Optimization of Collective Communication Operations in MPICH

Rajeev Thakur*

Abstract

We describe our work on optimizing the collective
communication operations in MPICH for clusters con-
nected by switched networks. For each collective op-
eration, we use multiple algorithms depending on the
message size, with the goal of minimizing latency for
short messages and minimizing bandwidth use for long
messages. Although we have implemented new algo-
rithms for all MPI collective operations, because of
limited space we describe only the algorithms for all-
gather, broadcast, all-to-all, reduce-scatter, reduce,
and allreduce. Performance results on a Myrinet-
connected Linux cluster and an IBM SP indicate that,
in all cases, the new algorithms significantly out-
perform the old algorithms used in MPICH on the
Myrinet cluster, and, in many cases, they outperform
the algorithms used in IBM’s MPI on the SP. We also
explore in further detail the optimization of two of the
most commonly used collective operations, allreduce
and reduce, particularly for long messages and non-
power-of-two numbers of processes. The optimized
algorithms for these operations perform several times
better than the native algorithms on a Myrinet clus-
ter, IBM SP, and Cray T3E. This work demonstrates
that to achieve the best performance for a collective
communication operation, we need to use a number of
different algorithms and select the right algorithm for
a particular message size and number of processes.

Keywords: Message Passing, MPI, Collective Com-
munication, Reduction

1 Introduction
Collective communication is an important and fre-

quently used component of MPI and offers im-
plementations considerable room for optimization.

*Mathematics and Computer Science Division, Argonne Na-
tional Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439,
USA. {thakur, gropp}@mcs.anl.gov

tHigh Performance Computing Center (HLRS), University
of Stuttgart, Allmandring 30, D-70550 Stuttgart, Germany.
rabenseifner@hlrs.de, www.hlrs.de/people/rabenseifner/

Rolf Rabenseifner’

William Gropp*

MPICH [12], although widely used as an MPI imple-
mentation, has until now had fairly rudimentary im-
plementations of the collective operations. We have
recently focused on improving the performance of all
the collective operations in MPICH. Our initial tar-
get architecture is the one that is the most popular
among our users, namely, clusters of machines con-
nected by a switch, such as Myrinet or the IBM SP
switch. For each collective operation, we use multiple
algorithms based on message size: The short-message
algorithms aim to minimize latency, and the long-
message algorithms aim to minimize bandwidth use.
Our approach has been to identify the best algorithms
known in the literature, improve on them or develop
new algorithms where necessary, and implement them
efficiently. We have done extensive experimental anal-
ysis to determine the cutoff points for switching be-
tween different algorithms depending on the message
size and number of processes. We have implemented
new algorithms for all the MPI collective operations,
namely, scatter, gather, allgather, broadcast, reduce,
allreduce, reduce-scatter, scan, and barrier. Because
of limited space, however, we describe and present
performance results for only the new algorithms for
allgather, broadcast, all-to-all, reduce-scatter, reduce,
and allreduce.

Based on the results of a five-year profiling study
of applications running in production mode on a Cray
T3E at the University of Stuttgart [15], we chose to
optimize further the two most commonly used collec-
tive operations: allreduce and reduce. We present a
detailed study of different ways of implementing allre-
duce and reduce, particularly for long messages and
non-power-of-two numbers of processes, which occur
frequently according to the profiling study.

The rest of this paper is organized as follows. In
Section 2, we describe related work in the area of
collective communication. In Section 3, we describe
the cost model used to guide the selection of algo-
rithms. In Section 4, we describe the new algorithms
in MPICH and their performance. In Section 5, we
study in detail the further optimization of reduce and
allreduce. In Section 6, we conclude with a brief dis-
cussion of future work.

2 Related Work

Early work on collective communication focused on
developing optimized algorithms for particular archi-
tectures, such as hypercube, mesh, or fat tree, with
an emphasis on minimizing link contention, node
contention, or the distance between communicating
nodes [2, 4, 5, 18]. More recently, Vadhiyar et al.
have developed automatically tuned collective com-
munication algorithms [24]. Their approach consists
of running tests to measure system parameters and
then tuning their algorithms for those parameters.
Researchers in Holland and at Argonne have opti-
mized MPI collective communication for wide-area
distributed environments [9, 10]. In such environ-
ments, the goal is to minimize communication over
slow wide-area links at the expense of more com-
munication over faster local-area connections. Re-
searchers have also developed collective communica-
tion algorithms for clusters of SMPs [17, 20, 22, 23],
where communication within an SMP is done differ-
ently from communication across a cluster. Some ef-
forts have focused on using different algorithms for dif-
ferent message sizes, such as the work by Van de Geijn
et al. for the Intel Paragon [1, 11, 19], by Rabenseifner
on reduce and allreduce [14], and by Kale et al. on all-
to-all communication [8]. Benson et al. studied the
performance of the allgather operation in MPICH on
Myrinet and TCP networks and developed a dissem-
ination allgather based on the dissemination barrier
algorithm [3]. Bruck et al. proposed algorithms for
allgather and all-to-all that are particularly efficient
for short messages [6].

3 Cost Model

We use a simple model to estimate the cost of the
collective communication algorithms in terms of la-
tency and bandwidth use and to guide the selection
of algorithms for a particular collective communica-
tion operation. We assume that the time taken to
send a message between any two nodes can be mod-
eled as a + nB, where « is the latency (or startup
time) per message, independent of message size, § is
the transfer time per byte, and n is the number of
bytes transferred. We assume further that the time
taken is independent of how many pairs of processes
are communicating with each other, independent of
the distance between the communicating nodes, and
that the communication links are bidirectional (that
is, a message can be transferred in both directions
on the link in the same time as in one direction).

The node’s network interface is assumed to be sin-
gle ported; that is, at most one message can be sent
and one message can be received simultaneously. In
the case of reduction operations, we assume that -y
is the computation cost per byte for performing the
reduction operation locally on any process.

4 Algorithms

In this section we describe the new algorithms and
their performance. We measured performance by us-
ing the SKaMPI benchmark [25] on two platforms:
a Linux cluster at Argonne connected with Myrinet
2000 and the IBM SP at the San Diego Super-
computer Center. On the Myrinet cluster we used
MPICH-GM and compared the performance of the
new algorithms with the old algorithms in MPICH-
GM. On the IBM SP, we used IBM’s MPI and com-
pared the performance of the new algorithms with the
algorithms used in IBM’s MPI. On both systems, we
ran one MPI process per node. We implemented the
new algorithms as functions on top of MPI point-to-
point operations, so that we could compare perfor-
mance simply by linking or not linking the new func-
tions.

4.1 Allgather

MPI_Allgather is a gather operation in which the
data contributed by each process is gathered on
all processes, instead of just the root process as
in MPI Gather. The old algorithm for allgather in
MPICH uses a ring method in which the data from
each process is sent around a virtual ring of processes.
In the first step, each process i sends its contribution
to process ¢ + 1 and receives the contribution from
process i — 1 (with wrap-around). From the second
step onward each process i forwards to process i + 1
the data it received from process i — 1 in the previ-
ous step. If p is the number of processes, the entire
algorithm takes p — 1 steps. If n is the total amount
of data to be gathered on each process, then at ev-
ery step each process sends and receives 2 amount of
data. Therefore, the time taken by this algorithm is
given by Tring = (p — 1) + %nﬂ. Note that the
bandwidth term cannot be reduced further because
each process must receive 2 data from p — 1 other
processes. The latency term, however, can be reduced
by using an algorithm that takes lgp steps. We con-
sider two such algorithms: recursive doubling and the
Bruck algorithm [6].

PO Pl P2 P3 P4 P5 P6 P7
O O O O O O O

Stepl N_ 7 N~ N~ N~
Sep2 NN A N N A
Sp3 SN 7 7 7

Figure 1: Recursive doubling for allgather

4.1.1 Recursive Doubling

Figure 1 illustrates how recursive doubling works. In
the first step, processes that are a distance 1 apart
exchange their data. In the second step, processes
that are a distance 2 apart exchange their own data
as well as the data they received in the previous step.
In the third step, processes that are a distance 4 apart
exchange their own data as well the data they received
in the previous two steps. In this way, for a power-of-
two number of processes, all processes get all the data
in 1g p steps. The amount of data exchanged by each

process is % in the first step, 27" in the second step,

2lsp—1,

and so forth, up to in the last step. Therefore,
the total time taken by this algorithm is Ty ec_gpr =
lgpa+ pTTln,B .

