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Abstract

The Grid approach provides the ability to access and
use distributed resources as part of wvirtual organiza-
tions. The emerging Grid infrastructure gives rise to a
class of scientific applications and services to support
collaborative and distributed resource-sharing require-
ments as part of teleimmersion, visualization, and sim-
ulation services. Because such applications operate in
a collaborative mode, data must be stored and delivered
in timely manner to meet deadlines. Hence, this class
of applications has stringent real-time constraints and
quality-of-service (QoS) requirements. A QoS manage-
ment approach is required to orchestrate and guarantee
the interaction between such applications and services.
In this paper we discuss the design and prototype im-
plementation of a QoS system and show how we enable
Grid applications to become QoS compliant. We vali-
date this approach through a case study of nanomate-
rials. Our approach, enhances the current Open Grid
Services Architecture. We demonstrate the usefulness
of the approach on a nano materials application.

1 Introduction

Advanced commercial and scientific applications of-
ten require high-performance, high-end resources that
are both expensive and scarce. Based on the Grid ap-
proach [1] the emerging Grid infrastructure [2] is mak-
ing these resources available to service providers and
users, but effective use of such resources requires mech-
anisms to manage sophisticated Grid environments.
Consequently, considerable effort has gone into secu-
rity issues, resource scheduling, and complex execu-
tion frameworks. Although the Grid community has
collectively made considerable progress, only recently
has consideration been given to a fundamental prob-
lem prevailing in service-oriented architectures: provid-
ing deterministic quality-of-service (QoS) assurances to
service consumers. Providing nontrivial QoS is one of
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the primary goals of the Grid approach. Nevertheless,
most Grid environments operate on a best-effort basis,
sharing the Grid resources among its users with equal
priority. A considerable degradation in performance
and efficiency must be addressed when a large number
of requests are issued for shared Grid resources.

To address this problem, we concentrate on ways to
increase the collective efficency a term refered to by von
Laszewski as the efficiency of scientists collaboratively
using these resources. One practical solution is to intro-
duce QoS mechanisms that enable service providers to
partition their services based on quality criteria such as
priority, fairness, and economic gain. In other words, a
QoS-aware Grid infrastructure can offer deterministic
QoS assurances based on a particular criterion, rather
than on a best-effort service.

Consider the following scenario [3]. A group of
scientists want to conduct a collaborative simulation
experiment for a specific period of time using high-
end resources, such as an electron microscope, acces-
sible through a Grid infrastructure. The experiment
requires access to resources suitable for fine-grained,
real-time computation and requires a specific network
bandwidth to connect the sites during the experiment.
After the experiment is concluded, the data must be
moved to a large-capacity, shared data-store, allowing
access to the data by groups of scientists not located
at the electron microscope site. Clearly, this scenario
has a number of requirements that a non-Grid-based
resource management or scheduling system cannot ful-
fill.

Motivated by such a scenario, we propose a com-
prehensive QoS management architecture in service-
oriented Grids, called Grid Quality of Service Manage-
ment (G-QoSm). We validate our proposed architec-
ture with a proof-of-concept prototype implementation
and show its effectiveness in a scientific application in-
volving nanomaterials.

The paper is structured as follows. In Section 2
we provide an overview of quality of service in net-
working and distributed computing. In Section 3 we



outline the general requirements of a Grid QoS man-
agement system and give an overview of existing Grid
QoS systems. In Section 4 we present G-QoSm and
its major components. In Section 5 we discuss a typ-
ical high-performance Grid application and outline its
QoS requirements. In Section 7 we discuss performance
results based on executing applications with QoS sup-
port. We conclude the paper with a summary of future
work.

2 Quality-of-Service: Background and
Terminology

Quality of service has been explored in various con-
texts [4,5]. Two types of QoS can be distinguished:
quantitative and qualitative characteristics of the Grid
infrastructure. Qualitative characteristics refer to ele-
ments such as service reliability and user satisfaction
regarding service. Quantitative characteristics refer to
elements such as networks, CPUs, or storage. For ex-
ample, the following are quantitative parameters for
network QoS: Delay, the time it takes a packet to travel
from sender to receiver. Delay jitter, the variation in
the delay of packets taking the same route. Through-
put, the rate at which packets go through the network
(i.e., bandwidth). Packet-loss rate’, the rate at which
packets are dropped, lost, or corrupted.

