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Abstract

Overflows are bottom gravity currents which supply dense water masses generated in

high-latitude and marginal seas into the general circulation. In light of oceanic observations

which indicate that mixing of overflows with ambient water masses takes place over small

spatial and time scales, and studies with ocean general circulation models, which indicate

that the strength of the thermohaline circulation is strongly sensitive to representation of

overflows in these models, overflow-induced mixing emerges as one of the prominent oceanic

processes.

In this study, nonhydrostatic 3D simulations of bottom gravity currents are carried out,

as a continuation of an effort to develop appropriate process models for overflows, that would

complement analysis of dedicated observations and large-scale ocean modeling. Nek5000, a

parallel high-order spectral element Navier-Stokes solver is used as the basis of the simula-

tions. Numerical experiments are conducted in an idealized setting focusing on the start-up

phase of a dense water mass released at the top of a sloping wedge. 3D results are compared

to results from 2D experiments and laboratory experiments, based on propagation speed

of the density front, growth rate of the characteristic head at the leading edge, turbulent

overturning length scales and entrainment parameters.

Results from 3D experiments are found to be in general agreement with those from lab-

oratory tank experiments. In 2D simulations, the propagation speed is approximately 20%

slower, the head growth rate is 3 times larger, Thorpe scales are 30-50% larger, and entrain-

ment parameter is upto 2 times higher than those in the 3D experiments. The differences

between 2D and 3D simulations are entirely due to internal factors associated with the trun-

cation of the Navier-Stokes equations for 2D approximation. It is concluded that in the

absence of external factors that will trigger 3D circulation patterns, such as topographic fea-

tures and/or rotation, 2D dynamics still represent a reasonable approximation to the general

evolution of bottom gravity currents.



1. Introduction

A density current or gravity current is the flow of one fluid within another driven by

the gravitational force acting on the density difference between the fluids. Density currents

occur in a wide variety of circumstances: in the atmosphere, thunderstorm outflows and sea

breeze fronts are gravity currents of cold dense air (Houze, 1993). In rivers, turbidity currents

whose density derives from suspended mud and silt can control deposition of sediment, and

have geological consequences. Other examples of phenomena induced by similar underlying

physics are avalanches and ashe clouds rushing down the mountains after volcanic eruptions

(Simpson, 1982).

Oceanic gravity currents are of particular importance, as they are intimately related to

the ocean’s role in climate dynamics. The thermohaline circulation in the ocean is strongly

influenced by dense-water formation that takes place mainly in polar seas by cooling (e.g.,

Dickson et al., 1990; Borenäs and Lundberg, 1988) and in marginal seas by evaporation (e.g.,

the Mediterranean Sea, Baringer and Price, 1997a). Such dense water masses are released

into the large-scale ocean circulation in the form of overflows, which are bottom gravity

currents. For instance, intense evaporation in the Mediterranean Sea produces salty water

that sinks to the bottom and flows over the sill in the Strait of Gibraltar (Bryden and Kinder,

1991) and forms a bottom density current that descends along the continental slope. If it did

not mix with the Atlantic water, the Mediterranean water would be dense enough to sink

to the bottom of the Atlantic Ocean. However, observations show that the Mediterranean

salinity tongue spreads across the North Atlantic basin at mid-depths (Lozier et al., 1995),

because it is diluted by entrainment of the overlying fresh Atlantic water (e.g., Price et al.,

1993). Similar considerations apply to other overflows (e.g., Red Sea: Murray and Johns,

1997; Denmark Strait: Girton et al., 2001; 2002). Studies by Jia (2000), Özgökmen et al.

(2001) and Özgökmen and Crisciani (2001) indicate another aspect of overflows that has

been only recently appreciated in that it has been put forth that the localized and persistent

mixing between the Mediterranean overflow and the North Atlantic Water also plays a role

in the dynamics of the overlying upper-ocean currents. A systematic comparison between

several realistic ocean circulation models for the North Atlantic circulation demonstrated

that the large-scale thermohaline circulation is strongly sensitive to the representation of
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overflows in these models (Willebrand et al., 2001). Since our ability to predict the long-

term behavior of large-scale ocean circulation (and hence, climate) relies primarily on the

accuracy of ocean models, it is important that such models accurately represent the dynamics

of dense bottom gravity currents, in particular their mixing with the ambient fluid.

Ocean models of the type used for computation of climate scenarios to the present day

have inherent problems in modeling the large-scale effects of overflow plumes mostly because

these models are not able to reproduce the product of the mixing processes where they enter

into the ocean. Models either dilute the outflow water too strongly (e.g., in geopotential

vertical coordinate models), thus destroying outflow signal, or they do not allow enough

mixing (e.g., in isopycnal coordinate models), resulting in the “wrong” product waters. An

accurate representation of the mixing of overflows with ambient water masses is critical

because it determines the properties of intermediate and deep water masses in the ocean. It

is generally accepted from laboratory experiments (Simpson, 1969) and observations (e.g.,

Baringer and Price, 1997b) that mixing between density currents and the ambient fluid

takes place primarily via vertical shear instability. Overflows have a small vertical scale,

typically 100−300 m (Price and Yang, 1998). The embedded overturns are smaller owing to

limitations imposed by stable stratification. An explicit representation of mixing in overflows

in numerical models requires not only a small vertical grid scale, but also a horizontal grid

scale that is small enough to capture the billows forming near the density interface. Oceanic

observations indicate that the typical height-to-length ratio of Kelvin-Helmholtz billows is

about 0.1 (e.g., Marmorino, 1987). The typical resolution requirements for explicit resolution

of billows are 10-30 m in the vertical direction and 100-300 m in the horizontal direction. As

overflows propagate with speeds on the O(1 ms−1), the time scale for the evolution of billows

is on the O(100 s). Given the typical spatial resolution of 100 km (5−20 km) and time steps

of O(hour) in climate (large-scale ocean) models, spatial and time scales to resolve overflows

are computationally prohibitive at the present time.

In addition to model resolution and vertical coordinate system, another issue is that

most ocean models are based on hydrostatic primitive equations. According to the hydro-

static approximation, the primary dynamical balance in the vertical momentum equation

is between the pressure gradient and gravitational buoyancy acceleration terms. Therefore,
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vertical acceleration terms are omitted, which lead to misrepresentation of vertical mixing

processes that are of importance in the dynamics of overflows.

Because of the importance of overflows, there has been significant effort to address these

dynamical and modeling issues. Significant progress has been achieved in improving the

downslope flow of overflows in geopotential vertical coordinate models (e.g., Beckmann and

Döscher, 1997; Winton et al., 1998; Killworth and Edwards, 1999; Nakano and Suginohara,

2002). Also, turbulence closures have been tried in terrain-following models (e.g., Jungclaus

and Mellor, 2000) and a mixing parameterization based on laboratory experiments (Turner,

1986) has been implemented in isopycnal models with encouraging results (Hallberg, 2000;

Papadakis et al., 2003).

Despite the recent progress, a critical issue that remains to be addressed is the details

of mixing and entrainment in bottom density currents. The present level of our system-

atic understanding of such mixing is derived from laboratory tank experiments (Ellison and

Turner, 1959; Simpson, 1969; Britter and Linden, 1980; Simpson, 1982; Turner, 1986; Simp-

son, 1987; Hallworth et al., 1996; Monaghan et al., 1999; Baines, 2001). However, when

configured for the small slopes of observed overflows [O(1o)], the dense source fluid cannot

accelerate enough within the bounds of typical laboratory tanks [O(1 m)] to produce turbu-

lent behavior. For turbulence to occur, laboratory experiments are configured with slopes

greater than 10o. It is also difficult to maintain a complex ambient stratification in these

tanks.

