
Optimal design of fluid flow using subproblems
reduced by large eddy simulation

Argus Adrian Dunca

October 23, 2003

Abstract

This report presents tests of a 2-dimensional parallel PETSc code
developed while I was a Givens fellow in residence at ANL, code which
computes the fluid velocity and pressure in a given domain subject to
given inflow and outflow boundary conditions. The code provides an
approximation to the solution of the Navier-Stokes equations, a classical
Large Eddy Simulation model (Smagorinsky’s model) as well as a new
LES model which was tested with good results(see section 4 and 5) and
whose mathematical analysis is currently under study. I also wrote and
tested a code to compute the total kinetic energy of the flow and the
total vorticity (circulation per unit area) of the flow. Finally, I ran
numerical tests to illustrate the value of using LES as a reduced order
model in shape optimization.

1 General Methodology

To compute the fluid velocity and pressure on a domain Ω the Navier
Stokes equations [2] which model the motion of an incompressible vis-
cous, Newtonian fluid

ut − ν∆u + (u · ∇)u + ∇p = f in (0, T ) × Ω
∇ · u = 0 in (0, T ] × Ω

u = g in (0, T ] × ∂Ω
u |t=0 = u0 in Ω∫
Ω pdx = 0 in (0, T ].

(1)

need to be solved numerically.
A reference mesh is selected on the reference configuration (in our

tests, the unit square). The computational mesh is the image of the
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reference mesh under the transformation mapping the reference domain
to the physical domain. In our tests the reference mesh was selected to
be uniform.

The Navier Stokes equations are discretized then in space with P2/P1
(Taylor-Hood) elements with a uniform mesh on the unit square leading
to the semidiscrete problem :

Find u : [0, T ] → P2 × P2, p : [0, T ] → P1 such that

(ut, v) + ν(∇u,∇v) + ((u · ∇)u, v) + (∇p, v) = (f, v) in (0, T )
(∇ · u, q) = 0 in (0, T ]

u ≈ g in (0, T ] × ∂Ω
u |t=0 ≈ u0 in Ω

(2)
for every (v, q) ∈ P2 × P2 × P1.

If v = (v1, .., vk), w = (w1, .., wk) ∈ L2(Ω)k we denote by (v,w) the
canonical inner product in L2(Ω)k, that is:

(v,w) = Σi=1..k

∫

Ω
viwidx.

To discretize in time first the equations above are linearized and
a variant of the Crank-Nicholson method, that uses only two linear
systems per step, is used to advance in time.

At time level tn our approximation to the continuous solution is
denoted by un.

At time level tn+1 we first find u(1) ∈ P2 × P2, p ∈ P1 such that

( (u(1)−un)
∆t , v) + ν(∇u(1)+un

2 ,∇v) + 0.5 ∗ ((un · ∇)u(1), v)+
+0.5 ∗ ((un · ∇)un, v) + (∇p, v) = (f, v)

(∇ · u(1), q) = 0
u(1) ≈ g(tn+1, ·) in ∂Ω

(3)
for every (v, q) ∈ P2 × P2 × P1,

Next replace un by u(1) when doing the linearization. and solve the
linear system for (un+1, p)

( (un+1−un)
∆t , v) + ν(∇un+1+un

2 ,∇v) + 0.5 ∗ ((u(1) · ∇)un+1, v)+
+0.5 ∗ ((un · ∇)un, v) + (∇p, v) = (f, v)

(∇ · un+1, q) = 0
un+1 ≈ g(tn+1, ·) in ∂Ω

(4)
Using Richardson extrapolation we can show numerically that the

method is order 2 in time. Analitical verification of second order ac-
curacy is still an open question and is currently under study. Because
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we do not impose the condition that the mean of the pressure be 0, the
matrices of the linear sytems that are to be solved at every time step
are singular. In our code in order to solve the linear system we use a
nullspace reduction method [1, Chapter 4.5].

The Dirichlet boundary conditions were imposed using the command
MatZeroRows of PETSC [1, page 58]. The entries corresponding to the
velocity nodes on the boundary all zeros except the diagonal entry which
was set to be 1.

The load vector of the linear system was modified accordingly by
setting every entry corresponding to a velocity node on the boundary
to be equal to the value of g at that node.

The numerical scheme outlined above attempts to compute an ap-
proximation of the fluid’s velocity by discretizing the Navier Stokes
equations. This approach is called direct numerical simulation(DNS)
and it attempts to approximate the exact solution with respect to all
scales. To approximate only flow structures of size δ or more one
may use the Smagorinsky model in which the term ∇ · νT∇u where
νT = (Cδ)2|0.5 ∗ (∇u + ∇su)|, is substracted from the first equation
of 1. The nonlinear term νT∆u from the Smagorinsky model was im-
plemented in our code by using the same linearization technique which
was used to model the nonlinear convective term (u ·∇)u. Another LES
model which was implemented in the code makes use of differential fil-
ters to correct the computed solution at each time step. This model is
explained in more detail in Chapter 4.