Together, these four parameters form the network
QoS measurement matrix.

CPU, or compute, QoS can be divided into shared
and exclusive categories [6]. In shared systems, in
which more than one user-level application shares the
CPU, the application can specify a percentage of the
CPU. In exclusive systems, in which usually one user-
level application has exclusive access to one or more
CPUs, the application can specify the number of CPUs
as the QoS parameter.

Storage QoS is related to device such as memory and
disks. In this context, QoS is specified by bandwidth
and space. Bandwidth is the rate of data transfer be-
tween the storage devices to the application. Space is
the amount of storage space that the application can
use for writing data.

Usually, applications specify two QoS requirements:
the characteristics of the resource and the period the
resource is required. Reservation involves giving the
application the confidence, or assurance, that the re-
source allocation will succeed with the required level of
QoS when needed. The reservation can be immediate
or in advance, and the duration of the reservation can
be definite (for a defined period of time) or indefinite
(for a specified start time and unlimited duration).

3 QoS in Grid Computing

The Grid approach can be seen as a global-scale
distributed-computing infrastructure with coordinated
resource sharing [1,2]. The fundamental Grid prob-
lem that many researchers have been investigating is
resource management, specifying how Grid middleware
can provide resource coordination for client application
transparently. One of the most successful middleware
projects that provides such coordination is the Globus
Alliance [7]. The availability of Grid middleware tools,
such as the Globus Toolkit, facilitates persistent access
to Grid services. The use of Grid middleware has ex-
panded from scientific applications to business-oriented
disciplines while envisioning a service-oriented archi-
tecture to build sophisticated Grid applications with
complex Grid resources requirements.

In most Grid settings, Grid applications submit
their requirements to Grid resource management ser-
vices that schedule jobs as resources become available.
Some classes of applications cannot wait for resources
to become available, however. For these applications,
it must be possible to reserve Grid resources and ser-
vices at a particular time (in advance or on-demand).
In addition, other features are highly desirable, indeed
required, if the Grid resource management service is to
be able to handle complex scientific and business ap-
plications. We review these requirements in the next
subsection and then briefly discuss how well current
QoS systems meet these requirements.

3.1 Requirements

A Grid resource management system should adhere
to the following requirements that relate to QoS issues.

Advance Resource Reservation. The system
should support mechanisms for advance, immediate, or
‘on-demand’ resource reservation. Advance reservation
is particularly important when dealing with scarce re-
sources, as is often the case with high-performance and
high-end scientific applications in Grids.

Reservation Policy. The system should support a
mechanism that facilitates Grid resource owners enforc-
ing their policies governing when, how, and who can use
their resource, while decoupling reservation and policy
entities, in order to improve reservation flexibility [8].

Agreement Protocol. The system should assure
the clients of their advance reservation status, and the
resource quality they expect during the service session.
Such assurance can be contained in an agreement pro-
tocol, such as Service Level Agreements (SLAs).



Security. The system should prevent malicious users
penetrating, or altering, data repositories that hold in-
formation about reservations, policies and agreement
protocols. In addition to a secure channel between
the clients and applications and the Grid resources, a
proper security infrastructure is required.

Simplicity. The QoS enhancement should have a
reasonably simple design that requires minimal over-
heads in terms of computation, infrastructure, storage
and message complexity.

Scalability. The approach should be scalable to a
large number of entities, since the Grid is a global-scale
infrastructure, and there will be dynamic resources and
users joining the Grid.