Given recent advances in numerical techniques and computer power, numerical mod-

eling provides an alternative avenue to investigate these processes. Nonhydrostatic, high-

resolution, two-dimensional (2D) simulations of bottom gravity currents have been conducted

by Özgökmen and Chassignet (2002) that capture explicitly the major features of such cur-

rents seen in laboratory experiments, such as the presence of a head in the leading edge and

Kelvin-Helmholtz vortices in the trailing fluid. Subsequently, this model has been used to

simulate the part of the Red Sea outflow in a submarine canyon, which naturally restricts

motion in the lateral direction such that the use of a 2D model provides a reasonable approx-

imation to the dynamics. It was shown (Özgökmen et al., 2003) that this model adequately

captures the general characteristics of mixing in the Red Sea overflow within the limitations
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of a 2D model, such as lack of edge effects or intrusions from channel walls associated with

the spanwise structure. The 2D numerical model employed in these studies provides sim-

plicity and computational efficiency. However, by allowing only the spanwise component

of vorticity, a 2D model imposes an obvious limitation on the equations of motion, hence

potentially on the mixing of bottom gravity currents with ambient fluid. Therefore, the log-

ical next step is to conduct three-dimensional (3D) numerical simulations of bottom gravity

currents.

In this study, the primary objective is to determine differences between 2D and 3D

simulations of bottom gravity currents. To this end, the experimental setup in Özgökmen

and Chassignet (2002) is adopted, in which the initial evolution of a dense water mass

released at the top of a sloping wedge at a constant angle is explored. Nek5000, a high-

order spectral element Navier-Stokes solver (Fischer, 1996, 1997; Fischer at al., 2000; Tufo

et al., 1999; Fischer and Mullen, 2001) is used as the basis for our simulations. First,

2D turbulent simulations are conducted. Then, the domain is extended in the spanwise

direction and equivalent 3D simulations are conducted. To the knowledge of the authors,

the present numerical simulations are the first to explicitly model 3D shear instability in

bottom gravity currents propagating over a sloping topography. The differences between

2D and 3D simulations are quantified by comparing the evolution of characteristic features

such as the head of the dense plume, Kelvin-Helmholtz waves, speeds of descent, turbulent

overturning length scales and entrainment parameters.

The paper is organized as follows: In section 2, the method is outlined and the numerical

model introduced. The experimental setup and parameters are outlined in section 3. Qual-

itative and quantitative comparisons of 2D and 3D simulations are presented in section 4.

Finally, the principal results and future directions are summarized in section 5.

2. Approach

2.1 Model requirements

Bottom density currents have been traditionally investigated using so-called “stream-

tube” models. These models have been useful in examining the path and bulk properties of

the Denmark Strait overflow (e.g., Smith, 1975), Weddell Sea overflow (Killworth, 1977), the
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Mediterranean overflow (Baringer and Price, 1997b) and initial studies of the Red Sea over-

flow (Bower et al., 2000). Various simplifications are required in these models, such as steady

state, motionless ambient fluid, simple topography and mixing parameterization based on

laboratory experiments. In recent years, there have been a number of studies employing

more complex models. Jungclaus and Backhaus (1994) used a primitive equation, 2D (x, y)

shallow water model with reduced gravity approximation in the vertical. They conducted

idealized experiments to investigate the effects of bottom friction and topography, and also

applied their model to the Denmark Strait overflow. Özsoy et al. (2001) used the same

model in the analysis of the overflow from the Bosphorus into the Black Sea, and concluded

that the slope and fine-scale features of the bottom topography are crucial elements in de-

termining plume behavior. Gawarkiewicz and Chapman (1995) used a 3D hydrostatic model

to explore the development of a plume with negative buoyancy. They found that the leading

edge of the plume forms eddies in the horizontal plane and concluded that instabilities and

eddy fluxes are important mechanisms for the transport of dense waters, in contrast to the

quasi-steady behavior implied from streamtube models. This conclusion is also supported

by numerical studies by Jiang and Garwood (1995, 1996), who used a different 3D, hy-

drostatic, sigma-coordinate model. Jiang and Garwood (1998) concluded that topographic

variations induce significant changes in the mixing and entrainment between density currents

and ambient fluid. Sigma- and isopycnic-coordinate ocean general circulation models have

been used to simulate the Mediterranean overflow (Jungclaus and Mellor, 2000; Papadakis

et al., 2003) employing various mixing parameterizations (Mellor and Yamada, 1982, and

Hallberg, 2000, respectively). These modeling studies have led to a significant understand-

ing of bottom density currents in the ocean. However, none of the above mentioned studies

explicitly resolve and capture shear instabilities at the density interface between the gravity

current and ambient fluid, which lead to mixing and entrainment. This is partly because of

inadequate resolution to capture the scales of such motion and partly because of hydrostatic

dynamics.

Following nonhydrostatic, high-resolution 2D simulations of bottom gravity currents in

idealized (Özgökmen and Chassignet, 2002) and realistic (Özgökmen et al., 2003) setttings,

the logical next step is 3D nonhydrostatic modeling of bottom gravity currents. The nu-
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merical model used in previous studies is based on strictly 2D (streamfunction-vorticity)

formulation and relatively low-order (finite difference) numerics, whereas the high computa-

tional cost of 3D simulations necessitates high-order models to minimize the number of grid

points and to obtain good scalability on parallel computers. In this study, a state-of-the-art

spectral element model is used, the details of which are described in the following.

2.2 Equations of motion

The momentum and continuity equations subject to the Boussinesq approximation can

be written as:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= − 1

ρ0

∂p

∂x
+ νh

∂2u

∂x2
+ νh

∂2u

∂y2
+ νv

∂2u

∂z2
, (1)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= − 1

ρ0

∂p

∂y
+ νh

∂2v

∂x2
+ νh

∂2v

∂y2
+ νv

∂2v

∂z2
, (2)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= − 1

ρ0

∂p

∂z
− g

ρ′

ρ0
+ νh

∂2w

∂x2
+ νh

∂2w

∂y2
+ νv

∂2w

∂z2
, (3)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 , (4)

where (x, y, z) are three spatial dimensions, t time, (u, v, w) three velocity components, p

pressure, g = 9.81 m2s−1 the gravitational acceleration, νh and νv are viscosities in the

horizontal and vertical directions. A linear equation of state is used

ρ′ = ρ0 β S , (5)

where ρ0 is the background water density, β = 7×10−4 psu−1 salinity contraction coefficient,

and S salinity deviation from a background value. The equation for salinity transport is

∂S

∂t
+ u

∂S

∂x
+ v

∂S

∂y
+ w

∂S

∂z
= Kh

∂2S

∂x2
+ Kh

∂2S

∂y2
+ Kv

∂2S

∂z2
(6)

where Kh and Kv are diffusivities in the horizontal and vertical directions.

Nondimensionalizing by

(x, y, z) = H (x∗, y∗, z∗), (u, v, w) =
νh

H
(u∗, v∗, w∗), t =

H2

νh
t∗, p =

ρ0 ν2
h

H2
p∗, S = ∆S S∗, (7)
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where H is the domain depth and ∆S is the amplitude of the salinity range in the system,

and dropping (∗), equations of motion in 3D become

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −∂p

∂x
+
∂2u

∂x2
+
∂2u

∂y2
+ r

∂2u

∂z2
, (8)

∂v

∂t
+ u

∂v
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+ v

∂v
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+ w

∂v
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= −∂p

∂y
+
∂2v

∂x2
+
∂2v

∂y2
+ r

∂2v

∂z2
, (9)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −∂p

∂z
− RaS +

∂2w

∂x2
+
∂2w

∂y2
+ r

∂2w

∂z2
, (10)

∂u

∂x
+
∂v

∂y
+
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∂z
= 0 , (11)

∂S

∂t
+ u

∂S

∂x
+ v

∂S

∂y
+ w

∂S

∂z
= Pr−1

(
∂2S

∂x2
+
∂2S

∂y2
+ r

∂2S

∂z2

)

, (12)

where Ra = (g β ∆S H3)/ν2
h is the Rayleigh number, the ratio of the strengths of buoyancy

and viscous forces, Pr = νh/Kh the Prandtl number, the ratio of viscous and saline diffusion,

and r = νh/νv = Kh/Kv the ratio of vertical and horizontal diffusivities and viscosities.