Recursive doubling works very well for a power-of-
two number of processes but is tricky to get right for a
non-power-of-two number of processes. We have im-
plemented the non-power-of-two case as follows. At
each step of recursive doubling, if the current subtree
is not a power of two, we do additional communication
(in a logarithmic fashion) to ensure that all processes
get the data they would have gotten had the subtree
been a power of two. This extra communication is
necessary for the subsequent steps of recursive dou-
bling to work correctly. The total number of steps for
the non-power-of-two case is bounded by 2|lgp].

4.1.2 Bruck Algorithm

The Bruck algorithm for allgather [6] (referred to as
concatenation) is a variant of the dissemination al-
gorithm for barrier, described in [7]. Both algorithms
take [lg p] steps in all cases, even for non-power-of-two
numbers of processes. In the dissemination algorithm
for barrier, in each step k£ (0 < k < [lgp]), process
i sends a (zero-byte) message to process (i + 2¥) and
receives a (zero-byte) message from process (i — 2*)
(with wrap-around). If the same order were used to
perform an allgather, it would require communicat-
ing noncontiguous data in each step in order to get
the right data to the right process (see [3] for details).
The Bruck algorithm avoids this problem nicely by a

simple modification to the dissemination algorithm in
which, in each step k, process ¢ sends data to pro-
cess (i — 2%) and receives data from process (i + 2¥),
instead of the other way around. The result is that
all communication is contiguous, except that at the
end, the blocks in the output buffer must be shifted
locally to place them in the right order, which is a
local memory-copy operation.

Figure 2 illustrates the Bruck algorithm for an ex-
ample with six processes. The algorithm begins by
copying the input data on each process to the top of
the output buffer. In each step k, process i sends to
the destination (i — 2*) all the data it has so far and
stores the data it receives (from rank (i 4+ 2*)) at the
end of the data it currently has. This procedure con-
tinues for |lgp| steps. If the number of processes is
not a power of two, an additional step is needed in
which each process sends the first (p — 2U'87) blocks
from the top of its output buffer to the destination
and appends the data it receives to the data it al-
ready has. Each process now has all the data it needs,
but the data is not in the right order in the output
buffer: The data on process i is shifted “up” by i
blocks. Therefore, a simple local shift of the blocks
downwards by ¢ blocks brings the data into the de-
sired order. The total 1time taken by this algorithm is

Tbruck = |—1gp-| a+ p%nﬂ

4.1.3 Performance

From the cost model for the three algorithms, we ob-
serve that they all have the same bandwidth cost; re-
cursive doubling and the Bruck algorithm have a lower
latency cost than the ring algorithm; and the Bruck al-
gorithm has lower latency than recursive doubling for
non-power-of-two numbers of processes. Therefore, it
appears that the Bruck algorithm would work well in
all cases. In practice, however, we find that the Bruck
algorithm is best for short messages and non-power-of-
two numbers of processes; recursive doubling is best
for power-of-two numbers of processes and short or
medium-sized messages; and the ring algorithm is best
for long messages and any number of processes and
also for medium-sized messages and non-power-of-two
numbers of processes.

Figure 3 shows the advantage of the Bruck al-
gorithm over recursive doubling for short messages
and non-power-of-two numbers of processes because it
takes fewer additional steps. For power-of-two num-
bers of processes, however, recursive doubling per-
forms better because of the pairwise nature of its com-
munication pattern. As the message size increases,
the Bruck algorithm suffers because of the memory

After step 2

After step 1

After local shift

Figure 2: Bruck allgather

Myrinet Cluster, 16 bytes message size

N
o

Recﬁrsive DouBIing —_—
Bruck Algorithm --------

n
o
T

o
o
T

®
S
T

time (microsec.)
(2]
o
T

N
o
T

n
o
T

0 5 10 15 20 25 30 35
Number of processes

Figure 3: Performance of recursive doubling versus
Bruck allgather for power-of-two and non-power-of-
two numbers of processes (message size 16 bytes per
process).

copies needed for reordering data in the last step. In
MPICH, therefore, we use the Bruck algorithm for
short messages (< 80 KB total data gathered) and
non-power-of-two numbers of processes, and recur-
sive doubling for power-of-two numbers of processes
and short or medium-sized messages (< 512 KB total
data gathered). For short messages, the new allgather
performs significantly better than the old allgather in
MPICH, as shown in Figure 4.

For long messages, the ring algorithm performs bet-
ter than recursive doubling (see Figure 5). We believe
this is because it uses a nearest-neighbor communica-

Myrinet Cluster

1800

MPICH Old —— ‘

1600 | MPICH New ——

1400 1
1200 1
1000 1

800 b

time (microsec.)

600 b

200 [e |

7000 8000

2000 3000 4000 5000 6000
message length (bytes)

0 el L
0 1000 9000

Figure 4: Performance of allgather for short messages
(64 nodes). The size on the x-axis is the total amount
of data gathered on each process.

tion pattern, whereas in recursive doubling, processes
that are much farther apart communicate. To con-
firm this hypothesis, we used the b_eff MPI bench-
mark [13], which measures the performance of about
48 different communication patterns, and found that,
for long messages on both the Myrinet cluster and the
IBM SP, some communication patterns (particularly
nearest neighbor) achieve more than twice the band-
width of other communication patterns. Therefore,
for long messages (> 512 KB total data gathered)
and any number of processes and also for medium-
sized messages and non-power-of-two numbers of pro-
cesses, we use the ring algorithm.

Myrinet Cluster
120000

R‘ecursivé doubl!ﬁg

Ring --------

100000 |-

80000 -

60000 -

time (microsec.)

40000 -

20000 -

0
0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06

message length (bytes)

IBM SP

180000

Recursive doubliﬁg
160000 -

140000
120000
100000

80000 -

time (microsec.)

60000 -

40000 -

20000 -

0 | | | | | | | |
0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06

message length (bytes)

Figure 5: Ring algorithm versus recursive doubling
for long-message allgather (64 nodes). The size on
the x-axis is the total amount of data gathered on
each process.

4.2 Broadcast

The old algorithm for broadcast in MPICH is the com-
monly used binomial tree algorithm. In the first step,
the root sends data to process (root 4+ §). This pro-
cess and the root then act as new roots within their
own subtrees and recursively continue this algorithm.
This communication takes a total of [lgp] steps. The
amount of data communicated by a process at any
step is n. Therefore, the time taken by this algorithm
is Ttree = |—1gp—| (CK + TLB)

This algorithm is good for short messages because
it has a logarithmic latency term. For long mes-
sages, however, a better algorithm has been proposed
by Van de Geijn et al. that has a lower bandwidth
term [1, 19]. In this algorithm, the message to be
broadcast is first divided up and scattered among the
processes, similar to an MPI_Scatter. The scattered
data is then collected back to all processes, similar to

an MPI_Allgather. The time taken by this algorithm
is the sum of the times taken by the scatter, which is
(lgpa+ pTTln,B) for a binomial tree algorithm, and
the allgather for which we use either recursive dou-
bling or the ring algorithm depending on the message
size. Therefore, for very long messages where we use
the ring allgather, the time taken by the broadcast is
Tvandegeijn = (lgp +p—].)C! + QPTTlnﬂ

Comparing this time with that for the binomial tree
algorithm, we see that for long messages (where the
latency term can be ignored) and when lgp > 2 (or
p > 4), the Van de Geijn algorithm is better than
binomial tree. The maximum improvement in per-
formance that can be expected is (Igp)/2. In other
words, the larger the number of processes, the greater
the expected improvement in performance. Figure 6
shows the performance for long messages of the new
algorithm versus the old binomial tree algorithm in
MPICH as well as the algorithm used by IBM’s MPI
on the SP. In both cases, the new algorithm performs
significantly better. Therefore, we use the binomial
tree algorithm for short messages (< 12 KB) and the

Van de Geijn algorithm for long messages (> 12 KB).