3.2 Current QoS Systems

QoS in Grids is actively being researched. However,
the only substantial system developed within the Grid
community (to our knowledge) is the General-purpose
Architecture for Reservation and Allocation (GARA).
GARA [9] provides programmers a convenient access
to end-to-end QoS. It provides advance reservations,
with uniform treatment to various types of resources
such as network, compute, and disk. GARA’s reser-
vation is a promise that the client or application ini-
tiating the reservation will receive a specific quality of
service from the resource manager. GARA also pro-
vides an application programming interface to manip-
ulate reservation requests, such as create, modify, bind,
and cancel. GARA uses the Dynamic Soft Real-time
(DSRT) scheduler [10] as the underlying compute re-
source manager, and it uses Cisco routers to deliver
network QoS.

Although GARA has gained popularity in the Grid
community, it has certain limitations in coping with
current application requirements and technologies:

e Most current applications employ the emerging
new technology of the Web services and the Open
Grid Service Architecture (OGSA) [11]. Unfortu-
nately, GARA is not OGSA-enabled, and OGSA-
enabled applications cannot therefore leverage
GARA services.

e Grid applications require the simultaneous allo-
cation of various resources. This process is per-
formed by the resource manager that contacts the
required resources and possibly reserves the re-
sources for future allocation. An agreement pro-
tocol should exist to inform the application about
the resources negotiated for allocation and the
level of quality the application expects. This infor-
mation is usually encapsulated in a Service Level
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Figure 1. The G-QoSm architecture with an
OGSA-enabled QoS service.

Agreement. GARA does not support the concept
of an agreement protocol and cannot distinguish
whether an application requires a CPU and a net-
work resource. The application has to perform two
separate calls to GARA and, on success, receives
two different handlers . It is the application’s re-
sponsibility to manage these handlers when claim-
ing the resources.

e QoS monitoring and adaptation during the active
QoS session is one of the most important and suc-
cessful mechanisms to provide a quality guarantee.
GARA is not tooled with adaptive functions [12].

The most significant limitation, however, is that
GARA is at this time no longer actively being devel-
oped.

4 Grid QoS Management

Grid Quality of Service Management (G-QoSm) is
an evolving approach to support QoS management in
computational Grids in the context of the Open Grid
Service Architecture (OGSA) [13,14]. G-QoSm con-
sists of three main operational phases: establishment,
activity, and termination. During the establishment
phase, a client’s application states the desired service
and QoS specification. G-QoSm then undertakes a ser-
vice discovery, based on the specified QoS properties,
and negotiates an agreement offer for the client’s ap-
plication. During the activity phase, additional activ-
ities, including QoS monitoring, adaptation, account-
ing and possibly renegotiation, may take place. Dur-
ing the termination phase, the QoS session is ended,



through resource reservation expiration, agreement vi-
olation, or service completion; resources are then freed
for use by other clients. Our framework supports these
three phases through interaction among components,
as depicted in Figure 1. In the next section we de-
scribe these interactions and highlight service provision
for Grid applications.

4.1 QoS Grid Service

The basic building block of our architecture is the
QoS Grid service (QGS), an OGSA-enabled Grid ser-
vice providing QoS functionalities such as negotiation
and reservation. Each QoS-enabled resource is accessed
through a QGS. Since QGS is a Grid service, it pub-
lishes itself to a QoS registry service. In addition to the
QoS functionalities, it supports two types of resource
allocation strategy:

resource domain, which provides compute, network,
and disk QoS with fine-grained specifications, and

time domain, where the whole Grid node, in which the
QGS resides, can be reserved for a defined period
of time.

This functionality is enabled by ensuring that all re-
quests must be issued through the QGS. Further, the
QGS interacts with a number of modules to deliver
QoS guarantees. These modules are the QoS Handler,
reservation manager, allocation manager, and the QoS
registry service (see Figure 1). Currently, G-QoSm sup-
ports compute resource-based QoS; we have begun in-
tegrating network and disk support.

