n,x,fvec,fjac,ldfjac,"F")
compAD_jac=JACOBIAN(fvec,x)

END DIFFERENTIATE

CALL DERIVTOREAL(compAD_jac,fjac)

DEALLOCATE(x); DEALLOCATE(fvec); DEALLOCATE(fjac)

Fig. 4. Verification of the differentiation-enabled compiler by using the coating thickness standard-
ization problem. Inside the active section the subroutine dctsfj is called in function evaluation
mode ("F"). The derivative code that evaluates the Jacobian is generated by the compiler. There
can be several consecutive active sections in one file. This is exploited for writing similar test
environments for all fifteen vector functions from the MINPACK test problem collection.

by the compiler-generated derivative code match those of the hand-written Jaco-
bian code that is part of MINPACK. Figure 4 illustrates the test by using the
coating thickness standardization problem. A driver program allocates the inde-
pendent (x) and dependent (fvec) variables as well as the Jacobian matrix (fjac).
It calls the subroutine (dctsfj) to compute the input values of x ("XS" mode).
This value is then used to compute the Jacobian matrix of fvec with respect to x
by using the hand-written Jacobian code ("J" mode). The same argument is then
used to compute the Jacobian by using the new differentiation capabilities of the
compiler. Both results are written into files and compared by using the UNIX com-
mand diff. Identical numerical results are obtained by both the overloading and
statement-level preaccumulation approaches. We regard the successful application
of the compiler to the MINPACK test problems as a good indication for the desired
robustness of the compilers differentiation capabilities.

5.2 Integration of Stiff Systems of Explicit ODEs

We consider the routine DO2NBF that is part of the NAG Fortran 77 library. 2 It is
a general-purpose routine for integrating the initial value problem for a stiff system
of explicit ordinary differential equations (ODEs), y' = g(¢,y(t)). The function g
is nonlinear, and the Jacobian of g with respect to y is expected to be dense. The
stiff Robertson problem is considered as an example in the documentation of the
library that can be found on NAG’s Web site. We present a modified version that
illustrates the use of the differentiation-enabled compiler for computing the Jaco-
bian of an approximation for the residual function r(t,y) = y' — g(¢,y) with respect
to y. DO2NBF can be provided with a subroutine that computes the Jacobian g—;.
Alternatively, a finite difference method is used internally to approximate the Ja-
cobian. Potentially, this method can be replaced by taking an approach similar to
the one presented here.

?http://wuw.nag.co.uk/numeric/FL/FLdescription.asp
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SUBROUTINE FCN(NEQ,T,Y,R,IRES)
USE ACTIVE_MODULE

DOUBLE PRECISION T

INTEGER IRES, NEQ
DOUBLE PRECISION R(NEQ), Y(NEQ)

R(1) = -0.04D0*Y(1) + 1.0D4*Y(2)*Y(3)

R(2) = 0.04DO*Y(1) - 1.0D4*Y(2)*Y(3) - 3.0D7*Y(2)*Y(2)
R(3) = 3.0D7*Y(2)*Y(2)

RETURN

END

Fig. 5. Subroutine for computing ¢(t,y) for the stiff Robertson problem

SUBROUTINE JAC(NEQ,T,Y,H,D,P)
USE ACTIVE_MODULE
INTERFACE
SUBROUTINE FCN(NEQ,T,Y,R,IRES)
DOUBLE PRECISION T
INTEGER IRES, NEQ
DOUBLE PRECISION R(NEQ), Y(NEQ)
END SUBROUTINE
END INTERFACE
DOUBLE PRECISION D, H, T
INTEGER NEQ, IRES, I
DOUBLE PRECISION P(NEQ,NEQ), Y(NEQ), R(NEQ)
TYPE(JACOB_TYPE) :: J
DOUBLE PRECISION HXD