4.3 All-to-All

All-to-all communication is a collective operation in
which each process has unique data to be sent to ev-
ery other process. The old algorithm for all-to-all in
MPICH does not attempt to schedule communication.
Instead, each process posts all the MPI_Irecvs in a
loop, then all the MPI_Isends in a loop, followed by
an MPI Waitall. Instead of using the loop index ¢
as the source or destination process for the irecv or
isend, each process calculates the source or destina-
tion as (rank + i) % p, which results in a scattering of
the sources and destinations among the processes. If
the loop index were directly used as the source or tar-
get rank, all processes would try to communicate with
rank 0 first, then with rank 1, and so on, resulting in
a bottleneck.

The new all-to-all in MPICH uses four different al-
gorithms depending on the message size. For short
messages (< 256 bytes per message), we use the index
algorithm by Bruck et al. [6]. It is a store-and-forward
algorithm that takes [lgp] steps at the expense of
some extra data communication (% lgp f instead of
nfB3, where n is the total amount of data to be sent
or received by any process). Therefore, it is a good
algorithm for very short messages where latency is an
issue.

Figure 7 illustrates the Bruck algorithm for an ex-
ample with six processes. The algorithm begins by do-

Myrinet Cluster
250000

MPICH Old ——
MPICH New -

200000 -

150000

time (microsec.)

100000

50000 -

0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06
message length (bytes)

IBM SP

160000 ;
IBM MPI ——
MPICH New -
140000 |

120000
100000 [

80000 -

time (microsec.)

60000 -

40000 -

20000 -

0 | | | | | | | |
0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06

message length (bytes)

Figure 6: Performance of long-message broadcast (64
nodes)

ing a local copy and “upward” shift of the data blocks
from the input buffer to the output buffer such that
the data block to be sent by each process to itself is at
the top of the output buffer. To achieve this, process
1 must rotate its data up by ¢ blocks. In each com-
munication step k (0 < k < [lgp]), process i sends to
rank (i +2*) (with wrap-around) all those data blocks
whose kth bit is 1, receives data from rank (i — 2*),
and stores the incoming data into blocks whose kth
bit is 1 (that is, overwriting the data that was just
sent). In other words, in step 0, all the data blocks
whose least significant bit is 1 are sent and received
(blocks 1, 3, and 5 in our example). In step 1, all
the data blocks whose second bit is 1 are sent and re-
ceived, namely, blocks 2 and 3. After a total of [lgp]
steps, all the data gets routed to the right destination
process, but the data blocks are not in the right order
in the output buffer. A final step in which each pro-
cess does a local inverse shift of the blocks (memory
copies) places the data in the right order.

The beauty of the Bruck algorithm is that it is

Myrinet Cluster, 64 nodes

900 T

MPICHOld ——
MPICH New -

800 -

600 [i

time (microsec.)

500 |- g

300 | i

200 ~ L L L L L
0 50 100 150 200 250 300

message length (bytes)

Figure 8: Performance of Bruck all-to-all versus the
old algorithm in MPICH (isend-irecv) for short mes-
sages. The size on the x-axis is the amount of data
sent by each process to every other process.

a logarithmic algorithm for short-message all-to-all
that does not need any extra bookkeeping or control
information for routing the right data to the right
process—that is taken care of by the mathematics of
the algorithm.

If n is the total amount of data a process needs to
send to or receive from all other processes, the time
taken by the Bruck algorithm can be calculated as
follows. If the number of processes is a power of two,
each process sends and receives 5 amount of data in
each step, for a total of 1gp steps. Therefore, the time
taken by the algorithm is Tp,uer = Igpa + 5 1lgp 6.
If the number of processes is not a power of two, in
the final step, each process must communicate %(p —

2Uerl) data. Therefore, the time taken in the non-
power-of-two case is Tpryer = [Igpla+ (L 1gp+ %(p—
2ller]y) 5.

Figure 8 shows the performance of the Bruck al-
gorithm versus the old algorithm in MPICH (isend-
irecv) for short messages. The Bruck algorithm per-
forms significantly better because of its logarithmic
latency term. As the message size is increased, how-
ever, latency becomes less of an issue, and the ex-
tra bandwidth cost of the Bruck algorithm begins to
show. Beyond a per process message size of about
256 bytes, the isend-irecv algorithm performs better.
Therefore, for medium-sized messages (256 bytes to
32 KB per message), we use the irecv-isend algorithm,
which works well in this range.

For long messages and power-of-two number of pro-
cesses, we use a pairwise-exchange algorithm, which
takes p — 1 steps. In each step k, 1 < k < p, each

P2

After communication step 1

After communication step 2

P3 P4

After local inverse rotation

Figure 7: Bruck algorithm for all-to-all. The number ij in each box represents the data to be sent from
process ¢ to process j. The shaded boxes indicate the data to be communicated in the next step.

process calculates its target process as (rank ~ k)
(exclusive-or operation) and exchanges data directly
with that process. This algorithm, however, does not
work if the number of processes is not a power of
two. For the non-power-of-two case, we use an al-
gorithm in which, in step k, each process receives
data from rank — k and sends data to rank + k.
In both these algorithms, data is directly communi-
cated from source to destination, with no intermediate
steps. The time taken by these algorithms is given by
ZZWlong = (p -].)CK + TLB

4.4 Reduce-Scatter

Reduce-scatter is a variant of reduce in which the re-
sult, instead of being stored at the root, is scattered
among all processes. The old algorithm in MPICH
implements reduce-scatter by doing a binomial tree
reduce to rank 0 followed by a linear scatterv. This
algorithm takes lgp+ p — 1 steps, and the bandwidth
term is (lgp + %)nﬂ. Therefore, the time taken by
this algorithm is T4 = (1gp+p—1)a+(lgp+pr1)n5+
nlgpy.

In our new implementation of reduce-scatter, for
short messages, we use different algorithms depending
on whether the reduction operation is commutative or
noncommutative. The commutative case occurs most
commonly because all the predefined reduction oper-
ations in MPI (such as MPI_SUM, MPI_MAX) are com-
mutative.

For commutative operations, we use a recursive-

Step3 “_ 7 N_A N_A N_ 7

Figure 9: Recursive halving for commutative reduce-
scatter

halving algorithm, which is analogous to the recursive-
doubling algorithm used for allgather (see Figure 9).
In the first step, each process exchanges data with a
process that is a distance § away: Each process sends
the data needed by all processes in the other half, re-
ceives the data needed by all processes in its own half,
and performs the reduction operation on the received
data. The reduction can be done because the oper-
ation is commutative. In the second step, each pro-
cess exchanges data with a process that is a distance
£ away. This procedure continues recursively, halving
the data communicated at each step, for a total of lgp
steps. Therefore, if p is a power of two, the time taken
by this algorithm is Tyee_narr = lg pat+2Ltns+ ”p%lnfy.

We use this algorithm for messages up Iéo 512 KB.

If p is not a power of two, we first reduce the num-
ber of processes to the nearest lower power of two
by having the first few even-numbered processes send
their data to the neighboring odd-numbered process
(rank + 1). These odd-numbered processes do a re-
duce on the received data, compute the result for
themselves and their left neighbor during the recur-

sive halving algorithm, and, at the end, send the re-
sult back to the left neighbor. Therefore, if p is not
a power of two, the time taken by the algorithm is
Trecnats = ([1gp) + 2)a + 208 + n(1 + E2)y. This
cost is approximate because some imbalance exists in
the amount of work each process does, since some pro-
cesses do the work of their neighbors as well.

If the reduction operation is not commutative, re-
cursive halving will not work. Instead, we use a
recursive-doubling algorithm similar to the one in all-
gather. In the first step, pairs of neighboring pro-
cesses exchange data; in the second step, pairs of
processes at distance 2 apart exchange data; in the
third step, processes at distance 4 apart exchange
data; and so forth. However, more data is commu-
nicated than in allgather. In step 1, processes ex-
change all the data except the data needed for their
own result (n — %); in step 2, processes exchange all
data except the data needed by themselves and by
the processes they communicated with in the previ-
ous step (n — 27"); in step 3, it is (n — 47"); and so
forth. Therefore, the time taken by this algorithm
is Tonort = lgp a +n(lgp — B55)8 + n(lgp — B52)y.
We use this algorithm for very short messages (< 512
bytes).