QoS Handler Access to Grid services is enabled
through the Java CoG Kit, which provides a convenient
abstraction to Grid services for Globus Toolkit versions
2 and 3. The Java CoG Kit introduced the concept of
task handlers, which allow us to build QoS-enhanced
abstractions for computational tasks (see Section 4.2).
Hence, we have introduced a QoS Handler as a link
with the Java CoG Kit Core. The QoS Handler im-
plements the required QoS action, encapsulated in the
Java CoG Kit Task object, such as QoS negotiation re-
quest or QoS job submission. We have enhanced the
Task object with QoS-related parameters dependent on
the Task action required; for example, in the case of a
negotiation request, parameters include start time, end
time, resource type, and specifications. Once the Task
object has been specified, the QoS Handler is, for ex-
ample, delegated, on behalf of the client or application,
to negotiate QoS requests. In this case the QoS Han-
dler is seen as the client, from the QGS point of view.

This is a useful approach especially when the appli-
cation requires more than one Grid resource. All the
application needs is to instantiate the required number
of QoS Handler objects, submit the Task object to the
handlers, and let the handlers negotiate QoS requests
with the QGS to return an agreement. Furthermore, in
a QoS-enabled job submission through the interactive
mode, the QoS Handler listens for notifications of job
status, with the notification implemented by the QGS
as an OGSA notification. We plan to align ourselves
with the GGF Grid Resource Agreement and Alloca-
tion Protocol (GRAAP) Working Group [15] that is
defining a WS-Agreement protocol meant to address
machine-to-machine negotiations.

Reservation Manager. The reservation manager is
based around a data structure that supports reserva-
tions for quantifiable resources; resources associated
with defined capacities. The reservation manager is
decoupled from the underlying resources and does not
have direct interaction with them. However, it ob-
tains resource characteristics, and policies governing
resource usage, from the policy manager. The policy
manager, on the other hand, is responsible for validat-
ing reservation requests by applying domain-specific
rules, established by the resource owners, on when,
how, and by whom the resource can be used. In brief,
when the reservation manager receives a reservation
request from the QGS, it contacts the policy manager
for validation and then performs admission control to
check the availability of the requested resource. Upon
success, it returns a positive reply to the QGS, which
allows the QGS to propose a negotiable service agree-
ment offer.

Allocation Manager. The Allocation Manager’s
primary role is to interact with underlying resource
managers for resource allocation and deallocation and
to inquire about the status of the resources. It has in-
terfaces with various resource managers, namely, the
Dynamic Soft Real Time Scheduler (DSRT) [10] and
Network Resource Manager (NRM); we are also inves-
tigating Nest as the disk storage resource manager [16].
When the allocation manager receives resource alloca-
tion request from the QGS, it forwards the request to
the designated underlying resource manager. The Al-
location Manager interacts with adaptive services to
enforce adaptation strategies; for details, see [12].

QoS Registry Service. Since the framework oper-
ates in the OGSA architecture, the QGS and other
Grid services in the OGSI container should be pub-
lished in some registry service so they can be known



by others. Service publishing, in this discussion, does
not mean simply publishing a service name, URL, and
basic description. For example, for QGS, it includes in-
formation on what QoS-enabled service it offers, what
allocation strategies it employs, and what classes of
network QoS it offers (e.g., best effort, controlled load,
or guaranteed). For other Grid services, service pub-
lishing includes information about QoS properties such
as performance characteristics and service execution re-
quirements. To date, we have used an extended version
of the Universal Description Discovery and Integration
as part of our QoS registry service. The UDDIe [17]
is a Web services registry system, which provides ser-
vice providers a means to publish their services with
QoS properties and, hence, to search for these services
based on the QoS properties.

4.2 Java CoG Kit Core

The Java CoG Kit Core (cog-core) [18] compo-
nent offers a technology- and architecture-independent
abstraction layer that provides true interoperability
across multiple Grid implementations. Cog-core pro-
vides convenient APIs for Grid applications to access
the underlying Grid technology. Furthermore, cog-core
offers several useful abstractions reusable as part of a
Quality of Service framework including Grid tasks and
their corresponding handlers.