We have used PETSc built-in linear solver TFQMR with an additive
Schwarz as a preconditioner to solve the linear system wich arise when
doing the discretizations 3 and 6 .

At each time level tn the approximation un found as above was used
to compute energy and L2 norm of vorticity at time tn :

energy at time tn =
∫

Ω
|un|2dx

L2 normof vorticity at time tn =
∫

Ω
|∂u1

n

∂x2
− ∂u2

n

∂x1
|2dx

where u = (u1, u2)T . In the code the integrals above were computed by
using a change of variables to go from the domain to the unit square and
then looping over all elements, changing variables to set the integral on
the reference element and integrating there with a quadrature formula
of order 7.

Then a linearized version of the trapezoidal method, that uses only
2 linear systems per step was used to integrate in time and get total
energy and total vorticity.
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2 The Mesh

To build a finite element code which solves the Navier Stokes Equations (NSE,
[2]) 1 one needs to write:

1. A routine which creates the mesh.After a call to this routine all the
information regarding the mesh which is needed to build the assembly
matrix and the load vector is proccesed and stored in a structure called
TheMesh.

2. A routine to build the assembled matrix and load vector of a linear
system for a given mesh and numerical scheme.

3. A routine to solve the linear system that arises when doing the discretiza-
tion.

The code we have developped here solves NSE on a square on which an
uniform mesh is generated as shown in figure 3.
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Figure 1: Uniform mesh on the unit square

Our code has the capability to solve NSE on a deformed square (the image
of a square through a difeomorphism which does not make the angles in the
mapped mesh too small or too big see figures 2 and 2) via a change of variables.

We give a global numbering of the velocity nodes on the mesh as seen in
figure 4. In our code, we define a function Nodeco which for a given node
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Figure 2: Uniform mesh on a trapezoid

on the mesh will return the global coordinates of that node. For example, in
figure 4 above we have that Nodeco(2)=[0.25,0].

For parallel computation, the elements in the mesh will be distributed over
the proccesors. For example if two processors are used to solve NSE on mesh on
figure 4 then the first processor will own elements bellow the horizontal line
y=0.5, whereas the elements above y=0.5 will be distributed to the second
processor. On each processor, there will be a local numbering of the elements
(see figure 5). We define a local variable called Elnode which will store for a
given element the global indices of the velocity nodes that lie on that element.
On each proccesor Elnode will be a double array whose number of columns
is 6 and number of rows is equal to the number of elements owned by that
proccesor. For the situation in figure 5, the first row of Elnode on the first
proccesor will be [0,2,18,10,9,1] (the first three are corner points, the last 3 are
middle points).

It is also neccesary to have a list of boundary nodes on each proccesor
which will be used to eliminate Dirichlet boundary conditions after doing the
assembly. A local variable called boundary will store the indices of boundary
nodes on each processor. For example, in figure 5 on the first proccesor we
will have boundary=[0,1,2,3,4,5,6,7,8,9,18,27,36,17,26,35,44].

The function Veltopres creates a correspondence between the index of a
node as a velocity node and its index as a pressure node provided that the
node is both a velocity and a pressure node. In the case of an unstructured
grid this function would have to be replaced by a global numbering of the
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Figure 3: Uniform mesh on a deformed square

pressure nodes, a list of the coordinates of these nodes and a correspondence
between the elements in the mesh and the pressure nodes on them.

3 The Numerical Scheme

The second routine which does the assembly is the most expensive in terms of
programming. As stated in the intoduction, the NSE have to be turned into
their variational formulation Find u : [0, T ] → P2 × P2, p : [0, T ] → P1 such
that

(ut, v) + ν(∇u,∇v) + ((u · ∇)u, v) + (∇p, v) = (f, v) in (0, T )
(∇ · u, q) = 0 in (0, T ]

u ≈ g in (0, T ] × ∂Ω
u |t=0 ≈ u0 in Ω

(5)
for every (v, q) ∈ P2×P2×P1. Afterwards, a method inspired by the Crank-
Nicolson method is used to do the discretisation in time.

The Crank-Nicholson method is [3]: At time tn+1 find un+1 ∈ P2×P2, p ∈
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Figure 4: Global numbering of the velocity nodes on mesh shown on figure 4

P1 such that

( (un+1−un)
∆t , v) + ν(∇un+1+un

2 ,∇v)+
+0.5 ∗ ((un+1 · ∇)un+1, v) + 0.5 ∗ ((un · ∇)un, v) + (∇p, v) = (f, v)

(∇ · un+1, q) = 0
un+1 ≈ g(tn+1, ·) in ∂Ω

(6)
for every (v, q) ∈ P2 × P2 × P1.