For long messages (> 512 KB in the case of com-
mutative operations and > 512 bytes in the case of
noncommutative operations), we use a pairwise ex-
change algorithm that takes p—1 steps. In step i, each
process sends data to (rank + i), receives data from
(rank—1i), and performs the local reduction. The data
exchanged is only the data needed for the scattered
result on the process (). The time taken by this algo-
rithm is Tyong = (p— 1)+ Z-2nf + E==ny. Note that
this algorithm has the same bandwidth requirement as
the recursive halving algorithm. Nonetheless, we use
this algorithm for long messages because it performs
much better than recursive halving (similar to the re-
sults for recursive doubling versus ring algorithm for
long-message allgather).

The SKaMPI benchmark, by default, uses a non-
commutative user-defined reduction operation. Since
commutative operations are more commonly used, we
modified the benchmark to use a commutative oper-
ation, namely, MPT_SUM. Figure 10 shows the perfor-
mance of the new algorithm for short messages on the
IBM SP and on the Myrinet cluster. The performance
is significantly better than that of the algorithm used
in IBM’s MPI on the SP and several times better than
the old algorithm (reduce + scatterv) used in MPICH
on the Myrinet cluster.

IBM SP
1600

IBM MPI ——
MPICH New -

1400

1200

1000

800

time (microsec.)

600

400 + 1

200 f/ il

0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

message length (bytes)

Myrinet Cluster

400000

MPICH Old —— ‘
MPICH New -
350000 |

300000 -
250000 -

200000 -

time (microsec.)

150000

100000

50000 -

0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06
message length (bytes)

Figure 10: Performance of reduce-scatter for short
messages on the IBM SP (64 nodes) and for long mes-
sages on the Myrinet cluster (32 nodes)

4.5 Reduce and Allreduce

MPI_Reduce performs a global reduction operation
and returns the result to the specified root, whereas
MPI_Allreduce returns the result on all processes.
The old algorithm for reduce in MPICH uses a bi-
nomial tree, which takes lg p steps, and the data com-
municated at each step is n. Therefore, the time taken
by this algorithm is T;ree = [lgp](a + nB + ny). The
old algorithm for allreduce simply does a reduce to
rank 0 followed by a broadcast.

The binomial tree algorithm for reduce is a good
algorithm for short messages because of the 1g p num-
ber of steps. For long messages, however, a better
algorithm exists, proposed by Rabenseifner [14]. The
principle behind Rabenseifner’s algorithm is similar to
that behind Van de Geijn’s algorithm for long-message
broadcast. Van de Geijn implements the broadcast as
a scatter followed by an allgather, which reduces the
nlg ps bandwidth term in the binomial tree algorithm
to a 2nf term. Rabenseifner’s algorithm implements

Myrinet Cluster
450000

MPICH Old ——

400000 | MPICH New

350000 -
300000 -
250000 -

200000 -

time (microsec.)

150000 -

100000 -

50000 -

0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06

message length (bytes)

Figure 11: Performance of reduce (64 nodes)

a long-message reduce effectively as a reduce-scatter
followed by a gather to the root, which has the same
effect of reducing the bandwidth term from nlgp g
to 2nf. The time taken by Rabenseifner’s algorithm
is the sum of the times taken by reduce-scatter (re-
cursive halving) and gather (binomial tree), which is
Trabenseifner =2 lgp o+ QPTTlnﬂ + pp%lTW

For reduce, in the case of predefined reduction oper-
ations, we use Rabenseifner’s algorithm for long mes-
sages (> 2 KB) and the binomial tree algorithm for
short messages (< 2 KB). In the case of user-defined
reduction operations, we use the binomial tree algo-
rithm for all message sizes because, unlike with prede-
fined reduction operations, the user may pass derived
datatypes, and breaking up derived datatypes to do
the reduce-scatter is tricky. Figure 11 shows the per-
formance of reduce for long messages on the Myrinet
cluster. The new algorithm is more than twice as fast
as the old algorithm in some cases.

For allreduce, we use a recursive doubling algorithm
for short messages and for long messages with user-
defined reduction operations. This algorithm is sim-
ilar to the recursive doubling algorithm used in all-
gather, except that each communication step also in-
volves a local reduction. The time taken by this algo-
rithm is Tyee—gp = lgpa+nlgp 8+ nlgpy.

For long messages and predefined reduction op-
erations, we use Rabenseifner’s algorithm for allre-
duce [14], which does a reduce-scatter followed by an
allgather. If the number of processes is a power of
two, the cost for the reduce-scatter is lgpa + ”p%lnﬁ+

%nv. The cost for the allgather is lgp a + %nﬂ.
Therefore, the total cost is Trapenseifner = 21gp a +

Q%nﬁ + pp%lnfy.

5 Further Optimization of

Allreduce and Reduce

A five-year profiling study of applications running in
production mode on the Cray T3E 900 at the Univer-
sity of Stuttgart revealed that more than 40% of the
time spent in MPI functions was spent in the two func-
tions MPI_Allreduce and MPI Reduce and that 25%
of all execution time was spent on program runs that
involved a non-power-of-two number of processes [15].
We therefore investigated in further detail how to
optimize allreduce and reduce for both power-of-two
and non-power-of-two numbers of processes. We ex-
perimented with several variations of the basic algo-
rithm for long-message allreduce and reduce described
above. We ran the best-performing algorithms for the
usage scenarios indicated by the profiling study and
found that the new algorithms reduce the communi-
cation time by 20% for allreduce and 54% for reduce
compared with the vendor’s implementation on the
T3E, as shown in Figure 12. We describe these algo-
rithms and the results below.

The cost model described in Section 3 assumes that
all processes can send and receive one message at the
same time, regardless of the source and destination.
Although this is a good approximation, many net-
works are faster if pairs of processes exchange data
with each other, rather than if a process sends to and
receives from different processes [3]. Therefore, we
refine the cost model further by defining two costs:
a+nf is the time taken for bidirectional communica-
tion between a pair of processes, and ayn; + nBuni
is the time taken for unidirectional communication
from one process to another. We also define the ra-
tios fo = auni/a and fg = Buni/B. These ratios are
normally in the range 0.5 (simplex network) to 1.0
(full-duplex network).

We consider five different algorithms for implement-
ing allreduce and reduce. The first two algorithms are
binomial tree and recursive doubling, which were ex-
plained above. Binomial tree for reduce is well known.
For allreduce, it involves doing a binomial-tree reduce
to rank O followed by a binomial-tree broadcast. Re-
cursive doubling is used for allreduce only. The other
three algorithms are recursive halving and doubling,
binary blocks, and ring. For describing these algo-
rithms, we define the following terms:

e Recursive vector halving: The vector to be reduced
is recursively halved in each step.

o Recursive vector doubling: Small pieces of the vector
scattered across processes are recursively gathered
or combined to form the large vector

= ™
~

total

MPI_Allreduce communication time

2MB <Ing based on 5-year usage-pattern

512k <Ing <= 2MB: | atHLRS

128k < Ing <= 512 kb:

32kb <Ing <= 128 kb: |) —

BKb<ing<= 32kb:| b >l significant usage of

4Kb<ing<= Bkb: longer buffers

2kb<Ing<= 4kb: y * performance benefit

1kb<Ing<= 2kb: | accumulates to 20%

256b <Ing <= 1kb: ==

16b<Ing <= 256b : f ’—‘—‘—‘
8b Ing <= 16 byte: — B Optimized Allreduce

Ing <= 8 byte: 7] Venflor's AIIneduce

0% 20% 40% 60% 80% 100%

total

' A

2MB <Ing iy - MPI_Reduce communication
time based on 5-year usage-

512k <Ing <= 2 MB: pattern at HLRS

128k <Ing <= 512 kb{ b ‘ ‘

32kb <Ing <= 128 kbj P— .