Task. The Java CoG Kit defines a Task as an atomic
unit of execution. A task is not limited to executing a
job. Instead, it abstracts the generic Grid functional-
ity, including authentication, remote job execution, file
transfer request, or information query. It has a unique
identity, a security context, a specification, and a ser-
vice contact.

The task identity helps in uniquely representing the
task across the Grid. The security context represents
the abstract security credentials of the task. This ab-
straction makes it possible to integrate a variety of dif-
ferent own security context as part of the Grid infras-
tructure. Hence, the security context in cog-core of-
fers a common construct that can be extended by the
different implementations to satisfy the corresponding
back-end requirement. The specification represents the
actual attributes or parameters required for the execu-
tion of the Grid-centric task. The generalized speci-
fication can be extended for common Grid tasks such
as remote job execution, file transfer, and information
query. The service contact associated with a task sym-
bolizes the Grid resource required to execute it.

Handlers. The Task Handler provides a simple in-
terface to handle interaction with a generic Grid task.
It categorizes the tasks and providing the appropri-
ate functionality. For example, the task handler will
handle a remote job execution task differently from a
file transfer request task. This approach does not im-
pose any restrictions on the implementation of the task
handler as long as its working is transparent to the end
user. This module is back-end-specific and has a sepa-
rate implementation for each abstraction it supports.

4.3 Application Integration

We have prototyped an implementation to demon-
strate the ease of use and effectiveness of a Grid ap-
plication using QoS functions. To enable other Grid
applications to use the QoS-enabled framework, one
needs to conduct the following simple steps: (a) create
a task object based on cog-core, (b) depending on the
type of the required QoS function, set up the necessary
objects for security, job specification, and service con-
tact, (c) instantiate a QoS Handler, and (d) Associate
the created task with the QoS Handler, and submit the
task.

Figure 2 shows a Java code fragment demonstrat-
ing how applications can generate QoS negotiation re-
quest, QoS job submission, and task submission to a
QoS handler, respectively.

The concept of abstracting the QoS services and in-
teracting with the QGS by creating a task (i.e., QoS
function) and submitting it to a QoS Handler has a
great advantage when dealing with multiple distributed
Grid resources: it makes the design and specification
of abstract QoS-based brokers easier.

5 Application Case Study: Nanoscale

Structures

To validate our QoS approach, we applied our refer-
ence implementation and prototyped a Grid computing
environment for the analysis of a nanoscale structures
application. This application involves a new experi-
mental technique, position-resolved diffraction, being
developed as part of Argonne National Laboratory’s
advanced analytical electron microscope program [19].
With this technique, a focused electron probe is sequen-
tially scanned across a two-dimensional field of view of
a thin specimen. At each point on the specimen a two-
dimensional electron diffraction pattern is acquired and
stored.

Analysis of the spatial variation in the electron
diffraction pattern of each measured point allows the



/*** QoS: Prepare Negotiation Task sokk /
private void prepareQosNegotiationTask() {

}

// create a QoS service, and setup QoS attributes
Task task =

new QosTaskImpl(‘‘myTask’’, QoS.NEGOTIATION) ;
this.task.setAttribute(‘‘startTime’’, startTime);
this.task.setAttribute(‘‘endTime’’, endTime);
this.task.setAttribute(‘‘allocStrategy’’,strategy);
this.task.setAttribute(‘ ‘cpu_capacity’’, cpuCapacity);

// create a Globus version of the security context
SecurityContextImpl securityContext =

new GlobusSecurityContextImpl();
// selects the default credentials
securityContext.setCredential (null);
// associate the security context with the task
task.setSecurityContext (securityContext) ;

// create a contact for the Grid resource
Contact contact = new Contact(‘‘myGridNode’’);

// create a service contact
ServiceContact service =
new ServiceContactImpl(gosServiceURL);
// associate the service contact with the contact
contact.setServiceContact (‘ ‘QGSurl’’,service);

// associate the contact with the task
task.setContact (contact);

/*x* QoS: Prepare Job Submission Task ***/
private void prepareQosJobSubmissionTask() {

