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A necessary step in the development of next-
generation congestion control mechanisms is the
ability to accurately classify the root cause(s) of
observed data loss and to develop responses
tailored to the particular cause. Toward this end,
we are developing a classification mechanism
based on the collection and analysis of what we
term packet-loss signatures, which describe the
patterns of packet loss in the current
transmission window. We are exploring the
application of complexity theory to the problem
of learning the underlying structure (or lack
thereof) of these signatures, and studying the
relationship between such underlying structure
and the system conditions responsible for its
generation. In this paper, we describe the
algorithm for determining the complexity of
packet-loss signatures, show how complexity
measures can be mapped to the underlying
causes of packet loss, and provide experimental
results demonstrating the effectiveness of our
approach.

1 Introduction

Computational Grids create large-scale
distributed systems by connecting geographically
distributed computational and data-storage
resources via high-performance networks. Such
systems, which can harness and bring to bear
tremendous computational resources on a single
large-scale problem, are becoming an
increasingly important component of the national
computational infrastructure. An important area
of research in Grid computing is the
development of high-performance
communication mechanisms that can take full
advantage of the underlying bandwidth when
system conditions permit, can back off in
response to observed (or predicted) contention
within the network, and can accurately
distinguish between these two situations.

Our research is addressing the issue of
identifying the root cause(s) of data loss as
observed by a high-performance data transfer
system during the course of its execution. The
approach we are pursuing is to analyze what we
term packet-loss signatures, which show the
distribution (or pattern) of those packets that
successfully traversed the end-to-end
transmission path and those that did not. These
signatures are collected by the receiver and
delivered to the sender upon request. Thus the
packet-loss signatures are essentially large
selective-acknowledgment packets, and are so
named based on our belief (supported by
experimental studies) that different classes of
error mechanisms have different “signatures.”
We are exploring the application of complexity
theory to the problem of learning the underlying
structure (or lack thereof) of these signatures,
and studying the relationship between such
underlying structure and the system conditions
responsible for its generation. Our view,
supported by experimental studies provided
below, is that complexity measures capture quite
well the underlying system dynamics and that
understanding such dynamics provides
significant insight into the cause(s) of observed
data loss. The longer-term goal of this work is to
use, in a highly adaptive and efficient data
transfer system, information related to the root
cause(s) of data loss. However, this paper
focuses on techniques to build such classifiers;
adaptations based on this knowledge will be the
focus of forthcoming papers.
   The testbed for this research is FOBS (Fast
Object-Based data transfer System), a high-
performance data transfer system for
computational Grids [9, 10]. FOBS is a UDP-
based transfer system that provides reliability
through a selective-acknowledgment and
retransmission mechanism. As noted above, it is
precisely the information contained within the



selective-acknowledgment packets that is
collected and analyzed by our classification
mechanism.
   Three important factors, whose combination is
unique among high-performance data transfer
mechanisms for computational Grids, make this
research feasible and useful. First, FOBS is an
application-level protocol. Thus the congestion
control algorithms can collect, synthesize, and
leverage information from a higher-level view
than is possible when operating at the kernel
level. Second, the complexity measures can be
obtained as a function of a constant sending rate.
Thus the values of the variables collected are
(largely) unaffected by the behavior of the
algorithm itself. Third, FOBS is structured as a
feedback control system. Thus the external data
(e.g., the complexity measures) can be (but is not
currently) analyzed at each control point, and
this data can be used to determine the duration of
the next control interval and the rate at which
data will be placed onto the network during this
interval. We do not discuss further the design,
implementation, or performance of FOBS here.
The interested reader is directed to [9, 10] for
detailed discussions on these issues.

In this paper, we provide substantial
experimental data demonstrating the
effectiveness of our approach in distinguishing
between contention for network resources and
contention for CPU resources. This distinction is
important for two reasons. First, contention for
CPU cycles can be a major contributor to packet
loss in UDP-based protocols such as FOBS. This
happens, for example, when the receiver’s
socket-buffer becomes full, additional data
bound for the receiver arrives at the host, and the
receiver is switched out and thus unavailable to
pull such packets off of the network. Second,
data loss resulting from CPU contention is
completely outside of the network domain and
does not represent interference with other
network traffic. Thus new and less aggressive
responses can be developed to deal with this
particular class of losses.