Bkb <Ing <= 32 kb| =)'> +significant usage of
4Kb<Ing<= 8Kkb: longer buffers
2kb<Ing <= 4kb: ﬁ +performance benefit
1kb<Ing<= 2kb: N4 accumulates to 54%
256b < Ing <= 1 kb:

16b<Ing<= 256b :
8b Ing <=16byte: b
Ing <= 8byte: 5

0% 20%

B Optimized Reduce
O Vendor's Reduce

40% 60% 80% 100%

Figure 12: Benefit of new allreduce and reduce algorithms optimized for long vectors on the Cray T3E

e Recursive distance halving: The distance over which
processes communicate is recursively halved at each
step (5,%,...,1).

o Recursive distance doubling: The distance over
which processes communicate is recursively doubled
at each step (1,2,4,...,5).

5.1 Recursive Halving and Doubling

This algorithm is a combination of a reduce-scatter
implemented with recursive vector halving and dis-
tance doubling followed either by an allgather im-
plemented by a recursive vector doubling combined
with recursive distance halving (for allreduce) or by a
gather implemented with a binomial tree (for reduce).

Since these recursive algorithms require a power-of-
two number of processes, if the number of processes
is not a power of two, we first reduce it to the nearest
lower power of two (p' = 2!'87]) by removing r = p—p'
extra processes as follows. In the first 2r processes
(ranks 0 to 2r — 1), all the even ranks send the sec-
ond half of the input vector to their right neighbor
(rank +1), and all the odd ranks send the first half of
the input vector to their left neighbor (rank — 1), as
illustrated in Figure 13. The even ranks compute the
reduction on the first half of the vector and the odd
ranks compute the reduction on the second half. The
odd ranks then send the result to their left neigh-
bors (the even ranks). As a result, the even ranks
among the first 2r processes now contain the reduc-
tion with the input vector on their right neighbors
(the odd ranks). These odd ranks are removed from
participating in the rest of the algorithm, which leaves
behind a power-of-two number of processes. The first
r even-ranked processes and the last p — 2r processes
are now renumbered from 0 to p' — 1, p’ being a power
of two.

Figure 13 illustrates the algorithm for an example

10

on 13 processes. The input vectors and all reduction
results are divided into 13 parts (A, B,...,H) and de-
noted as A—H,.,,rs. After the first reduction, process
PO has computed A-Dg_1, denoting the reduction re-
sult of the first half (A-D) of the input vector from
processes 0 and 1. Similarly, P1 has computed E-
Hg_1, P2 has computed A-D5_3, and so forth. The
odd ranks then send their half to the even ranks on
their left: P1 sends E-Hg_1 to PO, P3 sends E-Hy_3
to PO, and so forth. This completes the first step,
which takes (14 fo)a+ 5(1+4 f3)8 + 5~y time. This
step is not necessary if the number of processes is a
power of two.

Now we begin with the first step of recursive vec-
tor halving and distance doubling, in which the even-
ranked processes send the second half of their buffer
to rank’ + 1 and the odd-ranked processes send the
first half of their buffer to rank’ — 1. All processes
then compute the reduction between the local buffer
and the received buffer. In the next lgp’ — 1 steps,
the buffers are recursively halved, and the distance is
doubled. At the end, each of the p’ processes has ﬁ
of the total reduction result vector. All these recur-
sive steps take lgp’ a + (pp—fl)(nﬂ + ny) time. The
second part implements either an allgather or gather
to complete the allreduce or reduce operation.

Allreduce: To implement allreduce, we do an all-
gather using recursive vector doubling and distance

halving. In the first step, process pairs exchange ﬁ

2

of the buffer to achieve > of the result vector, in the

next step 1% of the buffer is exchanged to get ﬁ of the
result, and so forth. After lgp’ steps, the p’ processes
receive the total reduction result. This allgather part
costs lgp’ o + (p’pTl)nB. If the number of processes is
not a power of two, the total result vector must be sent
to the r processes that were removed in the first step,
which results in additional overhead of aypn; + nBuni-

rank newrank
0 A-Ho ™) A-Do.r.g A-Hos (0) 5| A-Dos
1 A-Hq 1= E-Ho 5
2 A-Hy! A—D2_37r: A-Hys (1) “ E-Hgs
3A-H; 1 E-Hpg !
VALE 4 A-H, E A_D4-571i A-Has (2) A-Dyq
with 5 AHs 1~ E-Has
r=p-2n | | 8AHe ™) ADeag AHer (3) EB-Hag
and 7 A-Hy 1< E-Hg |
8 A—Hg ™) A-Dg.gg A—Hgo (4) A-Dg.
2N<p 8 8 Qﬂl 89 8-10
L 9 A—Hq :__j E—Hg.g Tsending total datg/ in one direction
10 A_H'm exchanging half of data in (5) E_H8'1°
11 A-Hyq4 both directions followed by (6) A-D4q.12
12 A—H12 the reduction operation (7) E—H11_12

A—

Bo.7 Ag-12 A-H:

A-D i

)N

E-Fo.7 Eo.12 E-F E-H A-H | H
Ny |

C-Dos Co-12 c-D A-D W A-H! i
Ny

G—Hyz Go.12 G-H E-H A-H E E
xchanging total data in both dir. | A-H |

A-Bg.12 Bo.12 A-B A-D Y A-H! E
P

E_F8'12 F0'12 E-F E-H A-H sending total
C-Dg.12 Do.12 C-D A-D A-H data in one

G-Hs.12 Ho-12 G-H E-H A—H direction

1%t part: Reduce_scatter

| ‘ 2nd part: Allgather

Figure 13: Recursive halving and doubling for allreduce. The figure shows the intermediate results after each
communication step (including the reduction operation in the reduce-scatter phase). The dotted frames show
the additional overhead caused by a non-power-of-two number of processes.

The total allreduce operation therefore takes the fol-
lowing amount of time:

If p is a power of two: T,y n&dp=2err = 2lgp a +
2nB + ny — %(2n,8 +ny) ~ 2lgpa+2nf+ny
If p is not a power of two: T,y heed,p2e=r = (21gp'+
14+ 2fa)a+ (2 + %)nﬁ + %n'y — I%(Qnﬂ + ny)
~ (34 2|lgp|)a+4nB + %TL’)/

This algorithm is good for long vectors and power-
of-two numbers of processes. For non-power-of-two
numbers of processes, the data transfer overhead is
doubled, and the computation overhead is increased
by 2. The binary blocks algorithm described below
can reduce this overhead in many cases.

Reduce: A binomial tree algorithm is used to gather
the data to the root using recursive vector doubling
and distance halving. The time needed for this gather
operation is 1g p' ayn; + %nﬂum. In the non-power-
of-two case, if the root happens to be one of those
odd-ranked processes that would normally be removed
in the first step, then the role of this process and its
partner in the first step are interchanged after the first
reduction in the reduce-scatter phase, which causes
no additional overhead. The total reduce operation
therefore takes the following amount of time:

o If p is a power of two: Treq ngd,p=2e=r = lgp(1 +
fo)a+ (1 + fa)nf +ny — 2 (1 + fs)ns +ny)
2lgpa+2nB +ny

o If pis a not a power of two: Tjeq ned,pg2eer
Igp' (14 fa)at (14 fo)at (1425 Lete 4 f5ynB+3ny—
ﬁ((l + fa)nf+ny) ~ (2+2|lgp|)a+3ns+ %n'y

~

11

5.2 Binary Blocks Algorithm

This algorithm reduces some of the load imbalance
in the recursive halving and doubling algorithm when
the number of processes is a non-power-of-two. The
algorithm starts with a binary-block decomposition of
all processes in blocks with power-of-two numbers of
processes (see the example in Figure 14). Each block
executes its own reduce-scatter with the recursive vec-
tor halving and distance doubling algorithm described
in the previous section. Then, starting with the small-
est block, the intermediate result (or the input vector
in case of a 2° block) is split into the segments of
the intermediate result in the next higher block and
sent to the processes in that block, and those pro-
cesses compute the reduction on the segment. This
does cause a load imbalance in computation and com-
munication compared with the execution in the larger
blocks. For example, in the third exchange step in

the block, each process sends one segment, re-
ceives one segment, and computes the reduction of
one segment (PO sends B, receives A, and computes
the reduction on A). The load imbalance is introduced

by the smaller blocks and : In the block,

each process receives and reduces two segments (for

example, A-B on P8), whereas in the block (P12),
each process has to send as many messages as the ra-
tio of the two block sizes (here 22/2°). At the end of
the first part, the highest block must be recombined
with the next smaller block, and the ratio of the block
sizes again determines the overhead.