}

// create a QoS JobSumbission Task
Task task =

new TaskImpl(‘‘myTask’’, QoS.JOBSUBMISSION);
this.task.setAttribute(‘ ‘agreementToken’’, token);

// create a remote job specification
JobSpecification spec = new JobSpecificationImpl();

// set all the job related parameters
spec.setExecutable(‘‘/bin/myExecutable’’);
spec.setRedirected(false);
spec.setStdOutput (¢ ‘QosOutput’’);

//associate the specification with the task
task.setSpecification(spec);

// create a Globus version of the security context
SecurityContextImpl securityContext =
new GlobusSecurityContextImpl();
securityContext.setCredential (null);
task.setSecurityContext (securityContext);

Contact contact = new Contact(‘‘myQoScontact’’);

ServiceContact service =

new ServiceContactImpl(qosServiceURL) ;
contact.setServiceContact (¢ ‘QGSurl’’,service);
task.setContact (contact) ;

/*** QoS: Task Submission to QoS Handler **x/
private void QosTaskSubmission(Task task) {

}

TaskHandler handler = new QoSTaskHandlerImpl();
// submit the task to the handler
handler.submit (task);

Figure 2. A sample code fragment for QoS
negotiation, and task submission to QoS han-
dler
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abstract Grid tasks.

researcher to study subtle changes resulting from mi-
crostructural differences, such as ferro- and electromag-
netic domain formation and motion, at unprecedented
spatial scales. As much as one terabyte of data can
be taken during such an experiment. The analysis of
this data requires a resource-rich Grid infrastructure
to accommodate real-time constraints. Results need to
be archived, remote compute resources need to be re-
served and made available during an experiment, and
the data needs to be moved to the compute resources
where they will be analyzed. Moreover, results need to
be gathered and presented in a form that is meaningful
to the scientist.

The need for a flexible infrastructure is demon-
strated through a simple flow diagram depicted in Fig-
ure 3. The elementary logic of the instrument con-
trol can be expressed as a sequence of processes that
depend on each other: (a) Data acquisition: gathers
time-delayed images from the electron microscope. (b)
Backup: backs up the incoming data. (c) Data analy-
sis: performs scientific calculations on the time delayed
images. (d) Result display: gathers the results from
the data analysis, in a form easy to interpret, to enable
further judgments for steering the experiment.

The nanostructures application presents one of
many scientific use patterns that occur in high-end in-
strument scenarios. The pattern includes a high vol-
ume of interaction during an experiment that must be
dealt with in an adaptive and flexible way. Unexpected
and unpredicted experiment conditions must be con-
sidered, and the instrument operator’s interface to the



Grid must be as simple as possible while at the same
time providing needed flexibility to interactively mod-
ify the experiment setup.

The Java CoG Kit provides a convenient abstraction
for formulating these tasks while reusing the patterns
for file transfer, job execution, and job management.
At the same time it hides much of the complexity,
which the Grid application developer may not want
to see. To provide the necessary flexibility, we plan
to develop graphical components for the Java CoG Kit
and integrate them in a problem-solving environment
that targets the use of a scientific instrument. Through
this interface, the scientist will be able to interact eas-
ily with the experiment resources and decide when,
what, and where data gathered during the course of
the experiment is backed up. Image filters and moni-
tors, plugged dynamically into the workflow for image
analysis, help to validate the correctness and useful-
ness of the running experiment. Since the sample in
the instrument may require specialized and individ-
ual filters, the experiment operator must be given a
methodology that allows their easy creation and adap-
tation. Because of the focus on the experiment itself,
the use of the Grid should be through abstractions as
much as possible. Based on the application descrip-
tion, we derive the following requirements for QoS: (a)
Network requirements to transfer the time-delayed im-
ages from the electron microscope as part of the data
acquisition process. (b)Disk storage to cache quickly
incoming data during the acquisition process and the
availability of large storage for a backup process. (c)
Computation power to process the scientific calcula-
tions on the time-delayed images in real time, as new
images become available in the data analysis process.
(d) Collect results produced by the data analysis pro-
cess and transfer them to a display, where the scientist
can interpret outcomes and further steer the experi-
ment.