This paper makes two important
contributions. First, it presents a simple
classification mechanism that is quite powerful
in its ability to distinguish between various
causes of packet loss. Such distinctions are
apparent even at very low loss rates (i.e., around
1%), and the distinction becomes even clearer
with increasing loss rate. This represents a major
milestone in the development of highly
intelligent and adaptive communication
mechanisms for Grid computing. Second, the

approach outlined here is generally applicable to
UDP-based protocols using selective-
acknowledgments as part of their reliability
mechanism. This work could, in fact, be used to
classify and respond to different causes of packet
loss by any version of TCP using the selective-
acknowledgment mechanism. This paper should
be of interest to a large segment of the Grid
community given the interest in and importance
of exploring new approaches by which data
transfers can be made more intelligent and
efficient.

The rest of the paper is organized as follows.
In Section 2, we discuss related work. In Section
3, we present the complexity analysis used in
this paper and show how such techniques can be
applied to the packet-loss signatures. In Section
4, we describe our experimental methodology. In
Section 5, the results of these experiments are
presented. In Section 6, we provide our
conclusions and outline future work.

2 Related Work

The issue of distinguishing between categories of
losses has received significant attention within
the context of TCP for hybrid wired/wireless
networks (e.g., [2-4, 6, 14, 20]). The idea is to
distinguish between losses caused by network
congestion and losses caused by errors in the
wireless link, and to trigger TCP’s aggressive
congestion control mechanisms only in the case
of congestion-induced losses. This ability to
classify the root cause of data loss, and to
respond accordingly, has been shown to improve
the performance of TCP in this network
environment [2, 14, 19]. These classification
schemes are based largely on simple statistics on
observed round-trip times, observed throughput,
or the inter-arrival time between ACK packets
[4, 5, 14]. Debate remains, however as to how
well techniques based on such simple statistics
can classify loss [14]. Another approach being
pursued is the use of Hidden Markov Models
where the states are characterized by the mean
and standard deviation of the distribution of
round-trip times [14]. Hidden Markov Models
have also been used to model network channel
losses and make inferences about the state of the
channel [15].

Our research has similar goals, although
we are developing a finer-grained classification
system that can distinguish between contention
at the NIC, contention in the network, and
contention for CPU resources. Also, we believe
that complexity measures may prove to be a



more robust classifier than (for example)
statistics on round-trip times and could be
substituted for such statistics within the
mathematical frameworks established in these
related works. Similar to the projects discussed
above, we separate the issue of classification of
root cause(s) of data loss from the issue of
implementing responses based on such
knowledge.

Research into other application-level
alternatives to TCP is also related (e.g., [1, 17,
18]). However, none of these approaches attempt
to determine the root cause(s) of observed packet
loss that is a major focus of our research.

3   Diagnostic Methodology

The packet-loss signatures can be analyzed as
time series data with the objective of identifying
diagnostics that may be used to characterize
causes of packet loss. A desirable attribute of a
diagnostic is that it can describe the dynamical
structure of the time series. The approach we are
taking is the application of symbolic dynamics
techniques, which have been developed by the
nonlinear dynamics community and are highly
appropriate for time series of discrete data. We
believe this approach to classifying causes of
packet loss will work because of the differing
timescales over which such losses occur.  For
example, packet loss due primarily to network-
based causes such as router contention or
contention at the NIC is likely to show temporal
structure over a wide variety of timescales
reaching down to the spacing between packets.
A platform-based cause such as CPU contention
at the host upon which the data receiver is
executing will more likely be associated with a
narrower range of longer timescales (e.g., the
size of the time slice allocated to the receiver in a
time-sharing system).
    In symbolic dynamics [13], the packet-loss
signature is a sequence of symbols drawn from a
finite discrete set, which in our case is two
symbols: 1 and 0.  One diagnostic that quantifies
the amount of structure in the sequence is
complexity.  There are numerous ways to
quantify complexity.  In this discussion, we have
chosen the hierarchical approach of d’Alessandro
and Politi [8], which has been applied with
success to quantify the complexity and
predictability of time series of hourly
precipitation data [12].
   The approach of d’Alessandro and Politi is to
view the stream of 1s and 0s as a language and
focus on subsequences (or words) of length n in

the limit of increasing values of n  (i.e.,
increasing word length). First-order complexity,
denoted by C1, is a measure of the richness of the
language’s vocabulary and represents the
asymptotic growth rate of the number of
admissible words of fixed length n occurring
within the string as n becomes large. The
number of admissible words of length n, denoted
by Na(n), is simply a count of the number of
distinct words of length n found in the given
sequence. For example, the string 0010100 has
Na(1) = 2 (0,1), Na(2) = 3 (00,01,10), Na(3) = 4
(001, 010, 101, 100). The first-order complexity
(C1) is defined as