We see that the maximum difference between the
ratio of two successive blocks, especially in the low
range of exponents, determines the imbalance. Let

hi half of dat: both directi foll d b : . : .
binary _rank (newra/nk)/ ;X:rzzgzgonaopira:oanm oth directions Tollowed by tsoetr::lggta exchanging total data in both dir.
decom.| [0(0.0) D A-Dg.1 7 A-Bo.3 Aoz Ag.12 in one A B A-D A-H
position 1(0.1) < E-Hgq E—Fo3 Eo.7 Eo.12 —} direction E-H A-H
2(0.2)~ A-Dy3 C-Dy3 Coz Co2 —1 C D A-D)A—H
3 (03) E—H2_3 G—Ho_g G0_7 Go 12 G-H E-H A-H
4(04)~ A-Dys~ A-Byy Bos| ! TiBoaz AN A-B A-D)A—H
5(0.5)< E-Hys E-Fs7 Fo.7 ! : Fo.12 i- X F-G E-H A-H
6 (0.6)> A-Dg74) C-Dyy Doz| ! Doz MM c-D A-D >A—H
L 7(0.7)¢ E-Hg7 </ G-Haz Ho7 : ‘Hoz2 G-H E-H A-H
8 (8.0)) A-Dgg A-Bg 1[I N T AE—BES_.]ZE 1 ! (A-B A-D)A—H
9 (8.1)¢ E-Hg. E-Fg. : i Ei-Figqp! ! 3 E-F E-H A-H
8-9 g1 \|! EFigaz : N i i
10(82)5) ADig41” JCDgaei |1 C-Dlar ; F3(CD %) AD :—lg DI
11(8.3)< E-Hygq1< G-Hgaq})} G-Hgua] | —|G-H E-H 9l £AH
{12 (12.0) ' "sending segmented data to many = AH
- processes, followed by r
| 1¢t part: Reduce_scatter | | 2" part: All |

Figure 14: Allreduce using the binary blocks algorithm

us define dexpo,max as the maximal difference of two
consecutive exponents in the binary representation of
the number of processes. For example, 100 = 26425+
22, Sexpo,max = max(6 — 5,5 — 2) = 3. If Jexpo,max 1S
small, the binary blocks algorithm can perform well.
The profiling study on the T3E revealed that 12 % of
all applications ran with 96 processes and 8 % ran with
36, 60, 61, 77, 80, 81, 100, 235, or 251 processes [15].
For these cases, dexpo,max i 1 (96, 60), 2 (61, 80, 235,
251), or 3 (36, 77, 100). Therefore, this algorithm is
likely to perform well in the common cases used in
practice.

Allreduce: For allreduce, the second part is an all-
gather implemented with recursive vector doubling
and distance halving in each block. For this purpose,
data must be provided to the processes in the smaller
blocks with a pair of messages from processes of the
next larger block, as shown in Figure 14.

Reduce: For reduce, if the root is outside of the
largest block, then the intermediate result segment
of rank 0 is sent to the root, and the root plays the
role of rank 0. A binomial tree is used to gather the
result segments to the root process.

We note that if the number of processes is a power
of two, the binary blocks algorithm is identical to the
recursive halving and doubling algorithm.

5.3 Ring Algorithm

While the algorithms in the preceding two sections
are good for power-of-two numbers of processes and
long vectors, for medium non-power-of-two numbers
of processes and long vectors there exists another good
algorithm. It uses a pairwise-exchange algorithm for
the reduce-scatter phase (see Section 4.4). For allre-
duce, it uses a ring algorithm to do the allgather, and,
for reduce, all processes directly send their result seg-

ment to the root. This algorithm is good in band-
width use for non-power-of-two numbers of processes,
but the latency scales with the number of processes.
Therefore this algorithm should be used only for a
small or medium number of processes. The time taken
is Tatt,ring = 2(p — L)+ 2nf + ny — 11—0(2n,8 + nvy) for
allreduce and Treq,ring = (P — 1) (@ + auni) + n(8 +
Bunz) +ny— —((B + ﬂunz) + TL’)/) for reduce.

5.4 Choosing the Fastest Algorithm

Based on the number of processes and the vector
length, the reduction routine must decide which al-
gorithm to use. The decision is not an easy one
and depends on a number of factors. We experimen-
tally determined which algorithm works the best for
different buffer sizes and number of processes on a
Cray T3E 900. The results for allreduce are shown
in Figure 15. For buffer sizes less than or equal to
32 bytes, recursive doubling is the best; for buffer
sizes less than or equal to 1 KB, the vendor’s algo-
rithm (for power-of-two) and binomial tree (for non-
power-of-two) are the best, but not much better than
recursive doubling; for longer buffer sizes, the ring
algorithm is good for some buffer sizes and some
number of processes less than 32. In general, on a
Cray T3E 900, the binary blocks algorithm is faster
if dexpo,max < lg(vector length in bytes)/2.0 — 2.5 and
vector size > 16 KB and more than 32 processes are
used. In a few cases, for example, 33 processes and
less than 32 KB, recursive halving and doubling is the
fastest.

Figure 16 shows the bandwidths obtained by the
various algorithms for a 32 KB buffer size on the T3E.
For this buffer size, the new protocols are clearly bet-
ter than the vendor’s protocol (Cray MPT.1.4.0.4) as
well as the binomial tree algorithm for all numbers

12

Fastest Protocol for _ vendor W
Allreduce(sum,dbl) _binary tree O
pairwise +ring +
halving + doubling %
512
break-even points : size=1k and 2k and min((size/256)9”6,)
o 256 [] XX X ox OX X % % ox % X X X%
2 X u woxo % % % ox ox
123 * & Ed * * *® *® *
8 128 m e HOHOMOH owox ox ox x M
<} x B * X X X %X X
z 64 YRR EREEREEEEREEEE P
= X ¥ ¥ % x I
5 32 ' owon & 1T ¢« ¥ 11
o] 2 + + ¥ %
* R SR T I
= P % § % E:
; . 2RI EE
+ + + + + + + + +
4 [| ¥ OK XX ¥ E
+ o] + o+ o+ o+
2 [I | * o+ x + +
8 32 256 1k 8k 32k 256k 1M 8M
buffersize [bytes]
Figure 15: The fastest algorithm for allreduce
(MPI_DOUBLE, MPI_SUM) on a Cray T3E 900
1
0o buffersize = 32 kb vendor —=—
90 Allreduce(sum,dbl) binary tree —=—
pairwise + ring ——
80 halving + doubling —<—
& 70 chosen best —e—
S 60 g
= \
5 50
=
2 40
15}
el
30
20
10
0
2
number of MPI processes
Figure 16: Bandwidth comparison for allreduce

(MPI_DOUBLE, MPI_SUM) with 32 KB vectors on a Cray
T3E 900.

of processes. For up to 32 processes, we measured
the performance for all numbers of processes. For
more than 32 processes, we measured only selected
values with small and large dexpo,max- We observe that
the bandwidth of the binary blocks algorithm depends
strongly on dexpo,max and that recursive halving and
doubling is faster on 33, 65, 66, 97, 128—-131 processes.
The ring algorithm is faster on 3, 5, 7, 9-11, and 17
processes.

5.5 Comparison with Vendor’s MPI

We also ran some experiments to compare the perfor-
mance of the best of the new algorithms with the algo-
rithm in the native MPI implementations on the IBM
SP at San Diego Supercomputer Center, a Myrinet
cluster at the University of Heidelberg, and the Cray
T3E. Figure 17 shows that with a pure MPI program-

13

ming model (1 MPI process per CPU) on the IBM
SP, the fastest algorithm performs about 1.5 times
better than the vendor’s algorithm for buffer sizes
of 864 KB and 2-5 times better for larger buffers.
With a hybrid programming model comprising 1 MPI
process per SMP node, where each MPI process is
itself SMP-parallelized (with OpenMP, for example)
and only the master thread calls MPI functions (the
master-only style in [16]), the performance is about
1.5-3 times better for buffer sizes 4-128 KB and more
than 4 processes. Figure 18 compares the new algo-
rithm with the old MPICH-1 algorithm on the Hei-
delberg Myrinet cluster. The new algorithms show a
performance benefit of 3-7 times with pure MPI and
2-5 times with the hybrid model. Figure 19 shows
that on the T3E, the new algorithms are 3-5 times
faster than the vendor’s algorithm for the operation
MPI_SUM and, because of the very slow implementation
of structured derived datatypes in Cray’s MPI, up to
100 times faster for MPI_MAXLOC .