In 2D, equations (8)-(12) reduce to

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −∂p

∂x
+
∂2u

∂x2
+ r

∂2u

∂z2
, (13)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= −∂p

∂z
− RaS +

∂2w

∂x2
+ r

∂2w

∂z2
, (14)

∂u

∂x
+
∂w

∂z
= 0 , (15)

∂S

∂t
+ u

∂S

∂x
+ w

∂S

∂z
= Pr−1

(
∂2S

∂x2
+ r

∂2S

∂z2

)

. (16)

2.3 The numerical model

The small amount of physical dissipation calls for accurate representation of the con-

vective operator such that numerical dissipation and dispersion do not overwhelm physical
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effects. Because small-scale structures are transported with minimal physical dissipation,

accurate long-time integration is required. These challenges can be efficiently addressed

through the use of high-order methods in space and time. The presence of small-scale struc-

tures also implies a need for significant spatial resolution in supercritical regions, which may

be localized in space.

Spatial discretization of (8)-(12) is based on the spectral element method (SEM) (Maday

and Patera, 1989), which is a high-order weighted residual technique based on compati-

ble velocity and pressure spaces that are free of spurious modes. Nek5000 handles general

three-dimensional flow configurations, supports a broad range of boundary conditions for hy-

drodynamics, and accommodates multiple-species transport. Locally, the spectral element

mesh is structured, with the solution, data, and geometry expressed as sums of Nth-order La-

grange polynomials on tensor-products of Gauss or Gauss-Lobatto (GL) quadrature points.

Globally, the mesh is an unstructured array of K deformed hexahedral elements and can

include geometrically nonconforming elements. For problems having smooth solutions, the

spectral element method achieves exponential convergence with N , despite having only C0

continuity (which is advantageous for parallelism). The convection operator exhibits min-

imal numerical dissipation and dispersion, which is important in the numerical simulation

of turbulent flows. The capabilities of the spectral element method have been significantly

enhanced through the recent development of a high-order filter that stabilizes the method for

convection dominated flows without compromising spectral accuracy (Fischer and Mullen,

2001).

The time advancement is based on second-order semi-implicit operator-splitting methods

developed in Perot (1993) and Maday, Patera, and Rønquist (1990). The convective term is

expressed as a material derivative, and the resultant form is discretized via a stable backward-

difference formula.

Efficient solution of (8)-(12) in complex domains depends on the availability of fast solvers

for sparse linear systems. Nek5000 uses as a preconditioner the additive overlapping Schwarz

method introduced by Dryja and Widlund (1987) and developed in the spectral element

context by Fischer (1997) and Fischer et al. (2000). The key components of our overlapping

Schwarz implementation are fast local solvers that exploit the tensor-product form, and a
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parallel coarse-grid solver that scales to 1000s of processors (Fischer, 1996; Tufo and Fischer,

1999). The overlapping Schwarz method has provided a significant reduction in work over

previous multilevel solvers (Fischer, 1997).

3. Model configuration and parameters

The model domain is configured with a horizontal length of Lx = 10 km. The depth of the

water column ranges from 400 m at x = 0 to H = 1000 m at x = 10 km over a constant slope.

Hence the slope angle is θ = 3.5◦, which is within the general range of oceanic overflows,

such as the Red Sea overflow entering the Tadjura Rift (e.g., Özgökmen et al., 2003). In the

3D case, the domain is extended by Ly = 2 km in the spanwise direction (Fig. 1a).

The boundary conditions at the bottom are no-slip and no-normal flow for the velocity

components, and no-normal flux, ∂S/∂n = 0 with n being the normal direction to the

boundary, for salinity (Fig. 1a). At the top boundary, free-slip boundary condition is used.

The model is entirely driven by the velocity and salinity forcing profiles at the inlet boundary

at x = 0. The velocity distribution at the inlet (Fig. 1b) matches no-slip at the bottom

and free-slip at the top using fourth order polynomials such that the depth integrated mass

flux across this boundary is zero. The model is initialized using a salinity distribution of the

form

S =
1

2
exp(−x20)[1 − cos(π

1 − z

0.4
)] ,

such that the transition from dense water at the bottom to overlying light water is consistent

with the flow reversal for the velocity boundary condition (Fig. 1b). Imposing a steady inlet

velocity profile independent of the interior dynamics of the density current would lead to

either a recirculating flow at the inlet in the case of overestimation or thinning down of

the density current as it flows downslope due to inadequate rate of supply. To avoid this,

the amplitude of inflow velocity profile was time-dependent and scaled with the propagation

speed of the gravity current, which is zero at t = 0 and reaches a constant value shortly after

release (as shown below). Outflow boundary conditions of the type ∂u/∂x = ∂S/∂x = 0

are used at the exit boundary at x = Lx. As the interior is initialized with homonegenous,

light (S = 0) water, the density front propagation is the fastest signal in the system (as

opposed to a stratified interior, which may permit faster internal waves). By terminating
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the integrations before the nose of density current reaches this boundary, the potential

complications involving the outflow boundary are avoided, albeit with the limitation of

focusing only on the “start-up” phase of plumes rather than those in a statistically-steady

state. Finally, periodic boundary conditions are applied at the lateral boundary for 3D

simulations.

The main parameters of the system are the Rayleigh number Ra, the Prandtl number

Pr and the diffusivity ratio r. The Prandtl numbers are well known at the microscale

(Pr ≈ 7 for temperature and Pr ≈ 700 for salinity), but these values are not well defined

for larger scales. Here, it is assumed that the impact of turbulent motion is much higher

than that of molecular diffusivities on the effective subgrid-scale diffusion, such that there

is no difference between turbulent viscosity and diffusivity, and Pr = 1. This assumption is

supported by laboratory data by Webster (1964). Owing to the high aspect ratio of ocean

basins [O(106 m) wide but O(103 m) deep], it is generally assumed that diapycnal diffusivity

is very small (K ≈ 10−5 m2s−1 and r % 1). This observation clearly applies to large-scale

flows as the ocean maintains a characteristic stratification over long time scales. However,

this observation no longer applies near boundaries, regions of forcing, localized dissipation

and internal waves, all of which characterize overflows. Here, the vertical mixing ratio is

chosen such that the horizontal and vertical diffusion terms in the momentum equations are

approximately equal, i.e., r ≈ O(H2/L2
x) ≈ 10−2, and specifically r = 2× 10−2 in this study.

(When r → 1, the explicit vertical mixing leads to an immediate homogenization of the water

column so that the density current does not even flow downslope.) Finally, as Ra represents

the range of turbulent scales, the highest Ra permitted by the numerical resolution is used,

and Ra = 5 × 106 in the experiments presented below. In terms of dimensional quantities,

this corresponds to ∆S = 1 psu and νh ≈ 1 m2s−1.

An important factor in the dynamics of oceanic overflows is rotation. The scale at

which the Coriolis force becomes comparable to buoyancy force is a complex function of

the slope angle, stratification, and friction (e.g., Griffiths, 1986). A simple spatial scale for

rotational effects to become important is given by the radius of deformation
√

g′h/f , which

is approximately 17 km at midlatitudes with the experimental parameters, as compared to

Lx = 10 km. The rotation time scale is f−1 ≈ 15000 s, while, as shown below, the gravity
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currents cross the domain is ≈ 10000 s. Hence, the results presented here apply to the phase

before impact of rotation starts influencing the flow patterns. Therefore, rotation is neglected

here as a first order approximation, and will be the focus of a future investigation. Finally,

neglect of rotation allows us to compare results from numerical experiments to those from

laboratory experiments, the great majority of which have been conducted in the absence of

rotation.

The spectral element method offers a dual approach to convergence: algebraic via elemen-

tal grid refinement, and exponential via increase in the order of intra-element interpolation.