HXD=H*D
DIFFERENTIATE
INDEPENDENT (Y)
CALL FCN(NEQ,T,Y,R,IRES)
J=JACOBIAN(R,Y)
END DIFFERENTIATE
CALL DERIVTOREAL(J,P)
P=-HXD*P
DO I=1,NEQ
P(I,1)=P(I,I)+1
END DO
RETURN
END

Fig. 6. Wrapper for Jacobian routine for DO2NBF

Given a subroutine for computing g(t,y), as, for example, shown in Figure 5, the
subroutine in Figure 6 represents a general wrapper that can be used for computing
the Jacobian of r» with respect to y by exploiting the new capabilities of the compiler.
An explicit interface is required for FCN, and both the wrapper and the subroutine
that computes the right-hand side of the ODE system need to use ACTIVE MODULE.
Additionally, the wrapper needs to perform some post-processing of the Jacobian
that results from to the approximation of y' in r(¢,y). Details on this can be found

ACM Transactions on Mathematical Software, Vol. V, No. N, April 2004.
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DIFFERENTIATE
INDEPENDENT(x, SEED=s)
CALL FormFunctionLocal(...,x,f,...)
jac = DERIVATIVE(E)

END DIFFERENTIATE

Fig. 7. Wrapper for Jacobian routine in PETSc. See www.mcs.anl.gov/petsc for further informa-
tion on PETSc.

on NAG’s Web site. Because of the static nature of the interface of FCN, the wrapper
can be hidden entirely from the user provided that the library is used in connection
with the differentiation-enabled compiler. The practical implementation of such a
solution is envisioned.

5.3 Jacobians for the SNES Component of PETSc

The Portable and Extensible Toolkit for Scientific Computing (PETSc) [Balay et al.
2003] contains a module for the solution of systems of nonlinear equations (SNES)
that relies on Jacobian matrices for the use in Newton-type algorithms. The user
provides the routine FormFunctionLocal that implements the corresponding vector
function. Additionally, code for computing the Jacobian matrix is required. The
use of the AD tools ADIFOR? and ADIC* in this context is described in [Bischof
et al. 1997]. A simple wrapper routine is required when using the new compiler, as
shown schematically in Figure 7, where another important feature of the compiler
is illustrated.

Assuming that FormFunctionLocal is based on some stencil that is used for a
given discretization of a partial differential equation, the sparsity pattern of the
Jacobian is known a priori. This knowledge can be exploited by the compiler. A
compressed seed matrix s can be passed as a named parameter to the INDEPENDENT
statement. The ACTIVE_MODULE subroutine DERIVATIVE returns a compressed Jaco-
bian. Depending on the particular seeding method, the Jacobian can be restored by
using a simple back substitution process [Curtis et al. 1974] or by solving a number
of systems of linear equations [Newsam and Ramsdell 1983]. In either case the seed
matrix compression is expected to lead to considerable speedup of the Jacobian
computation.

As mentioned, the current implementation of using AD with PETSc is driven
by ADIFOR and ADIC. In particular, the way in which first-derivative tensors are
stored is not completely compatible with the solution provided by the compiler.
This leads to some additional copying. We intend to avoid this overhead in a
future version that should provide specific support for the differentiation-enabled
compiler.

5.4 Gradients for TAO and NEOS

Our last case study represents an application that is not a primary target of the cur-
rent, version of the compiler. The computation of gradients for use in optimization
algorithms often requires adjoint models that can be generated by the reverse mode

3http://www.mcs.anl.gov/adifor
4http://wuw.mcs.anl.gov/adic
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SUBROUTINE fcn_wrapper(ndim, x, £, g)
USE ACTIVE_MODULE
IMPLICIT NONE

INTEGER ndim

DOUBLE PRECISION x(ndim)
DOUBLE PRECISION f
DOUBLE PRECISION g(ndim)

TYPE(JACOB_TYPE) :: grad
DIFFERENTIATE
INDEPENDENT (x)
CALL fen(ndim,x,f)
grad=JACOBIAN(£)
END DIFFERENTIATE
CALL DERIVTOREAL(grad, g )
CONTAINS