6 Conclusions and Future Work

Our results demonstrate that optimized algorithms
for collective communication can provide substantial
performance benefits and, to achieve the best perfor-
mance, we need to use a number of different algo-
rithms and select the right algorithm for a particular
message size and number of processes. Determining
the cutoff points for switching between the different
algorithms is tricky, however. At present, we use ex-
perimentally determined cutoff points, but we plan to
develop a model to calculate the cutoff points auto-
matically based on system parameters. We also plan
to extend this work to incorporate topology aware-
ness, particularly algorithms that are optimized for
architectures comprising clusters of SMPs and clus-
ters distributed over a wide area, such as the Tera-
Grid [21]. Furthermore, we plan to explore the use of
one-sided communication to improve the performance
of collective operations.

The source code for the new algorithms will be
available in the next release of MPICH (1.2.6) and in
version 1.0 of our new MPI implementation, MPICH2.
Several of the algorithms are already implemented
in MPICH 1.2.5 and early releases of beta versions
of MPICH2. Both MPICH-1 and MPICH-2 can be
downloaded from www.mcs.anl.gov/mpi/mpich.

128
Allreduce(sum,dbl) - ratio := best bandwidth of 4 new a Allreduce(sum,dbl) - ratio := best bandwidth of 4 new algo.s / vendor’s bandwidth
512 §§§§ I* EB@%%é%@EE; 64 xxxx***%aggggiiggng 100.<= ratio []
P 14652 i y Y YV EIY IR 50. <= ratio <100. M
A2 % T ;* 2 4 r ey 20.<=ratio<50. W
8 256 £ A i’ Rz S bk k kKK KKK xaﬁﬁfn a3
2 b4 2 2 2 A £
8 FXX X8B3 a 8 2 A4
<) {4 A <) 7.0<=ratio<10. [J
Q—C_L128 £ % % Q—C_L 16F % X% KX %% XX X 50<=ratio<7.0 O
< 2.482% g S EE:
X a 224 2)
5 a AKI = ATa 30<=ratio<50 +
= 2 AeRANTIT = AT% 0k
2 64 x AAAAA Y+ 4+ + S gl x ok x kKK X XX X 20<=ratio<3.0 +
€ a a A+ + 4+ +0++ € An o+)
2 A A A+ 4+ 4+ ++++ 2 A+ 15<=ratio<2.0 2
A A4+ 4+ ++++ A+
32 AAAAAAF 4+ 4+ + 4F X X X K X X X ¥ X X X
A4 a+a+++++++ L N R
0.7<=ratio<09 x
16 x AADNAADN 4 4 4+ 4 + 2F ¥ ¥ K XK X ¥ ¥ X X X A 0.0<=ratio<0.7 x
8 32 256 1k 8k 32k 256k 1M 8M 8 32 256 1k 8k 32k 256k 1M 8M

buffersize [bytes]

buffersize [bytes]

Figure 17: Ratio of the bandwidth of the fastest of the new algorithms (not including recursive doubling) and
the vendor’s allreduce on the IBM SP at SDSC with 1 MPI process per CPU (left) and per SMP node (right)

512 Allreduce(sum,dbl) - ratio := best bandwidth of 4 new a 256 Allreduce(sum,dbl) - ratio := best bandwidth of 4 new algo.s / vendor’s bandwidth
a A A+ [da + X X X X X X X A A A +
Safaaii 218851111488 SIENEEEi8518841111188 oewo m
AL AAA A+ +0Q0RQa++++8 XX s b+ ++QA++++++ =
Zol2g88tetetregrarrogs EEALLLL L QETTOAIILILON o craoci00
A A DA &+ + XXX X & A&t +btt+t++)
P §§§§ﬁ § P X gé 20. <= ratio < 50. u
L 128 =2 2 LI L 64 2R eRg iR
8 RaAka 4 THTY
<} A A <} 70<=ratio<10. [
E’ 64 gg;ﬁsﬁgaxg E. 32 XX %% ><><§§ N
% ééggg g % §§X %;é 50<=rato<70 O
5 3 “Hgggx = E 5 1 2221141203 30<=ratio<50 -+
g §§§§§ a g % § 20<=ratio<3.0 +
£ A A € A .
R TTTT2sa .2 3 8 ><><><><><><><><AI 15<=ratio<20 4
A A AAA t+ T+t T +t+++++ AL+ 4+ + + + A+ +
A A AAA A4+ ++++++++ 4+ X AL+ 4+ + A A+ + + +
t++taaas s A+ ++++0++++ 4+ AL+ +++0+++ 4+ ++
8 X X A4+ + A4+ + A A A+ + 4 X X X X X ¥ X X + A A
AL AAAANDLL A+ + A+ +F+ AL+ + + AAa+++++++++ 4+ 07<=ratio<09 X
4 X A A + A A A6 A+ 2 X K X X XK ¥ ¥ X X X + + + + + + 0.0 <=ratio< 0.7 *
8 32 256 1k 8k 32k 256k 1M 8M 8 32 256 1k 8k 32k 256k 1M 8M

buffersize [bytes]

buffersize [bytes]

Figure 18: Ratio of the bandwidth of the fastest of the new algorithms (not including recursive doubling)
and the old MPICH-1 algorithm on a Myrinet cluster with dual-CPU PCs (HELICS cluster, University of
Heidelberg) and 1 MPI process per CPU (left) and per SMP node (right)

Acknowledgments

This work was supported by the Mathematical, Infor-
mation, and Computational Sciences Division subpro-
gram of the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Department of En-
ergy, under Contract W-31-109-ENG-38. The U.S.
Government retains for itself, and others acting on its
behalf, a paid-up, nonexclusive, irrevocable worldwide
license in said article to reproduce, prepare derivative
works, distribute copies to the public, and perform
publicly and display publicly, by or on behalf of the
Government.

The authors would like to acknowledge their col-
leagues and others who provided suggestions and help-

14

ful comments. They would especially like to thank
Jesper Larsson Tréff for helpful discussion on op-
timized reduction algorithms and Gerhard Wellein,
Thomas Ludwig, and Ana Kovatcheva for their bench-
marking support.

References

[1] M. Barnett, S. Gupta, D. Payne, L. Shuler,
R. van de Geijn, and J. Watts. Interproces-
sor collective communication library (InterCom).

In Proceedings of Supercomputing ’94, November
1994.