It is therefore opted to use a minimum number of elements so that (i) the shape of the

domain geometry is adequately captured, and (ii) element size is adjusted to better cap-

ture the bottom boundary layer. Once the element distribution satisfies these criteria, we

increase the spectral truncation degree for the convergence of the technique. In general,

the numerical solution of the physical problem of our interest benefits from two well-known

features of spectral element models: (i) the lack of numerical dissipation and (ii) excellent

phase properties.

The 2D mesh has K = 400 elements (50x8 in x, z directions) and the 3D mesh has

K = 4000 elements (50x8x10 in x, z, y directions). The elements have a smaller vertical scale

toward the bottom boundary, and follow topography (Fig. 1b). Therefore, the discretization

is free from cronic problems encountered in Cartesian-coordinate models (e.g., Winton et

al., 1998). The results presented in this paper are obtained using spectral truncation with

a polynomial degree of N = 10, which corresponds to 4 × 104 gridpoints for the 2D case,

and 4× 106 gridpoints in the 3D case. Using a time step of ∆t = 10−6 (0.85 s), the Courant

number remains C < 1 throughout the simulations. Experiments are repeated also with

N = 5, and show no significant difference from those with N = 10. The model parameters

are summarized in Table 1.

The experiments are conducted on a Beowulf Linux cluster consisting of 17 nodes with

1 Gbps ethernet connectivity. Each node has dual Athlon 2 GHz processors with 1024 MB

of memory. 2D simulations are conducted on 16 processors and take approximately 2 hours

(simulated to real time ratio of ≈ 2), whereas 3D simulations take approximately 9 days on

32 processors (simulated to real time ratio of ≈ 1/60).
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4. Results

The experimental strategy is as follows. The 2D experiment, designated as EXP-2D,

is compared to 3D experiments, EXP-3Da and EXP-3Db, which differ only in the spanwise

initialization of the density current. We first compare the experiments qualitatively, and

then quantitatively using downslope propagation speeds, growth rates of the head, turbulent

overturning length scales and entrainment parameters.

4.1 Description of the experiments

The evolution of the salinity distribution in EXP-2D is shown in Fig. 2a. The system

is initialized as described in section 3 and starts from rest. The initial development of the

system is that of the so-called lock-exchange flow (e.g., Keulegan, 1958; Simpson, 1987), in

which the lighter fluid remains on top and the denser overflow propagates downslope. The

dense gravity current quickly develops a characteristic “head” at the leading edge of the

current (Fig. 2b). The head is half of a dipolar vortex, which is a generic flow pattern that

tends to form in two-dimensional systems via the self-organization of the flow (e.g., Flierl

et al., 1981; Nielsen and Rasmussen, 1996), and which corresponds to the most probable

equilibrium state maximizing entropy (Smith, 1991). Initially, the gravity current is stable,

but by the time the current travels half the domain length, the head becomes unstable,

exhibiting breaking waves and intense mixing (Fig. 2c). The head grows and is diluted as

the gravity current travels down the slope, due to entrainment of fresh ambient fluid. The

trailing current, the “tail”, displays initially only some patterns of waves, but later (Fig. 2c)

the instability near the top of the tail leads to a rolling up of the density interface in lumped

vortices separated by a characteristic length scale. This behavior is clearly indicative of the

Kelvin-Helmholtz instability, in which waves made up of fluid from the current entrap the

ambient fluid (e.g., Corcos and Sherman, 1984). Initially, Kelvin-Helmholtz rolls remain

also quite stable, and grow in size by entrainment of ambient fluid and vortex pairing (e.g.,

Klaassen and Peltier, 1989). Eventually, the system becomes quite complex, exhibiting

shedding of dense blobs and localized features resembling hydraulic jumps (Fig. 2d,e). These

features were not observed in previous 2D simulations by Özgökmen and Chassignet (2002),

which were conducted at lower Ra (≈ 5×104−30×104, in our units) because of the numerical
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dissipation of the 2nd order finite-difference method with respect to that of the spectral-

element method. The integration is terminated once the density front reaches x ≈ Lx (Fig.

2e).

The 3D experiments are conducted by simply extending the domain in the spanwise

direction by Ly = 2 km and applying periodicity at the lateral boundaries. A sinusiodal

perturbation is imposed on the density current initialization in the spanwise direction (Fig.

3a) to accelerate the transition to 3D flow. Other alternatives to facilitate 3D break-down

include (i) addition of random perturbations to the equations of motion, or (ii) introduction

of y-dependent forcing as velocity or salinity boundary conditions. However, using (i) could

potentially degrade the high accuracy of the model numerics, and (ii) could act in a way

that it is no longer valid to compare 2D and 3D cases. Here, EXP-3Da simulation remains

equivalent to EXP-2D in the spanwise-integrated sense, in terms of parameters, forcing, and

initialization.

As the gravity current starts from rest (Fig. 3a), the initial perturbations actually decay

such that the current becomes nearly 2D at the beginning (Fig. 3b). As the system gains

enough inertia, 3D perturbations amplify (Fig. 3c) and make significant changes in both

the head and trailing fluid. The flow along the leading edge of the current is composed of a

complex pattern of so-called lobes and clefts, that are highly unsteady (Fig. 3c,d) and well-

known features from laboratory experiments tracing back to the work of Simpson (1972). It

was conjectured (e.g., Simpson, 1987) that a gravitational rise of the thin layer of light fluid

that the gravity current overruns is responsible for the breakdown of the flow at the leading

edge. Recently, Härtel et al. (2000) put forth that instability associated with the unstable

stratification prevailing at the leading edge between the nose and stagnation point of the

front could also account for this behavior. In the trailing fluid, the initial instabilities appear

to be 2D Kelvin-Helmholtz rolls that span the entire width of the domain (Fig. 3c). These

rolls gradually exhibit transition to 3D (Fig. 3d). The development of spanwise instabilities

in Kelvin-Helmholtz rolls has been investigated by Klaassen and Peltier (1991), who classified

them into two categories. First are dynamical secondary instabilities that tend to initiate

in the vortex core and the interface between strongly rotational and weakly rotational fluid,

and develop independently at different growth rates. And second are convective secondary

13



instabilities in the statically unstable regions which develop as the interface between the

two streams overturns. The spanwise variation of shear instability is therefore one of the

main mechanisms due to which differences in propagation speed and entrainment can exist

between 2D and 3D bottom gravity current simulations.

Several streamwise sections of the salinity distribution are depicted in Fig. 4a for EXP-

3Da. While individual sections exhibit coherent features that are similar in size to those

obtained in EXP-2D, the spanwise-averaged salinity distribution actually shows less structure

(Fig. 4b vs Fig. 2c) because of the variation of shear instabilities in the lateral direction.

EXP-3Db differs from EXP-3Da in that the amplitude of the initial spanwise perturbation

is three times larger (Fig. 5a vs Fig. 3a). This experiment is conducted to explore the

sensitivity of results to this perturbation. In a qualitative sense, the description of the

evolution of the system in EXP-3Db (Fig. 5b-d) follows that of EXP-3Da.

4.2 Speed of descent

It is well-known that in lock-exchange flows (e.g., Keulegan, 1958) and for constant-

flux gravity currents (e.g., Ellison and Turner, 1959; Britter and Linden, 1980), the density

front quickly reaches a constant speed of propagation. The propagation speed is insensitive

to variations in slope angle, since the increase in gravitational force due to greater slope

angle is compensated by buoyancy gain due to increased entrainment. In order to conduct

a quantitative comparison with previous laboratory and numerical results, the location of

density fronts is measured from spanwise-averaged salinity distributions that are sampled

every 500 time steps. The position of density fronts XF as a function of time is shown in

Fig. 6 for all experiments. In EXP-2D, the density front propagates at a remarkably constant

rate, which is initially followed closely by EXP-3Da,b, but a transition takes place during the

time interval 3000 s ≤ t ≤ 3500 s in that the 3D experiments start deviating from the 2D

case by adopting a faster rate of propagation. This time period coincides with the transition

from approximately 2D to 3D instabilities in EXP-3Da,b as shown in Figs. 3,5b,c. As the

speed of propagation is closely linked with details of entrainment, Fig. 6 suggests that there

is a marked shift in the nature of entrainment following the onset of 3D instabilities.