6 Case Scenarios and Requirements

In this section, we use case scenarios to illustrate
how the QoSm framework can also benefit scientists in
other disciplines.

Collaborative Real-Time Experiments. A group
of scientists located in different domains are collaborat-
ing on a nanoscale structure experiment. Each scien-
tist participates in the experiment by providing local
data augmentation and then transferring that data to a
high-performance computing resource for collaborative
data analysis. The scientists at corresponding domains
establish a guaranteed network bandwidth to conduct

data transfer; similarly, the scientists at the data analy-
sis location establish resource guarantees, not only for
the data transfer but also for computing power with
adequate resources to perform the data analysis and
produce results in a specific time, when all scientist
are online to interact with or steer the experiment.

Ad Hoc Real-Time Experiments Needing Com-
puting Power. Several scientists decide to conduct
an experiment to verify certain findings. The decision
is made on an ad hoc basis, that is, without prior ar-
rangement. The experiment must be conducted in a
Grid infrastructure, with enough computing resources
to perform the desired experiment in a reasonable time
and fulfill the scientists ad hoc requirements. Here,
the scientists require some commitment from the Grid
middleware that the resources needed for the experi-
ment are indeed available at this time. The scientists
therefore submit a QoS negotiation request to a QoS
manager. The QoS manager gives such a commitment
if the resources are available at the specific time; if the
resources are not available, the QoS manager proposes
a new available time, which the scientist may accept or
reject.

Experiments with Deadline Constraints. A
team of scientists has a deadline for delivering experi-
ment results. The scientists therefore contact the QoS
manager in advance to negotiate a QoS agreement to
guarantee resource availability during the experiment.

These three scenarios have the following common
elements: (a) The need for Grid resources with par-
ticular capabilities (b) The need for resources to be
available for a predefined period of time (¢) The need
for an agreement to indicate the commitment level of
resource availability

With these elements in mind, we have engineered
the G-QoSm framework to fulfill resource requests with
QoS specifications, perform advance reservations of re-
sources, generate QoS agreements, and execute services
based on prenegotiated QoS agreements. In the rest of
the paper, we focus on the third elementthe commit-
ment level of resource availabilityas we discuss the im-
plementation of G-QoSm and provide initial experience
results.

7 Implementation and Results

Our testbed contained Grid computing resources in-
cluding two Linux-based computers with a 1.8 GHz
Pentium processor and 256 MB of memory for the ser-
vice consumer, and a Pentium processor 1.2 GHz and
512 MB of memory for the service provider. Deployed



on these machines were the Globus Toolkit version 3
OGSI service container, the Globus Toolkit version 2,
and the Java CoG Kit. We experimented with the
nanoscale application using two different approaches:
(1) with a QoS handler through the Java CoG Kit and
(2) with a GT2 handler through the Java CoG Kit.

7.1 Time-Domain Example

In this section we show results for a nanostructures
image analysis based on a sample electron diffraction
using up to 900 input images. We used a time-domain
strategy for resource allocation. In other words, the
whole computer was reserved for the application; mul-
tiple jobs were submitted to the reserved node but only
one of them was executed.

Table 1. Number of images and time taken to
process the images under QoS service- and
GT2-based job submission

Time taken to process images using QoS & GT2

Number — of — I'mages | 25 50 75 90

Datasetl : QoS 4:40  9:20 13:55 16:55

Dataset2 : GT2 5:20 10:35 15:42 18:25

We conducted two sets of runs: (1) job submission
based on QoS and (2) standard job submission based on
GT2 GRAM. Each set consisted of four runs to analyze
25 images, 50 images, 75 images, and 90 images. Table
1 shows the performance results, with the number of
images and the time taken to process that number of
images.

Dataset 1, QoS, shows that the time taken to pro-
cess the images is less than that for the GT2 approach.
This result is expected because the reservation mech-
anism employed in this time-domain strategy is to re-
serve the full processing power of the Grid node for
the QoS-based application and thus prevents other pro-
cesses from using the processing power as long as the
reservation holds.