This system of nonlinear equations is solved by two iterations of the fixed
point iteration presented in the introduction. The predictor u(1) is expanded
on the canonical basis of the finite element space P2 × P2 × P1

u(1) =
∑

cn+1
i ϕi

and the coefficients c(1)
i have to be found. When replacing u(1) by formula

above, the following linear system arises
∑

B(ϕi, ϕj)c
(1)
j = F (ϕi)

where

B∗((u, p), (v, q)) =
1

∆t
(u, v)+0.5∗ν∗(∇u,∇v)+0.5∗((un·∇)u, v)+(∇p, v)+(q,∇u)
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Figure 5: Distribution and local numbering of elements on two proccesors

and

F (v) =
(un, v)

∆t
− 0.5ν(∇un,∇v) + 0.5(fn+1 + fn, v).

The integral B(ϕi, ϕj) is evaluated separatelly on each element in the sup-
port of ϕiϕj using a change of variables to the reference element and integrating
there with a quadrature formula of order 7.

4 Convergence and Stability of the numerical
scheme.

In order to study the convergence and stability of the code we have picked an
example where the exact solution of the NSE is

(u1, u2) = (ex + e−tsin(y),−exy + e−t).

The Reynolds number was chosen to be 2000 and we have computed the right
hand side of the Navier-Stokes equations accordingly.

On the unit square (0, 1) × (0, 1) we have solved the NSE with time step
dt = 0.25 and mesh size h = 0.25 and the H1 -norm and L2-norm of the error
uexact − uapprox were measured at time 2.5 doing 10 time-steps.Then the time
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step dt and mesh size h were halved and 20 time steps were computed. The
H1 -norm and L2-norm of the error uexact − uapprox were thus computed at
time 2.5. The same procedure was applied twice and on the right column of
the table 1 the quotient of two consecutive errors is shown.

Table 1: H1 convergence of the numerical scheme.

dt h iterations H1-error Quotient

0.25 0.25 10 0.204387
0.125 0.125 20 0.0260867 7.8349
0.0625 0.0625 40 0.00550811 4.7361
0.03125 0.03125 80 0.00113084 4.8708

Table 2: L2 convergence of the numerical scheme.

dt h iterations H1-error Quotient

0.25 0.25 10 0.00716448
0.125 0.125 20 0.000530275 13.5108
0.0625 0.0625 40 6.35028e-05 8.3504
0.03125 0.03125 80 5.30697e-06 11.965

In the case of the H1 -norm we see that as time-step and mesh size are
halved the error decreases by a factor of 4 so the convergence is quadratic. In
the case of L2 -norm as time-step and mesh size are halved the error decreases
by a factor of 8 so the convergence is cubic.

The stability of the numerical scheme was studied by picking the exact
solution of NSE and Reynolds number as in example 1 above, fixing the time-
step to dt = 0.25, choosing the mesh size equal to 0.03125 and measuring L2

-norm of the error at various time-levels. Table 3 shows that the L2 -norm of
the error is always less than 7 · 10−6 According to the test above the method
is stable. An analytical proof of the stability of the method is under study.
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Table 3: Stability test of the numerical scheme.

time level L2-norm of error

0 4.64529e-06
1 6.08724e-06
2 6.29856e-06
3 6.46518e-06
4 6.58639e-06
5 6.64484e-06
............... ..............
10 6.28822e-06
11 6.20186e-06
20 5.7965e-06
30 5.58357e-06
40 5.40848e-06
50 5.32966e-06
60 5.3021e-06
70 5.29949e-06
79 5.30697e-06

5 The differential filter and the implementa-
tion of LES.

The idea of LES is to try to compute not the entire flow, for which compu-
tational resources could be insufficient, but only flow structures that exceed a
certaib spatial scale δ. To that end, we need to build a tool that, for a given
velocity field u, will compute an average of it u. Such an operation will pre-
serve all the large-scale flow structures in u and will filter out small structures
and oscilations in the solution u due to a too coarse mesh.

The tool we developped in this work is an elliptic differential filter. The
filter is applied by solving an auxiliary problem, an elliptic second order PDE,
on the same mesh on which the flow is solved. The auxiliary problem is: Find
u such that

−δ2∆u + u = u in Ω
u = uin ∂Ω .

(7)

The advantage of using differential filters instead of other filtering techniques
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such as convolution is that it is very cheap computationally.
One needs to assembly the stiffness matrix of the PDE (7) only one time at

first time step and then solve at each time-step a linear system whose matrix
is already known.