The relevant scale for the propagation speed is the speed of internal wave associated with
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the buoyancy input. In lock-exchange flows, the buoyancy speed scale is
√

g′h0, where g′ =

g β ∆S ≈ 7×10−3 ms−2 is the reduced gravity and h0 = 200 m is the thickness of dense water

at the top of the slope, leading to a speed scale of 1.17 ms−1. Even though this scale applies

to flows over horizontal surfaces, given the gentle slope in this study, it is reasonable to make

comparison to this speed scale. The propagation speed is estimated from UF = dXF /dt and

the ratio UF /
√

g′h0 is plotted in Fig. 7 for all experiments. Following an initial adjustment

period, EXP-2D reaches a constant propagation speed ratio of UF /
√

g′h0 ≈ 0.73, whereas

EXP-3Da,b oscillate around a mean value of UF /
√

g′h0 ≈ 0.85. The 3D experiments exhibit

more variation in UF probably because of the lobe and cleft instability at the leading edge

(Figs. 3,4). Benjamin (1968) estimated theoretically that UF /
√

g′h0 = 1/
√

2 when the ratio

of dense water depth and total water depth is 0.5 (as near the inlet) and UF /
√

g′h0 = 1

when the depth ratio is 0.2 (as near the outlet). Fig. 7 indicates that Benjamin’s (1968)

formulae yield reasonable bounds for the results from numerical experiments. However, note

that theoretical results are subject to a variety of assumptions, some of which are clearly

unrealistic such as neglect of friction and mixing.

It is therefore of interest to compare the speed of propagation to that from laboratory

experiments. Britter and Linden (1980) found, and it also follows from dimensional anal-

ysis, that UF ∼ (g′Q)1/3 where Q is the volume flux at the inlet. In our experiments,

the boundary conditions act in a way to establish quickly a steady volume flux (spanwise-

averaged) of Q ≈ 125 m2s−1, and hence yield a propagation speed scale of 0.95 ms−1. The

proportionality constant is estimated from Fig. 8, which shows UF /(g′Q)1/3 = 0.9 for EXP-

2D, and UF /(g′Q)1/3 ≈ 1.1 for EXP-3Da,b. These results, in particular those from 3D

experiments, are in good agreement with laboratory measurements of Britter and Linden

(1980), who found UF /(g′Q)1/3 = 1.5 ± 0.2, and of Monaghan et al. (1999), who reported

UF /(g′Q)1/3 = 1.0 ± 0.1.

4.3 Characteristics of the head

The head vortex at the leading edge is a characteristic feature of the start-up phase in

bottom gravity currents. The lighter fluid is displaced and lifted up by the leading edge of

the gravity current, and strong entrainment takes place into the head from behind (e.g., as
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shown in Fig. 11 in Özgökmen and Chassignet, 2002). As the head vortex carries fresh fluid

from around the front to the rear of the head, this entrainment leads to the growth of the

head. Therefore, it is of interest to quantify the growth rate of the head vortex.

The change in head height H with downslope distance X is shown in Fig. 9 for all

experiments. This figure indicates that the head of the gravity current in EXP-2D grows at

approximately constant rate of dH/dX ≈ 0.051. The head becomes unstable and breaks

down at approximately X = 7000 m, but the remainder of the head continues to grow at the

same rate. This rate of growth is in very good agreement with dH/dX ≈ 0.046 obtained

from the following relationship for θ = 3.5◦

dH
dX

≈ 13 × 10−3 θ , for 1◦ ≤ θ ≤ 5◦ , (17)

that was derived by Özgökmen and Chassignet (2002) based on 2D numerical experiments.

However, Ellison and Turner (1959), Britter and Linden (1980), and Monaghan et al.

(1999) obtained from laboratory experiments that

dH
dX

≈ 4 × 10−3 θ , (18)

and the discrepancy between (17) and (18) was surmised to be due to the 2D nature of the

simulations by Özgökmen and Chassignet (2002).

As shown in Fig. 9, the growth rate of the head in EXP-3Da,b follows that in EXP-2D

until t ≈ 3500 s, as all experiments exhibit 2D characteristics during this initial phase. Once

the transition to 3D takes place, however, the head growth rate slows down significantly, and

a least square fit to data points from EXP-3Da,b yields dH/dX ≈ 0.015, which is in very

good agreement with dH/dX ≈ 0.014 obtained from (18) for θ = 3.5◦.

The lengths of head, L, are also estimated from the experiments. Britter and Linden

(1980) demonstrate that the growth rates of the length and height of the head are directly

proportional, and the aspect ratio of height versus length is a function of the slope angle.

Fig. 10 shows that following an initial adjustment period, the ratio H/L stabilizes around a

mean value of

H
L

≈ 0.23 , (19)
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which is in good agreement with the laboratory result of Wood (1965, extracted from Fig.

9 of Britter and Linden, 1980) that H/L ≈ 0.25 for gravity current over a slope of θ = 5◦.

4.4 Turbulent overturning length scales

While the geometric scales of the head are analysed in section 4.3, it is of interest to quan-

tify all turbulent scales that contribute to mixing. Several relevant length scales in stratified

shear flows have been proposed and investigated in detail (e.g., Ozmidov, 1965; Thorpe,

1977; Dillon, 1982; Osborn, 1980; Itsweire et al., 1993; Smyth and Moum, 2000; Tseng and

Ferziger, 2001). Some of these length scales require determination of background potential

energy, i.e. the minimum potential energy attainable through an adiabatic distribution of

the density field (e.g., Winters et al., 1995). This is complicated in the present experimental

setup in which boundary fluxes are permitted and a density front propagates over elevation

changes. Given that the main objective is to compare turbulent length scales in 2D vs. 3D,

we focus on a single scale, the Thorpe scale, which is well-defined, commonly used, and

straightforward to compute. Thorpe’s (1977) method consists of reordering a model/data

density profile, which may contain inversions, into a stable monotonic profile which contains

no inversions (e.g., Fig. 11a). Thorpe displacement, d, is the distance that the water parcel

must travel vertically in order to reach neutral buoyancy (e.g., Fig 11b). The Thorpe scale,

'T , is defined as the rms of the displacements,

'T =< d2 >1/2
z , (20)

which is proportional to the scale of the vertical overturning. It is also useful to define

horizontally-averaged Thorpe scale, 'T ,

'T =< 'T >x,y , (21)

where <> denotes the mean, and the subscripts indicate the direction.

In the numerical experiments, Thorpe scales are calculated in two ways. The first is by

selecting a specific location in x and then monitoring spanwise-averaged 'T as the density

front arrives and passes by this location. The second is by calculating 'T over the entire

length of descending plumes. The former reveals the details of coherent structures at specific

locations whereas the latter gives an average of all turbulent scales as a function of time.
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Fig. 12a shows the average Thorpe scale normalized by the initial dense water depth

('T /h0) near the top of the slope at x = 1.5 km in all experiments as a function of time.

The turbulent scales in both 2D and 3D experiments exhibit pulses of intense overturning

separated by periods of laminar flow. This seems to be a manifestation of Kelvin-Helmholtz

shear instabilities that tend to occur at this location, as seen in Figs. 2,3,5. ('T /h0) is also

calculated near the middle of the slope at x = 4.0 km (Fig. 12b). The arrival of the large

overturning scale associated with the head vortex is followed by smaller scale overturning

eddies that seem to be continuous in time rather than episodic as those at x = 1.5 km. Fig.

12 indicates that there is not a significant difference between the scales observed in EXP-3Da

and EXP-3Db, whereas those in EXP-2D appear to be somewhat larger. Turbulent scales

('T /h0) averaged over the entire length of descending plumes are shown in Fig. 13a. The

growth in the overturning scale in time is only partly due to the growth of the head vortex

and is inherently related to the transient nature of the experiments. Fig. 13a confirms

that turbulent scales averaged over the entire plume are somewhat larger in 2D than in 3D.