#include "fcn.f"

END

Fig. 8. Wrapper for Jacobian routine in NEOS. The approach is similar to what has been discussed
before. Since the name of the subroutine that contains the function evaluation is fixed, it can
be included in the CONTAINS block of the wrapper routine that can be part of the solver library.
Hence, a fully automated approach is possible. See www.mcs.anl.gov/neos for further information
on NEOS.

of AD (see Section 6). With such a model available the gradient can be computed
at a cost that is a small constant multiple of the cost of evaluating the function
itself (see cheap gradient result in [Griewank 2000]). If the number of independent
variables becomes very large, then the current solution is unlikely to provide ac-
ceptable performance. However, the new feature of the compiler can certainly be
applied to small to medium-sized problems, for which the gradient could potentially
be approximated by using finite difference quotients.

The new compiler has been tested successfully in the context of the the Toolkit for
Advanced Optimization (TAO)® and in the Network Enabled Optimization Server
(NEOS).% In particular, it has been used to provide gradients for the BLMVM
algorithm for bound-constrained optimization [Benson and Moré 2001]. This solver
is part of TAO and can be accessed via NEOS. An experimental NEOS server was
set up to test the applicability of the new compiler. Assuming that Fortran is
selected as input mode, NEOS works in principle as follows.

(1) The user uploads files fcn.f, initpt.f, and xbound.f and specifies the di-
mension of the problem. The user also picks the AD tool to be used choosing,
among ADIFOR 2.0 Revision D [Bischof et al. 1996], the differentiation-enabled

Shttp://www.mcs.anl.gov/tao
6http://wuw.mcs.anl.gov/neos
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NAGWare Fortran 95 compiler, and the AD tool TAPENADE,” which is be-
ing developed at INRIA Sophia-Antipolis, France, and which presents the only
AD tool with reverse mode capabilities in this list. So far, only ADIFOR is
accessible through the main NEOS server. It also provides second derivatives,
a highly desirable feature in the context of optimization.

(2) BLMVM provides a driver, for example, taoneos_driver.F, that is linked
with the solver library to run the optimization algorithm. The use of AD tools
is also taken care of in the driver. For the new compiler we provide a wrapper
routine, as shown in Figure 8.

(3) BLMVM provides amakefile that builds the executable (e.g., tao neos_driver)
whose output is the result of the optimization.

(4) The server copies all files into a temporary directory. It builds the executable
and runs it, redirecting the output into the file job.results. The results are
either emailed back to the user or displayed via the browser window. This build
process is steered by a script.

The planned provision of reverse-mode algorithms inside the compiler will certainly
improve its suitability in the context of optimization, as outlined in Section 6.2.

6. CONCLUSION AND FUTURE WORK

We presented a new version of the NAGWare Fortran 95 compiler that provides
language extensions to facilitate the computation of first derivatives by an internal
code transformation process that is built on the principles of automatic differen-
tiation. The feasibility of this approach was demonstrated by using case studies
involving various modern software libraries and systems for numerical computing,.
A major goal of this development was the construction of an intuitive and hier-
archical interface that allows the user to exploit additional information such as
sparsity of the Jacobian. We strongly believe that accurate derivative information
generated by automatic differentiation should be accessible through an industrial-
strength compiler. The user should be given the opportunity to use JACOBIAN and,
potentially, HESSIAN and further derivative access functions in the same way the
user uses other intrinsic functions. A first step has been made toward this ambitious
goal.

In the following sections we briefly discuss two algorithms that we intend to
provide next. Our objective is to demonstrate that most prerequisites have been
put into place to facilitate an easier implementation. The existing infrastructure
allows us to evolve to basic-block-level preaccumulation (see Section 6.1 and a
simple version of the reverse mode of AD (see Section 6.2 without major technical
difficulties.