Figure 6 shows the average of the velocity field in figure 10 after the differ-
ential filter is applied to it. The mesh size is 0.05 and we picked δ2 = 0.0005.
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Figure 6: The average of the flow shown on figure 10

In the code the large eddies were simulated by adjusting the velocity field un

computed at each time level tn. When doing DNS (direct numerical simulation)
only un was used to compute un+1. In the case of LES, before computing
un+1,the average un is computed and then in the places where un and un differ
substantially, we replace un by un. When the difference un − un is very small
(|un − un| < γ||un||∞ where γ is determined by experiment) we do not modify
un. When computing un+1 this new un is used. This method was tested with
good results that are shown in the next section.

6 A comparison between DNS and LES .

We consider the domain (0, 1)×(−0.5, 0.5) and we set up Dirichlet boundary
conditions as shown in the Figure 7. The inflow boundary condition is set to
be equal to ϕ, where the shape of ϕ is shown in 8, when t > 1 and tϕ when
0 ≤ t ≤ 1. The outflow boundary condition is the same as inflow boundary
condition. The flow is solved with DNS at Re=2000 with dt = 0.05 and mesh
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Figure 7: The domain (0,1)x(-0.5,0.5) and the Dirichlet B.C on it

size h = 0.05 . We show the flow after 1 second (see Figure 10) and after 5
seconds (see Figure 11).

It can be seen from the pictures above that this is not a good approximation
of the exact flow because after 1 second there is a lot of oscilation on the
computed solution in the outflow region and after 5 seconds no structure shows
up on the upper part of the container. To obtain a better approximation the
mesh is refined to h = 0.025 and the flow is solved again. The following
figures show the computed flow after 1 second (see Figure 12) and after 5
seconds (see Figure 13). Small vortices are forming where the flow enters the
container then they move horizontally and in the end they are absorbed by
the two big vortices where the fluid flows out of the container.

In conclusion a DNS on a mesh 20 × 20 would not solve the problem and
a DNS on a mesh 40 × 40 would give a good approximation of the flow but at
the same time would require more computational effort to solve the problem.
Instead of trying to compute this flow very accuratelly we will solve with LES
on a mesh 20 × 20 to compute with accuracy only big structures of this flow.
Figures 14 and 15 show the flow computed with LES after 1 second (see Figure
14) and after 5 seconds (see Figure 15). In the experiment above we picked
γ = 0.07 and δ2 = 0.0005. As it is seen in the figures above the two vortices
are well recovered and there are no significant oscilations in the computed
solution.
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7 The comparison of energy and vorticity com-
puted with LES and DNS

The comparison of energy and vorticity computed with LES and DNS was
carried out in the following setting. The unit square is deformed as a function
of two parameters α and β while keeping the area of the domain equal to 1 as
shown in figure 9.

We use Dirichlet boundary conditions which are defined the same way as
in the previous problem. The inflow boundary condition is set to be equal
to ϕ as shown in 8 when t > 1 and tϕ(x, y) when 0 ≤ t ≤ 1. The outflow
boundary condition is the same as the inflow boundary condition. Everywhere
else the boundary conditions are 0. The flow was solved with DNS at Re=2000
with dt = 0.05, mesh sizeh = 0.025 with 200 time steps and with LES with
dt = 0.05, mesh size h = 0.05 γ = 0.07 ,δ2 = 0.0005 and the same number of
iterations for various values of the parameters α and β. Then total energy and
vorticity during the first 10 seconds were computed and the results are shown
in the Tables 4 and 5

We see that the kinetic energy and vorticity of the big structures in the flow
are approximated well with the LES model disscused in previous two sections.
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8 Conclusions

We have constructed a computational environment for the simulation of the
Navier-Stokes equations describing the motion of an incompressible fluid flow
in two dimensions. The method is implemented in PETSC [1] and can thus be
executed on any parallel architecture running MPI. We demonstrate numeri-
cally that the method is second-order in space and time and that it is stable at
fairly high Reynolds numbers, although it solves only two linear systems per
time step. In addition, we have designed an efficient way of doing large eddy
simulation with our code, by the use of an elliptic differential filter. We show
that our LES approach captures the important characteristics of the fluid flow
(such as kinetic energy and vorticity) while taking significantly less computa-
tional effort than a DNS that produces a result of a similar quality over the
large spatial scales. In the near future, we plan to analyze rigurously the prop-
erties of our numerical scheme and interface our solver with an optimization
approach.
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Table 4: Comparison of energy computed with LES and DNS.

α β kinetic energy with LES kinetic energy with DNS
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0.5 1.25 16.1781 15.1901
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Figure 10: Flow computed with DNS after 1 second on mesh 20 × 20
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Figure 11: Flow computed with DNS after 5 seconds on mesh 20 × 20
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Figure 12: Flow computed with DNS after 1 second on mesh 40 × 40
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Figure 13: Flow computed with DNS after 5 seconds on mesh 40 × 40
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Figure 14: Flow computed with LES after 1sec on mesh 20x20
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Figure 15: Flow computed with LES after 5 seconds on mesh 20x20
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