The ratio of 2D and 3D scales is quantified in Fig. 13b (after the initial transient), which

indicates that on average turbulent scales are 30-50% larger in EXP-2D than those in EXP-

3Da,b. This seems to be because, as indicated by Fjortoft’s (1953) theorem, 2D turbulence

allows for cascade of energy toward both small and large scales, leading to a double cascading

spectrum (e.g., Lesieur, 1983). Physically, the inverse energy transfer to large scales results

from pairing of Kelvin-Helmholtz vortices, which is well documented in 2D shear flows (e.g.,

Corcos and Sherman, 1984; Klaassen and Peltier, 1989). In 3D, the energy cascade is toward

small scales with the coherent overturning structures being created and maintained under

the steady gravitational forcing in the system. Ultimately, the work done by the turbulent

overturning eddies determines how much ambient fluid is entrained into the gravity currents,

which is quantified in the next section.

4.5 Entrainment

Following the definition of Morton et al. (1956), entrainment is typically quantified as

E ≡ wE

U
, (22)

where wE is the net entrainment velocity and U is the local current speed. For bottom
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gravity currents, this can be approximated as

E ≈ δh

'
, (23)

where δh is the increase (decrease) in the thickness of the dense current due to entrainment

(detrainment) over a net streamwise distance of '. Note that while relatively reliable esti-

mates of ' or U are possible, wE or δh can be very difficult to estimate by using profiles from

individual sections, in particular for 3D data, due to highly turbulent and time-dependent

nature of the flow. Here, we define an entrainment metric, which is similar to previous

definitions by Meleshko and van Heijst (1995), Hallworth et al. (1996) and Özgökmen and

Chassignet (2002), but has the advantages of being a reliable estimate that applies equally-

well to both transient and statistically-steady flows, and being compatible with definitions

(22) and (23).

E(t) ≡ Vtotal(t) − V0(t)

V (t)
, (24)

where Vtotal is the total volume of dense fluid

Vtotal(t) ≡
∫ Ly

0

∫ XF (y′,t)

x0

h(x′, y′, t) dx′ dy′ , (25)

between a reference station of x0 and the leading edge of the density current XF . Here, we

take x0 = 1.5 km to clear the initial volumes of the dense water in the experiments (e.g.,

Figs. 2a,3a,5a). The overflow thickness h is calculated from

h(x, y, t) ≡
∫ z0

0
η(x, y, z′, t) dz′ where η(x, y, z, t) =






0, when S(x, y, z, t) < ε

1, when S(x, y, z, t) ≥ ε
, (26)

where z0 is the depth of bottom topography, and ε = 0.2 (psu) is the density interface

threshold value, which is selected to encompass all contours of salinity shown in Figs. 2-

5. In principle, the density interface threshold value can be continuously varied to explore

exchanges of fluid between different density layers, however this is beyond the scope of our

interest here. V0 is the input volume of dense fluid at the reference station at the top of the

slope (for small θ)

V0(t) ≡
∫ t

0

∫ Ly

0

∫ z0

z0+h
u(x0, y

′, z′, t′) dz′ dy′ dt′ , (27)
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and finally

V (t) ≡ '(t)2 Ly , (28)

where '(t) =< XF (y, t) − x0 >y is the spanwise-averaged length of the dense overflow mea-

sured from the reference station x0.

Noting that

Vtotal(t) = h(t) '(t) Ly , (29)

and

V0(t) = h0(t) '(t) Ly , (30)

where h(t) and h0(t) are the total (with entrainment) and original (without any entrainment)

mean thickness of dense water, (24) can be written as

E(t) =
h(t) − h0(t)

'(t)
. (31)

It can be seen that (31) is compatible with traditional definitions (22) and (23), but esti-

mation of h(t) and h0(t) via volume integrals (25) and (27) leads to reliable estimates of

E. (In 2D, integration in y-direction is not necessary, and volume integrals reduce to area

integrals.)

Fig. 14 depicts time evolutions of h(t) and h0(t) in EXP-2D. Since there is no entrainment

initially, h0 ≈ h. Once the head starts forming during 1500 s ≤ t ≤ 2500 s, these quantities

start to differ. Note h0 stabilizes around a mean value of 150 m, whereas h shows a steady

increase due to entrainment. Similar behavior follows in the other experiments (not shown).

Time evolutions of entrainment parameters E(t) in all experiments are shown in Fig. 15.

Entrainment starts at slightly different times because of differences in the initialization of the

experiments. The initial entrainment rates are quite comparible because of the 2D nature

of the flow during initial stages, as discussed earlier. Entrainment parameter decreases in

time in all experiments, because initially entrainment is associated with the growth of the

head, which is known to be higher than that in the trailing flow (e.g., Turner, 1986). As

the gravity current flows down the slope, the contribution of the head entrainment to overall
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entrainment decreases. Entrainment in 3D experiments decreases at a faster rate than that

in EXP-2D partly because the head starts showing 3D characteristics after t > 3000 s (Fig.

9) and grows at a smaller rate, as discussed in section 4.3. Generally speaking, it is not

surprizing that the entrainment during the start-up phase is higher than that in a phase

approaching equilibrium (e.g., Beckmann, 1998). By the end of the integrations, E in EXP-

2D is approximately twice as much as those from EXP-3Da,b, which is consistent with the

results found about differences in turbulent length scales in section 4.4. For reference, the

estimate E = (5 + θ) × 10−3 given by Turner (1986) based on laboratory experiments of

Ellison and Turner (1959) is plotted in Fig. 15 as well. Note, however, that the actual

laboratory experiments were conducted for θ > 10◦ and the above relationship is extended

to θ = 3.5◦ in this study. The entrainment parameter in 3D experiments is E ≈ 5 × 10−3

at the end of the integrations, but possibly still decreasing. This is somewhat higher than

the entrainment parameters observed in oceanic overflows, which are estimated to be in the

range of 0.2×10−3 ≤ E ≤ 2×10−3 (Baringer and Price, 1997b; based on Mediterranean Sea

overflow observations; Özgökmen et al. 2003, based on Red Sea overflow observations and

numerical modeling). However, the high entrainment in the numerical experiments could be

due to a variety of factors ranging from the time-dependent nature of the flow, differences in

slope angles, the neglect of rotation and ambient stratification, and generally, the idealized

nature of this investigation.

5. Summary and conclusions

This study is motivated by the fact that most deep and intermediate water masses are

released into the large-scale ocean circulation from high-latitude and marginal seas in the

form of overflows. In light of observations which revealed that the mixing of overflows

with the ambient fluid takes place over very small spatial and time scales (Price et al.,

1993; Baringer and Price, 1997a,b; Price and Yang, 1998), and studies with ocean general

circulation models that demonstrated that the strength of the thermohaline circulation is

very sensitive to details of the representation of overflows in these models (e.g., Willebrand et

al., 2001), overflow-induced entrainment is being generally recognized as one of the prominent

oceanic processes. The importance of overflows has led to significant effort to improve their
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representation in ocean models, and significant progress has been achieved recently (e.g.,

Beckmann and Döscher, 1997; Winton et al., 1998; Killworth and Edwards, 1999; Jungclaus

and Mellor, 2000; Hallberg, 2000; Nakano and Suginohara, 2002; Papadakis et al., 2003).

An important avenue that will complement dedicated observational programs such as

those in the Meditteranean Sea (Price et al. 1993), the Red Sea (Bower et al., 2002; Johns et

al., 2003, Peters et al., 2003) and the Denmark Strait (Girton et al., 2001) in order to improve

parametrizations of overflow processes, is process modeling. However, because of the small

space and time scales, fully realistic modeling of overflow processes demands high-resolution,

nonhydrostatic models. In recent nonhydrostatic simulations of bottom gravity currents in

idealized (Özgökmen and Chassignet, 2002) and realistic (Özgökmen et al., 2003) settings, a

2D model was used, which offers great simplicity and computational efficiency, albeit at the

expense of allowing only the spanwise component of vorticity and thus potentially modifying

the ways in which mixing and entrainment can take place in a real fluid. Therefore, a logical

next step is to conduct 3D numerical experiments. Our primary objective in this study is to

explore differences between 2D and 3D nonhydrostatic simulations bottom gravity currents.