6.1 Basic-Block-Level Preaccumulation

The preaccumulation procedure can be applied to extended Jacobians of entire basic
blocks as described in [Griewank and Reese 1991; Naumann 2002a]. The current
internal representation can be used without modification. Consider the following

"www-sop.inria.fr/tropics
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sequence of scalar assignments:
vy =cos(Z1); V2 =V kT Y= U kT3

The internal version of the extended Jacobian is built statement by statement as
follows:

Tr3 To T U1 U2
zy T2 it UL —sin(zy) | vy
a1 ) - SIH(CE1) | U1 R
sin(zy) | vy ’ 0 s |v V1 0 x2 | U2
! 2 2 vy 0 0 0 =3 |y

Various heuristics for pivot selection can be applied. Once the Jacobian of a basic
block y = F(x) has been accumulated, a module routine is called internally to
perform the Jacobian matrix product Y =F-X. Similarly, the local Jacobians can
be used for the adjoint version of the compiler to be developed (see Section 6.2).
Adjoints of the inputs of the basic block can be computed as products of the
transposed local Jacobian with the derivative component of the outputs of the
basic block.

A major obstacle for the efficient use of basic-block-level preaccumulation is the
absence of a value-numbering algorithm [Aho et al. 1986]. The result of such an
algorithm tells us that, for example, the v; that is written by the first assignment is
read by the second assignment. In the presence of pointers and array accesses, this
information is not obvious. It is required to assign the correct virtual addresses
to the various variable references. Conservatively, one needs to assume that all
references are potentially distinct, an assumption that leads to a statement-level
algorithm as described in Section 4.

6.2 Adjoint Code by Reverse Mode

The adjoint code generated by the reverse vector mode of AD for a computer
program implementing a vector function y = F(x) with F : R™ — IR™ computes
Jacobian transposed times matrix products of the form

X=F"y . (6)
The matrix Y € IR™*! represents a collection of [ adjoints of the dependent variables
y € IR™. The result of executing the adjoint code is a matrix X € IR"*! with
columns representing the corresponding adjoint values of the independent variables
x € R™. If F is scalar (i.e., m = 1) then the whole gradient can be obtained cheaply
as pointed out before. This feature makes adjoint codes especially interesting for
applications in optimization, optimal control, and data assimilation [Singer and
Barton 2003; Caillau and Noailles 2001; Griffith and Nichols 1996].

In reverse mode, adjoint values are propagated backward for all intermediate and
the independent variables after initializing them for the dependent variables. The
value of some 7; is computed as

Ov;
V; = 61; “U; . (7)

Jj:i<j

While the local partial derivatives (and therefore the directional gradients as well)
could be computed in parallel with the function value in forward mode, they must
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be made available in reverse order in adjoint models. Therefore, one may decide to
store and restore or to recompute them when they become required. Alternatively,
one may choose to store the values of the intermediate variables or even to preac-
cumulate local gradients of assignments or local Jacobians of basic blocks. Further
improvements are discussed in [Naumann 2002c]. A single forward sweep is required
to store all the values required for a store-all strategy. A recompute-all approach
would increase the computational complexity quadratically and is not preferred.
Checkpointing algorithms store a certain amount of information and recompute
whatever else is required using this information. The automatic detection of useful
checkpoints in a general program is an open problem.

The main challenge for developers of reverse mode AD algorithms is the require-
ment to reverse the control flow of the program efficiently, thus making the local
partial derivatives available in reverse order. For large-scale applications the term
efficiently is defined as a reasonable trade-off between the number of arithmetic
operations performed and the amount of memory required.

As a first step we plan to store the local gradients of all scalar assignments on
a stack and restore them during the reverse pass to compute the adjoints of the
inputs of the assignment incrementally ® as a function of the adjoint of its left-hand
side. Similarly, we can store and restore the Jacobians of basic blocks. Further
improvements of such an approach represent the storage of intermediate values
[Hascoét et al. 2002] as well as checkpointing strategies. In any case we need to
think carefully about the design of the user interface, which is supposed to remain
as simple and intuitive as possible.
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