Allreduce(sum,dbl) - ratio := ew a Reduce(sum,dbl) - ratio := best bandmdth of 4 new algo.s / vendor’s bandwidth
256 F F F F ok kx x k & A F BE 256 ##--o--o/\‘*
33 2111 2 SRR (211111880000 oo m
i i abiz 212 Tit saszziz 50. <= ratio <100. M
128 [FFFAK KA A+Ti op 128 | & & % A2i$$: :
” + + + N 2A++ 0] N e ﬁA#— 20.<=ratio<50. W
Q y; Q
2 64 gggxiixx"é 2 64 % §
(o} [0
8 iiﬁ 144 2 8 18 7.0<=ratio<10. 0O
S gtz iibibiig = 32 i
o % ! o 50<=ratio<70 O
s i l il = i
5 il H ! R 5 % 3.0<=ratio<50 +
5 BFAAZXE¥%%%3 5 16 A)
g §§§ SRR B §§ 20<=rato<3.0 +
£ £ .
3 AANA a =] o A 15<=ratio<2.0 24
= 8 . A A < 8 A A
A A A N AA+ 4+ ++ 4+ 4+
A A A + A AA+ 4+ + 44+ 4+
A a4 + a A+ + 4+ 4+ 4+ 4+ A+ +
4 X X X EEENVNIN + 4 A AA+ 4+ 44+ 4+ 09<=ratio<1i
A s e e e AA+++++++++ a AAA+++++++ 07<=ratio<09 X
2 AL+ 4+ 4+ 4+ 4+ ++ 2 aAaab484b648a 00<=ratio<07 *
8 32 256 1k 8k 32k 256k 1M 8M 8 32 256 1k 8k 32k 256k 1M 8M
buffersize [bytes] buffersize [bytes]
Allreduce(maxloc,dbl) - ratio := best bandwidth of 5 new Reduce(maxloc,dbl) - ratio := best bandwidth of 4 new algo.s / vendor’s bandwidth
256 Bo 256 A
F1rTIBECRiLNNNIRRRRE TEE: 0o W
+++++ LEEENEEN ++ 4+ + EEEE
= 50. <=ratio<100. MW
N D“'"II“ | I3 H
® + I NN » + &+ mn 20. <= ratio < 50. u
o 2 @ §
2 64 ? 64
3 g 8 2
<] <} 7.0<=ratio<10. [
Q Q
o 32 o o 32 50<=rato<7.0 O
= = .
5 % 3 30<=rao<50 +
é II é 20<=ratio<3.0 +
3 s 3- o 2 s 2 15<=ratio<2.0 24
+ 4+ + + o] EEEEEEEEE + 4+ 4 EEEE
+++++00 EEEEEEEEEN ++ + 4+ EEEE
+++++000 EEEE EEEE + 4+ a4+ EEEE)
4 A+a+++00 EEEEEEEESR 4 + A+ + mmmm O09<sratio<1d
++++++00 EEEEEEEEER ++a+4+4+00 EEEN (07<=ratio<09 X
2 A+ ++4+00 EEEEEEEEN 2 A ANbs s +4+00 EEEN 0.0<=ratio<0.7 %
8 32 256 1k 8k 32k 256k 1M 8M 8 32 256 1k 8k 32k 256k 1M 8M

buffersize [bytes]

buffersize [bytes]

Figure 19: Ratio of the bandwidth of the fastest of the new algorithms and the vendor’s algorithm for allreduce
(left) and reduce (right) with operation MPI_SUM (first row) and MPI_MAXLOC (second row) on a Cray T3E 900

2]

M. Barnett, R. Littlefield, D. Payne, and
R. van de Geijn. Global combine on mesh ar-
chitectures with wormhole routing. In Proceed-
ings of the Tth International Parallel Processing
Symposium, April 1993.

Gregory D. Benson, Cho-Wai Chu, Qing Huang,
and Sadik G. Caglar. A comparison of MPICH
allgather algorithms on switched networks. In
Jack Dongarra, Domenico Laforenza, and Salva-
tore Orlando, editors, Recent advances in Parallel
Virtual Machine and Message Passing Interface,
10th European PVM/MPI Users’ Group Meeting,
pages 335-343. Lecture Notes in Computer Sci-
ence 2840, Springer, September 2003.

S. Bokhari. Complete exchange on the iPSC/860.
Technical Report 91-4, ICASE, NASA Langley
Research Center, 1991.

15

[5]

[6]

S. Bokhari and H. Berryman. Complete exchange
on a circuit switched mesh. In Proceedings of
the Scalable High Performance Computing Con-
ference, pages 300-306, 1992.

Jehoshua Bruck, Ching-Tien Ho, Schlomo Kip-
nis, Eli Upfal, and Derrick Weathersby. FEf-
ficient algorithms for all-to-all communications
in multiport message-passing systems. [FEFE
Transactions on Parallel and Distributed Sys-
tems, 8(11):1143-1156, November 1997.

Debra Hensgen, Raphael Finkel, and Udi Man-
bet. Two algorithms for barrier synchronization.

International Journal of Parallel Programming,
17(1):1-17, 1988.

L. V. Kale, Sameer Kumar, and Krishnan Var-
darajan. A framework for collective personalized
communication. In Proceedings of the 17th In-

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

ternational Parallel and Distributed Processing
Symposium (IPDPS ’03), 2003.

N. Karonis, B. de Supinski, I. Foster, W. Gropp,
E. Lusk, and J. Bresnahan. Exploiting hierarchy
in parallel computer networks to optimize collec-
tive operation performance. In Proceedings of the
Fourteenth International Parallel and Distributed
Processing Symposium (IPDPS ’00), pages 377
384, 2000.

T. Kielmann, R. F. H. Hofman, H. E. Bal,
A. Plaat, and R. A. F. Bhoedjang. MagPle:
MPI’s collective communication operations for
clustered wide area systems. In ACM SIGPLAN
Symposium on Principles and Practice of Par-
allel Programming (PPoPP’99), pages 131-140.
ACM, May 1999.

P. Mitra, D. Payne, L. Shuler, R. van de Geijn,
and J. Watts. Fast collective communication li-
braries, please. In Proceedings of the Intel Super-
computing Users’ Group Meeting, June 1995.

MPICH - A portable implementation of MPI.
http://www.mcs.anl.gov/mpi/mpich.

Rolf Rabenseifner. Effective bandwidth (b_eff)
benchmark. http://www.hlrs.de/mpi/beff.

Rolf Rabenseifner. New op-
timized MPI reduce algorithm.
http://www.hlrs.de/organization/par/
services/models/mpi/myreduce.html.

Rolf Rabenseifner. Automatic MPI counter pro-
filing of all users: First results on a CRAY T3E
900-512. In Proceedings of the Message Pass-
ing Interface Developer’s and User’s Conference
1999 (MPIDC ’99), pages 77-85, March 1999.

Rolf Rabenseifner and Gerhard Wellein. Com-
munication and optimization aspects of parallel
programming models on hybrid architectures. In-

ternational Journal of High Performance Com-
puting Applications, 17(1):49-62, 2003.

Peter Sanders and Jesper Larsson Traff. The hi-
erarchical factor algorithm for all-to-all commu-
nication. In B. Monien and R. Feldman, editors,
Euro-Par 2002 Parallel Processing, pages 799—
803. Lecture Notes in Computer Science 2400,
Springer, August 2002.

16

[18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

D. Scott. Efficient all-to-all communication pat-
terns in hypercube and mesh topologies. In Pro-
ceedings of the 6th Distributed Memory Comput-
ing Conference, pages 398—403, 1991.

Mohak Shroff and Robert A. van de Geijn. Coll-
Mark: MPI collective communication bench-
mark. Technical report, Dept. of Computer Sci-
ences, University of Texas at Austin, December
1999.

Steve Sistare, Rolf vandeVaart, and FEugene
Loh. Optimization of MPI collectives on clus-
ters of large-scale SMPs. In Proceedings of SC99:
High Performance Networking and Computing,
November 1999.

Teragrid. http://www.teragrid.org.

V. Tipparaju, J. Nieplocha, and D. K. Panda.
Fast collective operations using shared and re-
mote memory access protocols on clusters. In
Proceedings of the 17th International Parallel and
Distributed Processing Symposium (IPDPS 03),
2003.

Jesper Larsson Traff. Improved MPI all-to-all
communication on a Giganet SMP cluster. In
Dieter Kranzlmuller, Peter Kacsuk, Jack Don-
garra, and Jens Volkert, editors, Recent Advances
in Parallel Virtual Machine and Message Passing
Interface, 9th European PVM/MPI Users’ Group
Meeting, pages 392—400. Lecture Notes in Com-
puter Science 2474, Springer, September 2002.

Sathish S. Vadhiyar, Graham E. Fagg, and Jack
Dongarra. Automatically tuned collective com-
munications. In Proceedings of SC99: High Per-
formance Networking and Computing, November
1999.

Thomas Worsch, Ralf Reussner, and Werner Au-
gustin. On benchmarking collective MPI op-
erations. In Dieter Kranzlmiiller, Peter Kac-
suk, Jack Dongarra, and Jens Volkert, editors,
Recent advances in Parallel Virtual Machine
and Message Passing Interface, 9th FEuropean
PVM/MPI Users’ Group Meeting, pages 271-
279. Lecture Notes in Computer Science 2474,
Springer, September 2002.