3D nonhydrostatic experiments require the use of a sophisticated numerical model that

has good convergence characteristics to minimize the number of grid points and time steps,

and good scalability on parallel computers. Spectral element models provide characteris-

tics such as minimal numerical dissipation and excellent scalability. Spectral element design

combines the geometric flexibility of finite element models with the numerical accuracy of

spectral decomposition. It also offers a dual approach to convergence; algebraic via elemental

grid refinement and exponential via the increase in the order of intra-element interpolation.

The use of the spectral element method for ocean general circulation (hydrostatic) simula-

tions has been pioneered by Iskandarani et al. (1995; 2002; 2003). Here we use Nek5000,

a high-order state-of-the-art spectral element Navier-Stokes solver (documented in detail by

Fischer, 1996; 1997; Fischer at al., 2000; Tufo and Fischer, 1999; Fischer and Mullen, 2001)

as the basis for our simulations. The parallel scaling of Nek5000 on 8168-processor ASCI-Red

for a 3D flow simulation was recognized with the Gordon Bell Prize in 1999.

The initial evolution of a dense water mass released at the top of a sloping wedge at a

constant angle is explored. Results from a 2D turbulent simulation, denoted EXP-2D, are
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compared to those from equivalent 3D simulations, denoted EXP-3Da,b, which are conducted

by extending the domain in the spanwise direction. The 3D experiments differ only in the

magnitude of the initial spanwise perturbation that is used to facilitate 3D break down.

No significant difference is found between the results from the two 3D experiments, but

they provide two different realizations, thus increasing the reliability of the results. To the

knowledge of the authors, the present numerical simulations are the first to capture explicitly

3D shear instability in bottom gravity currents propagating over a sloping topography.

Qualitatively, evolutions of bottom gravity currents in 2D and 3D are similar, both

exhibiting a large vortex in the leading edge and shear instabilities in the trailing fluid. In

3D experiments, both the head vortex and Kelvin-Helmholtz rolls show 2D characteristics

spanning the entire width of the domain, but then transition to 3D by exhibiting a break-

down of spanwise rolls and the so-called lobe and cleft instability in the leading edge, which

is caused by the instability associated with the nose propagation (Härtel et al., 2000) and a

well-known feature from laboratory experiments (e.g., Simpson, 1972).

Quantitatively, the propagation speed of the density front is UF /(g′Q)1/3 ≈ 0.9 (or UF =

0.85 ms−1) in EXP-2D and UF /(g′Q)1/3 ≈ 1.1 (or UF = 1.0 ms−1) in EXP-3Da,b, which are

in good general agreement with laboratory results of (1 ± 0.1) ≤ UF /(g′Q)1/3 ≤ (1.5 ± 0.2)

(Britter and Linden, 1980; Monaghan et al. 1999) and analytical estimates of Benjamin

(1968). The growth rate of the head is dH/dX ≈ 0.051 in EXP-2D, in good agreement with

the relationship dH/dX ≈ 13× 10−3θ ≈ 0.046 derived by Özgökmen and Chassignet (2002)

based on 2D simulations. However, dH/dX ≈ 0.015 in EXP-3Da,b, in very good agreement

with dH/dX ≈ 4 × 10−3θ ≈ 0.014 based on laboratory experiments by Ellison and Turner

(1959), Britter and Linden (1980) and Monaghan et al. (1999). Hence, the head growth rate

is 3 times larger in 2D than in 3D. In order to explore differences in turbulent length scales,

Thorpe scales are calculated, which are found to be 30− 50% larger in 2D than those in 3D.

The difference is scales results from cascade of energy to large scales in 2D turbulence.

Differences in the speed of propagation, head growth rates and turbulent length scales

clearly point towards differences in the entrainment characteristics in 2D and 3D. A new

method for a reliable estimation of entrainment parameter E is introduced, which applies

equally well to transient and statistically-steady flows, is compatible with traditional defini-
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tions of entrainment, and suitable for processing large data sets in 2D or 3D. It is shown that

E in EXP-2D can be 2 times as large as that in EXP-3Da,b. In absolute terms, E ≈ 5× 10−3

in EXP-3Da,b, which compares reasonably well with E ≈ 8.5× 10−3 based on a relationship

given by Turner (1986), when extended to the slope angle of this study. The entrainment

parameter in the numerical experiments is somewhat higher than those observed in oceanic

overflows, which are typically in the range of 0.2 × 10−3 ≤ E ≤ 2 × 10−3. This discrep-

ancy could be explained by a variety of factors ranging from the time-dependent nature of

the flow, differences in slope angles, the neglect of rotation and ambient stratification, and

generally, the idealized nature of this investigation.

In conclusion, while some differences between 2D and 3D simulations, which arise entirely

due to internal factors associated with the truncation of the Navier-Stokes equations for 2D

approximation, can be significant in a quantitative sense, 2D results are qualitatively still

quite close to those from 3D simulations. Therefore, in the absence of external factors

that can trigger 3D circulation patterns, such as topographic variations in the spanwise

direction and rotation, 2D approximation provides a computationally inexpensive approach

to investigate the general behavior of bottom gravity currents. We surmise that far more

significant differences between 2D and 3D results would arise in cases in which topographic

slope varies in the spanwise direction, and/or rotational effects are important. These topics

will be investigated in the near future.
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Beckmann, A., and R. Döscher, 1997: A method for improved representation of dense water

spreading over topography in geopotential-coordinate models. J. Phys. Oceanogr., 27,

581-591.

Benjamin, T.B., 1968: Gravity currents and related phenomena. J. Fluid Mech., 31, 209-

248.

Borenäs, K.M., and P.A. Lundberg, 1988: On the deep-water flow through the Faroe Bank

Channel. J. Geophys. Res., 93, 1281-1292.

Bower, A.S., H.D. Hunt, and J.F. Price, 2000: Character and dynamics of the Red Sea and

Persian Gulf outflows. J. Geophys. Res., 105, 6387-6414.

Bower, A.S., D.M. Fratantoni, W.E. Johns, and H. Peters, 2002: Gulf of Aden eddies and

their impact on Red Sea Water. Geophys. Res. Lett., 29, doi: 10.1029/2002GL015342.

Britter, R.E., and J.E. Simpson, 1978: Experiments on the dynamics of a gravity current

head. J. Fluid Mech., 88, 223-240.

Britter, R.E., and J.E. Simpson, 1981: A note on the structure of the head of an intrusive

gravity current. J. Fluid Mech., 112, 459-466.

Britter, R.E., and P.F. Linden, 1980: The motion of the front of a gravity current traveling

down an incline. J. Fluid Mech., 99, 531-543.

Bryden, H. L., and T. H. Kinder, 1991: Steady two-layer exchange through the Strait of

Gibraltar. Deep-Sea Res., 38 Suppl., S445-S463.

Corcos, G.M., and F.S. Sherman, 1984: The mixing layer: deterministic models of a tur-

bulent flow. Part 1. Introduction and the two-dimensional flow. J. Fluid Mech., 139,

29-65.

25



Dickson, R.R., E.M. Gmitrowics, and A.J. Watson, 1990: Deep water renewal in the north-

ern North Atlantic. Nature, 344, 848-850.

Dillon, T.M., 1982: Vertical overturns: a comparison of Thorpe and Ozmidov length scales.

J. Geophys. Res., 87(C12), 9601-9613.

Dryja, M., and O. B. Widlund, 1987: An additive variant of the Schwarz alternating method

for the case of many subregions. Technical Report 339, Dept. of Computer Science,

Courant Institute.

Ellison, T.H., and J.S. Turner, 1959: Turbulent entrainment in stratified flows. J. Fluid

Mech., 6, 423-448.

Fernando, H. J. S., 1991: Turbulent mixing in stratified fluids. Annu. Rev. Fluid Mech.,

23, 455-493.