C1  = 
∞>−n

lim (log2 Na(n)) / n .                       (1)

The first-order complexity metric characterizes
the level of randomness or periodicity in a string
of symbols. A string consisting of only one
symbol will have one admissible word for each
value of n, and will thus have a value of C1=0. A
purely random string will, in the limit, have a
value of C1=1.  A string that is comprised of a
periodic sequence, or one comprising only a few
periodic sequences, will tend to have low values
of C1.
    As noted, a hierarchy of complexity values is
defined in [8]. The next level of the hierarchy is
a quantity termed C2 that captures the fact that
random strings are of lower complexity than
strings that have rules governing their creation.
We do not discuss this quantity here because we
have not yet integrated it into our classification
mechanism.

Experimental Design

We performed three sets of experiments to
evaluate the effectiveness of our approach. The
first set compared packet-loss signatures
generated when data loss was caused by
contention for NIC resources and when the data
loss was caused by contention for CPU cycles.
The second set of experiments compared the
packet-loss signatures generated when data loss
was caused by contention at a router and when
the data loss was caused by contention for CPU
cycles at the host upon the receiver was
executing. The third set evaluated the approach
using a longer transfer on a shared host during
normal business hours.

All data transfers were between hosts at
Argonne National Laboratory (ANL) and the



National Center for Supercomputing
Applications (NCSA). The host platform at ANL
(Chiba City), was a Linux cluster with 256 dual
Pentium III 500 MHz processors. The
computational platform at NCSA (Titan) was an
IA-64 Linux cluster with 128 compute nodes
each consisting of dual Intel 800 MHz Itanium 1
processors. The two sites are connected by the
Illinois Wired/Wireless Infrastructure for
Research and Education (I-WIRE) which
operates at 10 Gbps. There was no discernable
contention on the I-WIRE at the time these
experiments were conducted.

In the first set of experiments the data
receiver executed on a dedicated processor
within Chiba City, and additional compute-
bound processes were spawned on this same
processor to create CPU contention. As the
number of additional processes increased, the
amount of time the data receiver was switched
out similarly increased. Since the data receiver
was not available to take packets off of the
network during the times it was switched-out,
there was a direct relationship between CPU load
and the resulting packet loss rate. We were
interested in analyzing the structure of the
bitmaps as a function of both the root cause of
data loss (i.e., contention for CPU or NIC
resources) and the loss rate. We therefore varied
the number of additional processes to obtain loss
rates of (approximately) 1%, 5%, 10%, and 15%.
   To investigate loss patterns caused by
contention for NIC resources, we initiated a
second (background) data transfer. The data
sender of the background transfer executed on a
different node within Chiba City, and the
receiver executed on the second processor within
the same node as the primary data receiver. Since
both processors of a given node share the same
NIC, we were able to generate contention at the
NIC without causing contention for CPU cycles
with the two receivers. Initially, the combined
sending rate was set to the maximum speed of
the NIC (100 Mbps for the Chiba City compute
nodes), and contention for NIC resources was
increased by increasing the sending rate of the
background transfer. The packet loss
experienced by both data transfers was a function
of the combined sending rate, and this rate was
also set to result in loss rates of (approximately)
1%, 5%, 10%, and 15%.

In the second set of experiments, we
used nine parallel UDP data streams (each
sending at 100 Mbps) between Titan and Chiba
City. We then created a tenth data stream
between a HP N4000 node at the Center for

Advanced Computational Research (CACR) and
a BM IntelliStation Z Pro 6894 workstation
within NCSA. The tenth stream shared a router
with the 9 parallel UDP streams creating
contention for that router’s resources. The
sending rate of the tenth stream was varied
between 50 and 100 Mbps. When data was sent
at 100 Mbps packets were dropped at the router.
When data was sent at 50 Mbps, the router was
able to process all ten streams. The result of
interest was a time-series of the packet-loss
signatures of a randomly picked stream at the
receiving host (NCSA). For comparison, we also
conducted experiments resulting in a time-series
of packet-loss signatures when data was lost
because of CPU load.