Dataset 2, GT2, shows that the time taken to pro-
cess the images is more than that for the QoS ap-
proach. The reason is that multiple processing loads
were applied to simulate a shared multiuser environ-
ment. Since the GT2 technology does not employ a
reservation mechanism, different processes were able
to use the processing power while the submitted job
was running.
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Figure 4. User Interface showing parameters
for the QoS Negotiation Task

7.2 Resource-Domain Example

In this section we show results when the G-QoSm
framework was used to allocate CPU resources with
a QoS specification using a resource-domain allocation
strategy. With this strategy, a slot of the CPU power is
reserved, and the client or application can submit jobs
to be executed under fractional reservation constraints.
The process is implemented by using the Java CoG
Kit API to create a task object and then submitting
the created task to the QoS Handler to negotiate the
required resources or services. Upon success, a Service
Level Agreement is returned for use when claiming a
reserved resource in the future.

We prototyped an easy-to-use set of graphical com-
ponents designed to make access to QoS services trans-
parent for the nontechnical user. Figure 4 shows a
screenshot of the form used to specify the parameters
of the task to be submitted to the QoS Handler.

Figure 5 shows a screenshot of the details of a QoS
job submission object specifying the executable ‘math-
Appl’ and a reserved CPU power of 60%.

We conducted a simple feasibility study evaluat-
ing the behavior of our system under heavy load.
Two computation-intensive, competing processes were
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started before we ingested into our systems the guaran-
teed process ‘mathAppl. We prototyped a simple CPU
monitor that allows us to study the behavior of the sys-
tem during runtime. Example screenshots of this mon-
itor are depicted in Figure 6 and 6. We show snapsots
during two different times. In Figure 6 the six most
CPU-intensive processes are shown before the guaran-
teed process ‘mathAppl’ is submitted . Figure 7 is
a screenshot showing CPU utilization of the six most
CPU-intensive processes after the guaranteed process
has been started. The figure also shows ‘mathAppl’, as
a ‘Guaranteed’ process, colored red, and using 60% of
the CPU power of this Grid node, while the competing
processes use the remainder of the CPU power.

8 Conclusion and Future Work

In this paper, we have discussed QoS in several dis-
ciplines, including networking, distributed multimedia,
and Grid computing. We defined a QoS matrix for
networking, computation, and storage media. We also
outlined general requirements for QoS management in
the context of service Grids.

To meet these requirements, we have proposed a
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Grid QoS resource management architecture, called G-
QoSm. This architecture overcomes some of the lim-
itations of earlier efforts in the Grid community, such
as GARA. The development of G-QoSm benefits from
our experience in designing the Java CoG Kit, which
uses convenient abstractions to integrate QoS capabil-
ities and is easily ported to the Globus Toolkit version
2 and 3.

We developed a prototype of G-QoSm and validated
it using a nanoscale structures experiment as a place-
holder for a typical Grid application with data, com-
pute, and interactive requirements. We showed the
usefulness of part of our architecture based on a simple
comparative use scenario under heavy load.

We note that the G-QoSm architecture is suitable
not only for nanoscale structures but also for many
other applications with computation-intensive and net-
working requirements.

Our architecture currently includes a set of compo-



nents that abstract the use of QoS for the nonprogram-
mer. We emphasize that these components are critical
if the Grid is to gain widespread acceptance in real
applications. The current set of components must be
augmented and their utility demonstrated to convince
new users of the Grids usefulness.

We intend to continue our research in Grid resource
management in accordance with the Global Grid Fo-
rum Grid Resource Agreement and Allocation Protocol
working group WS-agreement standard. We believe,
however, that a resource agreement and allocation pro-
tocol is just a small fraction of the work necessary to
enable full QoS in Grids. Hence, we plan to investigate
much more difficult areas, such as resource allocation
strategies, capacity planning, and integrating network
QoS support.
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