Fischer, P.F. and J. S. Mullen, 2001: Filter-Based Stabilization of Spectral Element Meth-

ods. Comptes rendus de l’Académie des sciences Paris, t. 332, -Série I - Analyse

numérique, 265-270.

Fischer, P.F., 1996: Parallel multi-level solvers for spectral element methods. in Proceedings

of Intl. Conf. on Spectral and High-Order Methods ’95, Houston, TX, A.V. Ilin and

L.R. Scott, Eds.

Fischer, P.F., 1997: An Overlapping Schwarz Method for Spectral Element Solution of the

Incompressible Navier-Stokes Equations. J. of Comp. Phys. 133, 84–101.

Fischer, P.F., 1998: Projection techniques for iterative solution of Ax = b with successive

right-hand sides. Comp. Meth. in Appl. Mech., 163, 193–204.

Fischer, P.F., N. I. Miller, and H. M. Tufo, 2000: An Overlapping Schwarz Method for

Spectral Element Simulation of Three-Dimensional Incompressible Flows. in Parallel

Solution of Partial Differential Equations . Springer-Verlag, ed. by P. Björstad and M.

Luskin, 159-181.

Fjortoft, R., 1953: On the changes in the spectral distribution of kinetic energy for two-

dimensional non-divergent flow. Tellus, 5, 225-230.

Flierl, G.R., M.E. Stern, and J.A. Whitehead, 1981: The physical significance of modons:

laboratory experiments and general integral constraints. Dyn. Atmos. Oceans, 7,

233-263.

26



Gawarkiewicz, G., and D.C. Chapman, 1995: A numerical study of dense water formation

and transport on a shallow, sloping continental shelf. J. Geophys. Res., 100, 4489-

4507.
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Domain size (Lx, Lz = H,Ly) in 2D: (104 m, 103 m); and in 3D: (104 m, 103 m, 2 × 103 m)

Slope angle θ = 3.5◦

Rayleigh number Ra = 5 × 106

Prandtl number Pr = 1

Diffusivity ratio r = 2 × 10−2

Viscosities νh = 1.17 m2s−1 and νv = 2.34 × 10−2 m2s−1

Diffusivities Kh = 1.17 m2s−1 and Kv = 2.34 × 10−2 m2s−1

Salinity range ∆S = 1.0 psu

Number of elements (x, z, y) in 2D: (50 , 8); and in 3D: (50 , 8 , 10)

Polynomial degree N = 10

Number of grid points in 2D: 4 × 104, and in 3D: 4 × 106

Time step ∆t = 0.85 s

Table 1: Parameters of the numerical simulations.
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Figure 1: (a) Schematic depiction of the domain geometry and boundary conditions (length

scale is in km). (b) Velocity profile at the forcing boundary and the initial distribution of

salinity. Distribution of elements is depicted in the background.
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(c) t = 4675 s

(d) t = 9350 s

(e) t = 11050 s
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Figure 2: Salinity distribution in EXP-2D at (a) t = 0, (b) t = 2125 s (≈ 0.6 h), (c) t =

4675 s (≈ 1.3 h), (d) t = 9350 s (≈ 2.6 h), (e) t = 11050 s (≈ 3.1 h).



(a) t = 0 (b) t = 2125 s

(c) t = 4675 (d) t = 9350 s

Figure 3: Distribution of salinity surface 0.3 ≤ S ≤ 0.6 in EXP-3Da at (a) t = 0, (b)

t = 2125 s (≈ 0.6 h), (c) t = 4675 s (≈ 1.3 h), (d) t = 9350 s (≈ 2.6 h).



(a) Streamwise salinity slices at t = 4675 s

(b) Spanwise-averaged salinity at t = 4675 s

Figure 4: (a) Streamwise slices, and (b) spanwise-average of salinity distribution in EXP-

3Da at t = 4675 s.
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(c) t = 4675 (d) t = 9350 s

Figure 5: Distribution of salinity surface 0.3 ≤ S ≤ 0.6 in EXP-3Db at (a) t = 0, (b)

t = 2125 s (≈ 0.6 h), (c) t = 4675 s (≈ 1.3 h), (d) t = 9350 s (≈ 2.6 h).



Figure 6: Position of the density front, XF (in m) as a function of time (in s) in all

experiments. Line with “+++” denotes result from EXP-2D, and lines with “***” and

“ooo” denote those from EXP-3Da and EXP-3Db, respectively.



Figure 7: Descent speed normalized by the speed of internal wave for lock-exchange flows,

UF /
√

g′h0. Line with “+++” denotes result from EXP-2D, and lines with “***” and “ooo”

denote those from EXP-3Da and EXP-3Db, respectively. Dashed lines show theoretical results

by Benjamin (1968), who found that UF /
√

g′h0 = 1/
√

2 when the ratio of dense water and

total water depth is 0.5, and UF /
√

g′h0 = 1 when the depth ratio is 0.2.



Figure 8: Descent speed normalized by the speed of input buoyancy flux, UF /(g′Q)1/3.

Line with “+++” denotes result from EXP-2D, and lines with “***” and “ooo” denote

those from EXP-3Da and EXP-3Db, respectively. Dashed lines mark the mean values from

laboratory experiments by Britter and Linden (1980) UF /(g′Q)1/3 = 1.5±0.2, and Monaghan

et al. (1999) UF /(g′Q)1/3 = 1.0 ± 0.1.



Figure 9: Change of head height H (in m) with distance X (in m). Line with “+++”

denotes result from EXP-2D, and lines with “***” and “ooo” denote those from EXP-3Da

and EXP-3Db, respectively. Solid lines show least square approximations to data points,

dH/dX ≈ 0.051 for 2D phase and dH/dX ≈ 0.015 for 3D phase.



Figure 10: The ratio of head height to head length H/L as a function of distance X (in

m). The dashed line indicated the laboratory result by Wood (1965, extracted from Fig. 9

of Britter and Linden, 1980) that H/L ≈ 0.25 for gravity current over a slope of θ = 5◦.



Figure 11: (a) Sample salinity profile taken from EXP-2D at x = 1.5 km and t = 9829 s

(solid line). The dashed line shows the same values after being reordered into a stable

monotonic profile. (b) Thorpe displacement, d, indicates the distance that water parcels in

the original salinity profile must travel in order to reach stable stratification. Thorpe scale,

'T ≡< d2 >1/2
z is proportional to the scale of vertical overturning.



Figure 12: Average turbulent overturning scales normalized by the initial thickness of

dense water column, ('T /h0), which are sampled as a function of time at (a) x = 1.5 km and

(b) at x = 4.0 km in EXP-2D (solid lines), EXP-3Da (lines with “***”) and EXP-3Db (lines

with “ooo”). Defining a buoyancy time scale tb ≡
√

h0/g′ ≈ 169 s, the time axis, t = 12000 s

scales to t/tb = 71.



Figure 13: (a) Turbulent overturning scales normalized by the initial thickness of dense

water column, ('T /h0), which are averaged over the entire length of descending plumes in

EXP-2D (solid lines), EXP-3Da (lines with “***”) and EXP-3Db (lines with “ooo”). (b) The

ratio of 2D and 3D overturning scales, EXP-2D/EXP-3Da (solid line) and EXP-2D/EXP-3Db

(dashed line).



Figure 14: Time evolution of original mean overflow thickness h0(t), and total mean

overflow thickness h(t) in EXP-2D. Note that h0 ≈ h until the initial formation of the head

during 1500 s ≤ t ≤ 2500 s, and then h0 stabilizes around a mean value of 150 m, whereas h

shows a steady increase due to entrainment.



Figure 15: Time evolution of entrainment parameters E(t) in all experiments. Line with

“+++” denotes result from EXP-2D, and lines with “***” and “ooo” denote those from EXP-

3Da and EXP-3Db, respectively. Dashed line marks the estimate E = (5+θ)×10−3 = 0.0085

given by Turner (1986) based on laboratory experiments of Ellison and Turner (1959).