We were also interested in validating
the classification mechanism under realistic
operating conditions. The goal was to look at the
range of complexity measures obtained over a
(reasonably) long data transfer, and to determine
whether those measures appeared to capture the
underlying dynamics of the end-to-end system.
To examine this issue, we performed a data
transfer between ANL and NCSA, where the
data receiver was executed on the server for the
Titan cluster at NCSA. The experiments were
run during normal business hours when there is
often significant contention for CPU resources.
The data transfer lasted approximately 80
minutes, and the congestion control mechanisms
implemented in FOBS were disabled during the
transfer. The reason for disabling the congestion
control mechanisms was to separate out the
impact of changes in sending rate as a factor in
the complexity measures. The sending rate was
set to a constant 100 Mbps, which is well below
the capacity of the network (10 Gigabits per
second) and the NIC (Gigabit ethernet). We were
interested in the first-order complexity measures
after each 100 MB chunk of data that was sent.
We calculated only the complexity measure for
word size n = 15, since this has been sufficient to
successfully discriminate between network-based
and CPU-based causes of data loss. Similar to
the technique of loss pairs [14], we maintained a
parallel data transfer (with the same send rate)
that traversed the same network path except for
the last hop. In this case, one stream branched
into the server and the other stream branched
into one of the computational nodes within the
Titan cluster. This approach was taken to
determine the impact of contention within the
network path as a cause of data loss. Similarly,
we used hardware counters to track the state of
the network internal to the server. Finally, we



used the available hardware counters to track the
percentage of the CPU cycles allocated to the
receiver at any given time. This tracking was
done to establish whether a strong linear
relationship existed between the number of CPU
cycles received and the loss rate.

5 Experimental Results

The results of the first set of experiments are
shown in Figures 1 and 2. Each figure shows the
mean first-order complexity measure (calculated
from the five 350,000 bit strings), and the 95%
confidence intervals for the mean, for word sizes
n = 4 to n = 16. These figures compare the
complexity measures obtained when data loss
was caused by pure CPU contention or pure NIC
contention. Each figure shows the complexity
measures obtained at each of the four loss rates
tested. The complexity of the signatures is
clearly distinguishable even at very low loss
rates and becomes more pronounced as the loss
rate increases. It is interesting to note that the
complexity measures associated with CPU
contention show little change as the loss rate
increases. However, the complexity values
associated with NIC contention increase
significantly with increasing loss rates. These
results are quite encouraging in terms of
differentiating between these two classes of error
mechanisms using first-order complexity
measures.
    Figures 3 – 4 show the values of C1 resulting
from contention for router resources with those
caused by contention for CPU resources. The
disparity in values of C1 depicted in Figure 3 is
quite striking. The complexity measures
associated with contention for resources at the
router are cyclic and track quite well the gradual
filling and draining of the router buffers. In the
case of the router, the loss rate fluctuated
between 0% and 2.5%. The loss rates associated
with CPU contention fluctuated between
approximately 1% and 3%, with little fluctuation
in the values of C1. This is another clear
demonstration of how different causes of packet
loss can produce significant differences in the
underlying structure of the packet-loss
signatures.

Figure 4 depicts the relationship
between the loss rate and the corresponding
values of C1 as a function of the circumstances
under which the data was lost. As can be seen,
the values of C1 are significantly higher (across
all loss rates) when the data was lost because of
contention in the network as opposed to

contention at the receiving host. This result again
demonstrates that the structure of packet-loss
signatures is quite sensitive to the root cause of
the data loss even when the loss rate is quite low.

The C1 values obtained under real
operating conditions is shown in Figure 5. The
C1 values obtained during this experiment are
quite similar to the results obtained with a
dedicated host in one important way: After an
initial spike (at very low loss rates) the
complexity measures were largely unchanged
with increasing loss rates. In fact, the largest C1

value obtained over the entire run was 0.47 at a
loss rate of 22%. This result is particularly
important given that the loss rate got as high as
80%! For comparison, the complexity measure
associated with NIC contention was 0.69 when
the loss rate was set at 15% (Figure 2). This
result is consistent with other experiments we
have conducted when data loss was due to
contention for router resources (not presented in
this paper because of space constraints). Based
on these results, the classification mechanism
would have attributed all loss to contention for
CPU resources. This of course brings up the
issue of how to validate this classification.

As noted in Section 4, we used several
mechanisms to try to rule in or out the various
factors that could have contributed to data loss.
The parallel data stream experienced virtually no
data loss during this experiment making it highly
unlikely that contention within the network was
a cause of packet loss. This is not surprising
given that the experiments were conducted over
very high-speed networks that are in general
lightly loaded. Also, the network delay between
ANL and NCSA is very small (on the order of 3
milliseconds based on results from the
traceroute function). Similarly, the statistics
collected from the /proc pseudo-file system
showed relatively little network traffic interior to
the host and registered no data loss due to errors
within the system.

Finally, we wanted to determine
whether there existed a linear relationship
between the percentage of CPU cycles allocated
to the data receiver and the observed loss rate.
To this end, we calculated a simple least-squares
regression line of CPU utilization on loss rate
(shown in Figure 6). Visually, there appears to
be a strong linear relationship between the CPU
utilization and loss rate. This relationship is
formalized by the value of the sample coefficient
of determination (R2), which measures the
proportion of variability due to regression [11].
This value was 0.98, indicating that 98% of the



variability in loss rate was attributable to the
relationship between these two variables. The
combination of information from the parallel
data transfer, the /proc pseudo-file system, and
the regression analysis strongly suggests that
contention for CPU cycles was responsible for
almost all of the observed loss and that the C1

values accurately captured the cause of data loss
in this experiment.

6  Conclusions and Future Research

In this paper, we have described a strategy for
analyzing packet-loss signatures from a high-
speed data transfer mechanism and we have
showed how this strategy enables classification
of the dominant cause of packet loss in the
current transmission window.  These techniques
are based on first-order complexity measures
(introduced for the first time in this paper) of
packet-loss signatures to determine the root
cause of packet loss.  We outlined a series of
simple experiments to test the efficacy of this
technique, demonstrating it is easily capable of
distinguishing packet loss caused purely by CPU
contention or NIC contention.  We have also
been successful in detecting network contention
using first-order complexity analysis.  In actual
Grid settings packet loss will likely be caused by
a combination of factors, and the resulting
signals from the complexity measures will be
harder to discern. However, the results presented
here provide strong evidence that contention for
network resources at the communication
endpoints can be detected even when such
contention is quite low. This information can be
used by the control mechanism to identify
conditions under which it may be very damaging
to increase the sending rate. What is not clear,
and is the focus of current research, is whether
there can be significant contention within the
wide area network(s) connecting the
communication endpoints that can (or likely to)
produce complexity measures that appear to
represent periodic behavior. This issue is
strongly related to the queuing discipline used by
the routers in the end-to-end path, and is being
investigated through experimental and
simulation studies.

The ability to classify the temporal
dynamics of packet loss behavior (as expressed
by the packet-loss signatures) offers two
significant advantages. First, such classification
allows the control mechanisms to apply
corrective actions based on the particular cause
of packet loss. For example, the control

mechanisms may be able to migrate the data
receiver, rather than drastically reducing the
sending rate, when the root cause of packet loss
is determined to be contention for CPU (rather
than network) resources. Second, if the
underlying dynamics has structure, it may be
possible to construct simple predictors that allow
the data transmitter to shape its behavior in such
a way as to increase the probability that a sent
packet is received successfully. These are
enticing possibilities, and the exploration,
evaluation, and integration of these techniques to
the problem of large-scale data transfers
represents a focus of current research activities.
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Figure 1. This figure shows the values of C1

when the root cause of data loss was contention
for CPU resources.  The loss rate varied
between 1% and 15%, and the complexity
measures for word sizes n=4 to n=16 are shown.
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time series of C1 values when
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Figure 4. This figure depicts
the C1 values from Figure 3 as
a function of the loss rate.
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Figure 6. This figure shows the
linear relationship between the
percentage of CPU cycles
allocated to the receiver and
the loss rate.


